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1. INTRODUCTION 

LetF„\ = F„F„_1...F2F1. 

Definition: The Fibonacci coefficient [£]s is defined to be 

F\ FnFn-\ • A 
Fk\Fn_k! (FkFk_l...Fl)(F^kFn_k_l...Fl)' 

An important property of the Fibonacci coefficients from [4] is 

= F, M-l 
k-i + Ft 

is 
k-e-i 

k-i 0) 
From the Fibonacci coefficients we form the Fibonacci triangle in much the same way as 

Pascal's triangle is formed from the binomial coefficients; namely, the Fibonacci triangle is formed 
by letting the k^ element of the rfi row be [£]g. 

1 
1 1 

1 1 1 
1 2 2 1 

1 3 6 3 1 
1 5 15 15 5 1 

FIGURE 1. Rows 0 to 5 of the Fibonacci Triangle 

The parity of the binomial coefficients and the iterative structure of Pascal's triangle have 
been the subject of many papers (see, e.g., [2], [3], [13]). More recently, the Fibonacci coeffi-
cients and the iterative structure of the Fibonacci triangle modulo 2 and 3 has been examined in 
[5], [11], and [12]. In this paper we extend the results of [11] and [12] from the Fibonacci coef-
ficients and triangle modulo 2 and 3 to modulus/? for/? an odd prime. 

For an odd prime p other than 5 and / > 0, define r}; e N as the smallest number such that 
p*\Fri. In particular, r0 = 1 and rx is what is commonly called the rank of apparition of p. We will 
denote p- {r0,r1?...}. It is well known that rt\ri+l for all i GN, SO any n eN can be written 
uniquely as n = nkrk+nk_lrk_l + "-+nlrl-\-nQ for O^n^^-. We call this the base p repre-
sentation of n E N. 

Our main results are 

Theorem 1: Let r - max,^ •—-. The number of entries in the 71th row of the Fibonacci triangle 
not divisible by/? is 2Sl3S24S3...rSr-1, where sf is the number of/'s in the base p expansion of n. 

Theorem 2: Let /? ̂  2,5 be a prime. There is the following connection between the Fibonacci 
and binomial coefficients modulo/?: 
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[r;H*Kr>" «•*"» 
In particular, the triangle AFp formed by having [^j]g (mod/?) as the k* entry of the rfi* row is 
Pascal's triangle modulo/? if and only if rx is even. 

Theorem 3: For p ^ 2,5 a prime, we have 

nrx+j 
J& 

(jwYfl F^-^^'^-^^0-0 (mod/?). 

2. PRELIMINARY FACTS 

Of fundamental importance in our investigation are the following two well-known facts (see 
[9]): First, if (a, b) denotes the greatest common divisor of two natural numbers, then 

(FmFm) = F(m,ny ( 2 ) 
Second, 

A sequence {Aj} is said to be regularly divisible by d e N if there exists r{d) e N such that 
d\Aj if and only if r(d)\j. A sequence is regularly divisible if it is regularly divisible for all d e N 
(see [5]). From (2), we see that the sequence {Fn}™=l is regularly divisible. To simplify notation, 
for/? our fixed prime and for i > 0, we let rx; e N be the smallest number such that pl\Frr Notice 
that r0 = 1 and rx is what is generally called the rank of apparition of/?. Let p - {r0, rx...}. Since 
the Fibonacci sequence is regularly divisible rt\ri+l so each n GN can be written uniquely as 
n = ntrt + nt_ft_x H f- n^ + nQ with 0 < nf <^yL. We call this the base p representation of n and 
denote it by n = (nft^...nxi%)p (see [6]). 

It is well known from [7] that for z > 1 we have 

(4) 

The following theorem was first shown in [5] in a different form. The introduction of the 
base p allows us to state the theorem more succinctly. The theorem was given in this form in 
[10]. The proof is reproduced here with the permission of the first author of [10]. 

Kummer's Theorem for Generalized Binomial Coefficients: Let si= { /̂}7=i be a sequence of 
positive integers. If si is regularly divisible by the powers of/?, then the highest power of/? that 
divides 

rn + n 
m si 

An+n^m+n-1 • • • A7+I 
AmAm_l...AzAl 

is the number of carries that occur when the integers n and m are added in base p , where p = 
{ry}7=o f°r rj defined by pJ \ A?., pj\ Ar for 0 < r < fj. 

Proof: By definition of rt, Ar. is the first element in si divisible by p*. By regular divisibility 
of the sequence {Aj}J=l, we see that p'\Ak if and only if rt\k. This means the number of Ak, 
k <n that; are multiples of pj is 
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'i ri 

Now suppose, in base p, we have m = mtrt+mt_lrt_l + '-•vrn^^-m^ and n-ntrt +nt_lrt_l + -- + 
nf\ +wo> where we allow some of the initial digits to be 0 so we may assume m and n are written 
with the same number of digits in base p. Counting the multiples of pl in {Ah A^,..., Am+n}, 
( 4 , A2,..., 4 J , and {Ax, A2,..., An}, we see a carry at the /* place, 

occurs if and only if the number of multiples of pl in {Ax, A2,..., A^+J is one greater than the 
number of multiples of pi in {A1,A2,...9-Am} plus the number of multiples of pj in {Al,A2,...,An}. 
Therefore, the number of carries is the highest power of/? that divides [^"h. D 

In particular, the theorem applies to the Fibonacci sequence: {sij} J=1 = {Fj}J=l • 

Corollary (Knuth and Wilf) [5]: The highest power of/7 that divides [mT\ is the number of car-
ries that occur when the integers n and m are added in base p, where p = {?)}7=o f°r rj defined 
by Pj\Frj, Pj\Fr for 0<r <rJm 

3. CONGRUENCES FOR FIBONACCI NUMBERS AND COEFFICIENTS 

In this section we give a series of lemmas about congruences of Fibonacci numbers and 
coefficients. 

Lemma 1: For i > 1, Fnn+1 = Fmrl = i^+1 (mod /?')• 

Proof: Since p^F^, we have i y + 1 = i^r + iv_i = Fnr_{ (mod /?'), so we will switch freely 
between Fnr+l and Fnr_x modulo p' throughout the rest of the article. Since p\Fr, Fr

l
+l = Fr + 

Fr_x = Flr_x (mod /?'), so the lemma is true for n - 1. Assume i^r_! = i^+1 (mod /?')• Using (3) 
with n-kr^ m-r^X gives 

Z,e##fma 2; For i > 1, / ^ = Fr§{hF^l) (mod /?2/). 

Proof: This is clearly true for n - 1. Now assume i^r = Fr(kFr
k~l) (mod /?2/). Then, using 

(3) with n - fy; - 1 , #* = /; +1 gives 

^ + D , - V i V V V i ^ Fri(Fkrrl + kF$Fri+l) (mod />2<). (5) 

Since Lemma 1 says i^_j = ̂ +1 (mod p')> w e get 

Since p*\Fr, this congruence gives 

F , ( ^ 1 + ̂ , ^ + 1 ) S / v i ( * + l ) ^ + i ( m o d ^ ) . 

This congruence together with (5) gives F(k+V)r =Fr(k + l)Fr
k
+l (mod /?2/). • 

n 
r,_ = M±l ••+"i^+"o 

»/ 
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Lemma 3: For 0 < jj and 0 < m < rx -1, we have Firi+mFjr{+l = F£ri+lFM+m (mod/?). 

Proof: For m- 0, both sides are congruent to 0 modulo p since pli7^ and p\FJh. For 
7W = 1, both sides are identical. Assume that Fir+JF,

jr+l = Firi+lFjri+m (modp) for all m < k < rx -1 
for some k. Using our induction hypothesis, FM+k = i>1+(£_i) + ifo+(*-2), and F ^ = F£ri+(yt_1} + 

Ftrx +kFjrx +1 = ^ r , +(k-l)Fjn +1 + ^ +(k-2)Fjrx +1 

= ^+1^+^-1) +^+i^}/i+(jt-2) = Feri+iFjrl+k (mod/?). D 

Note that alternate forms of Lemma 3 are 
F£r+m F,r+m 

^ = f^(mod/?), 
r£rl+l rjrx+l 

which will be used below in Lemma 6 and, for m ^ 0, 

- ^ - = ~W^- (mod/?), 

which we will use in Theorem 2 below. 

Lemma 4: For 0<j,£ we have 

%u5^(mod/7 ) . 
Proof: By (3) with n = ̂ rb w = y>i +1, we have 

F(£+j)rl+l = ^ ^ r , + i V r 1 + l ^ r 1 + l = - ^ + 1 ^ + 1 ( m ° d i 7 ) ' 

Since iy + 1 is invertible modulo/?, we may divide to put this in the form of the statement of the 
lemma. • 

Lemma 5: For p & 2,5, 

fl (mod /?) if /} = 2 (mod 4), 
Fri-1 = \-l (mod /?) if rx = 0 (mod 4), 

[an element of order 4 (modp) ifrjisodd. 

Proof: From (3) with n = a-l, m = a9 we get F2 + F2_x = F2a_v From (3) with n = a, 
m = a + l, we get F* + F*+l = F2a+l. If ^ = 2a, then F2a+l = F2a + F2a_x = F2a_x (mod/?), so 

^ + # i - ^ - i - 4 f i = ̂  + # i - 2Fa
2
 +Fa

2_l + 2FaFa_l (mod/?), 

where the last equality is found by expanding F2
+l - (Fa + Fa_l)2. This means 0 = F2 + 2FaFa_x 

(mod /?). Since i^ # 0 (mod /?), we can factor it out to get 0 = Fa + 2Fa_x (mod /?) or, stated 
differently, Fa ^ -2Fa_x (mod /?). Then Ffl+1 = Fa + Fa_x - - i ^ (mod /?). If Fa +, - (~l)kFa_k 

(modp) for all 0 < k < £ < a -1, then 
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= (-lY(FaHt.2) - Fa_(e_1}) = (-l)<Fa_t (mod />), 

so 

This means that if /̂  = 2 (mod 4), we have Q odd, so -̂ V_i = 1 (mod/?). If AJ = 0 (mod 4), we have 
a even, so F x = -1 (mod/?). 

Now assume that ^ is odd. Since Fr = 0 (mod /?), we get 7^ 2 = Fr+l (mod /?). Assume 
Fri+k = (-l)k-lFri_k(modp)for^llO<k<£<rl-l. Then 

^ ( - l ) ' - 1 ^ . , (mod/>). 

Therefore, F2n_l = iv.+o-.-i) = (-l)r,_2ivi_(r,_1) = -1 (mod/>). By (3) with n = rx-\,m = ru we get 

so iv2-i = _ 1 (m°d/?)> i.e., has order 4 modulo/?. • 

Lemma 6: For 0 < i < j < rx, 

Imi+iL Fln-m)h-iF^'-i (mod p). 

Proof: This is clear for /' = 0 = j . Assume true for all 0 < i < j; < k < rx for some k. Take 
\<£<k-\. Then, by (1), 

nrx + k 
mrx+l = F„ mrx+£+l 

nrx+k-l 
mrl + £ +iv (n-m^+k-i-l 

nrx + k-l 
mr1+£-\ 

The induction hypothesis gives 

\nrx + kl = rnrx ]\k-l] pi Fk-t-x F 
m)rx+k-t-l mn 

k-\ 
£-1 

k-t 
(n—m)^ —\rmr\ -1 

{F 
F 

V »" i - l 

k-X 
£ 

= \nri\ F£ Fk~£ 

L ^ r i J g (w_,M)ri" r,_1 

Using Lemma 3, we find this is equivalent to 

[/»! + * ] • = r ^ i l Ft Fk-i(FM\k-i 

By (1), we conclude that 

{n-m)rx +k-£-l 

1 (n-m)rx-\ 

/ f c - l 
£ - 1 %, 

+ 
Fk-t-i 

b FX 

k-X 
»y 

(mod/?). 

(mod /?). 

fc,+4-tei['i^-*-'<-''<mod") 

The cases £ = 0 and £ = £ are dealt with similarly. D 
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4, MAIN RESULTS 

Theorem 1: Let r - max,^-^-. The number of entries in the rfi1 row of the Fibonacci triangle 
not divisible hyp is 2*13*24*3... rSr~l, where % is the number of I'S in the base p expansion of n. 

Proof: First, we note that the maximum exists. It is well known that rx<p + l. By (4), we 
know that ^ ^ p for / > 1, so r < p +1. 

By Kummer's Theorem for Generalized Binomial Coefficients, /?|[£]g if and only if there is 
no carry when k and n-k are added in base p. Let the base p expansions of n and k be n = 
(nt... n2nln0)p and k = (kt... k2k1k0)p. Then there is no carry when adding k and n-k in base p if 
and only if kt < nt for all i. For a fixed n, the number of such k is 11/(^ +1) since there are (nt +1) 
possible values of kt less than or equal to ni. • 

The iterative structure of Pascal's triangle modulo 2 has been studied extensively (see [13]). 
Recently, the iterative structure of the Fibonacci triangle modulo 2 has also been studied. In par-
ticular, a map between the Fibonacci triangle modulo 2 and Pascal's triangle modulo 2 was found 
in [11]. For all primes p^2,5 whose rank of apparition is even, we get an analogous result: a 
map between the Fibonacci triangle modulo p and Pascal's triangle modulo p. While the result for 
these primes is similar to the case p = 2, our method of proof is different and, in fact, breaks 
down for p = 2. 

Theorem 2: Let p^2,5 be a prime. There is the following connection between the Fibonacci 
and binomial coefficients modulo/?: 

~nrx 
krx 

B » W * M (mQdp) 

In particular, the triangle A^ formed by having [^] g (mod/?) as the k^ entry of the 17th row is 
Pascal's triangle modulo/? if and only if rx is even. 

Proof: By definition 

nrx 
krx 

FnnFm-l---F( (n-k)rx+l 

Fkrx
Fkrx-\' •F2F, 

Separating the factors divisible hyp from those not divisible by/?, we get 

nrx 
\krl 

Fnrx
 F(n-l)rx • • • F{n-k+l)rx 

FkrF(k-l)rx-"Frx 

F«_,F„_o...F, nrx nr\ (n-k)rx+l 

Fkrx-lFkrr 
[ 1 

Using Lemmas 3 and 4 to simplify, we obtain 

lkrL 

_ rnrx (n-l)rx .E (n-k+l)rx
 rnrx+l rnrx+l rnrx+l 

Fkrx
F(k-l)rx 

Fkrx+l Fkrx+l pjfcr,+l 

F„E _ rnrx
r(n-l)rx -~r{n-k+\)rx 

.F,„ 

^krx^{k-\)rx '"^rx 

1 nrx+l • 

yFkrx+\J 
( m o d /?). 
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Using Lemma 4 to simplify further, we get 

1% Fkri
F{k-\)r{—r^ 

\7\ -F*y?'"F^ V^J*-* (^dP). (6) 
Now there are two cases to consider. If the number of factors of/? in the numerator of the 

fraction 

is greater than the number of factors of/? in the denominator, then [/£j]8= 0 (mod /?). But by 
Rummer's theorem applied to s4 = {FriJ}J=l, p\[^]d if and only if there is a carry when adding k 
and n — k in base p' - {p0, px, p2 . . . } , where pf is defined by pj \FrJ if and only if pi \j. By (4), 
all the Pj are powers ofp, so there is a carry when adding & and n- k in base £?' if and only if 
there is a carry when adding k and « - k in base/? (i.e., {1, /?, p2,...} ). By Kummer's Theorem for 
Generalized Binomial Coefficients, there is a carry when adding k and n - k in base/? if and only if 
p\(l). In short, modulo/?, the zeros of [J£j]8 correspond to the zeros of (£), since the base p' 

for sl= {Fru}J=l is the same, up to repeated terms, as the base corresponding to (£), namely, 

Now consider the case where the number of factors of/? in the numerator of the above frac-
tion is the same as the number of factors of/? in the denominator. We know that Fnr[ = Fn (nF"~l) 
(mod p2) by Lemma 2, so 

J7 J7 77 / \ Z7«-lz7«-2 J7n~k 
rnrx

r{n-l)rx •••r(n-k+l)rl ' " * r-^r*--*-' -r^-
^krx ^(k-l)rx • • • A , W ^ >j + 1 ^ n + 1 • • • ̂  >. +i 

This means that (6) can be simplified to 

tel-(*)^r"F<r^ <m°d"> (7> 
By Lemma 1, this simplifies to 

[*?L • © ^ " " ^ ^ ^ - {t]FXk)n (rnodp). (8) 
This proves the first assertion of the theorem. 

Now suppose that rx is even. By Lemma 5, Fr+l = ±1 (mod/?). Then (8) reduces to 

nrx 
hrx M (mod/?). 

Finally, we need to show that when rx is odd, AFP is not the same as Pascal's triangle modulo 
p (p = 2 being the lone exception). For this, it is enough to show a single entry that does not 
match. By (8), 

ftl-®^ <mo<"') 
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By Lemma 5, when rx is odd, Fri+l has order 4 modulo/?. In particular, an odd power of Fr+X 

cannot be congruent to 1 modulo /?, so 

Lri Jg ±l*\ (mod/?). • 

In the case p = 5, we find A/? is the same as the Fibonacci triangle modulo 5. The case 
p = 2 was dealt with previously in [11]. 

We note that there are infinitely many primes/? for which AFP is the same as Pascal's triangle 
modulo p and there are infinitely many for which AFp is not the same as Pascal's triangle modulo 
p. By Theorem 2, this is equivalent to saying there are infinitely many primes p for which rx is 
even, since there are infinitely many F2i and for i > 2 there is always a prime factor of F2, which is 
not a prime factor of F2j for any j < i [this follows from rx(2) = 3, F2t > F2J for / > j and (4)]. 
Similarly, Fy, / > 2 may be used to show that infinitely many primes/? have odd rx. 

As a result of Theorem 2 and Lemma 6, we have the following connection between an arbi-
trary nonzero Fibonacci coefficient modulo p and a well-defined Fibonacci coefficient in the first 
rx rows of the Fibonacci triangle. 

Theorem 3: For p^2,5 a prime, we have 

[m 

Proof: By Lemma 6, 
mrx+i 

FrMn-m)+i{n-m)+m{j-i) ( m o d / ? ) (9) 

[̂ l-teLt'K"'-'̂ 'lmoip) 
By (8), this becomes 

\nrx+j 
\_mri' 

Applying Lemma 1, we get 

m^+i 

nrx+j 

{$]/$"-m%-^F^ <mod^ 

• \ n \ \J\ J7r\m(n-m) J7Kn-m) Erm(j-i) 

\m)uhri+l n+l r,+1 

Fr^(n-m)+i{n-m)+mU-i) ( m o d / ? ) Q 

Theorem 3 allows rapid computation of [n
k\ (mod/?) for large n, k as shown in Examples 1 

and 2 in the next section. Theorem 3 may be interpreted geometrically as a relation between 
columns in rows nrx to nrx +(rx -1) and the first rx rows of the Fibonacci triangle modulo/?; each 
entry in the first rx rows is multiplied by the constant fc)p£*™M™>*»U-0 modulo/? to get the 
corresponding entry between rows nrx and nrx + (rx-l). This is demonstrated in Example 3 of 
Section 5. 
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5. EXAMPLES 

Example 1: In order to calculate [4^ (mod 13), we first note that for /? = 13, rx = l, and 
F^ = F6 = S (mod 13). Then by (9) we have 

'83 
46 i^tflMl^^ 

Remembering that F6 has order 4 modulo 13 (since rx is odd), we have 

'Jg 
g(3)(2Xl) : 

"J8f •G? L4J, 
82 (mod 13). 

Since (") = 7 (mod 13) and [\\ = 1 (mod 13), we conclude that 

= 7(1)(-1) = 6 (mod 13). 83 
46 

Example 2: In order to calculate ['̂ glg (mod 89), we note for p = 89, /j = 11, and iv,-i = 1̂0 -
55 (mod 89). Then by (9) we have 

10001 _ [90(11)+ 101 = ( 9 0 W 
[768jg-L69(ll) + 9 j g - H L 9 . 

Fi(ollX69)(90-69) ( m o d g9) 

Since (;$) = 0 (mod 89) (i.e., a carry occurs when adding 21 and 69 base 89), we conclude that 

1000 
768 = 0 (mod 89). 

Example 3: Theorem 3 can be interpreted geometrically. For p = 3 we have /j = 4 and iv-i -
2 ^ - 1 (mod 3). The first four rows of the Fibonacci triangle taken modulo 3 are: 

1 
1 1 

1 1 1 
1 2 2 1 

FIGURE 2. Basic Triangle Modulo 3 
By Theorem 3, this 4-row triangle with variations based on the parity of m and n will build 

the entire Fibonacci triangle modulo 3. Specifically for the 4 cases of m, n even or odd, we have 
1 

1 1 
1 1 1 

1 2 2 1 
m, n even 

1 
1 2 

1 2 1 
1 1 2 2 

/weven 

1 
2 1 

1 2 1 
2 2 1 1 

neither 

1 
2 2 
1 1 1 

2 1 1 2 
weven 

FIGURE 3. The Four Variants of the Basic Triangle Modulo 3 
For example, the triangle in rows 4 to 7 (n = 1) and columns 0 to 3 (m = 0) is the second tri-

angle in Figure 3 with entry multiplied by (J) = 1. The triangle in rows 8 to 11 (n = 2) and 
columns 4 to 7 (m = 1) is the fourth triangle in Figure 3 with each entry multiplied by (J) = 2. 
These are shown in Figure 4. 
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1 
1 1 
1 1 1 
12 2 1 
10 0 0 1 
12 0 0 2 1 
12 10 12 1 
112 2 2 2 11 
10 0 0 2 0 0 0 1 
110 0 110 0 11 
1 1 1 0 2 2 2 0 1 1 1 
1 2 2 1 1 2 2 1 1 2 2 1 

FIGURE 4. Rows 0 to 11 of the Fibonacci Triangle Modulo 3 
More generally, to determine the triangle in rows An to An + 3 and columns Am to Am + 3, we 

pick the appropriate triangle in Figure 3, based on the parity of m, n and multiply each entry by 
©(mod 3). 
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