Brad Wilson

2030 State Street #5, Santa Barbara, CA 93105 (Submitted July 1996-Final Revision August 1997)

1. INTRODUCTION

Let $F_n! = F_n F_{n-1} \dots F_2 F_1$.

Definition: The Fibonacci coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_{\mathfrak{R}}$ is defined to be

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\mathfrak{F}} = \frac{F_n!}{F_k!F_{n-k}!} = \frac{F_nF_{n-1}\dots F_1}{(F_kF_{k-1}\dots F_1)(F_{n-k}F_{n-k-1}\dots F_1)}.$$

An important property of the Fibonacci coefficients from [4] is

$$\begin{bmatrix} k \\ \ell \end{bmatrix}_{\mathfrak{F}} = F_{\ell+1} \begin{bmatrix} k-1 \\ \ell \end{bmatrix}_{\mathfrak{F}} + F_{k-\ell-1} \begin{bmatrix} k-1 \\ \ell-1 \end{bmatrix}_{\mathfrak{F}}.$$
(1)

From the Fibonacci coefficients we form the Fibonacci triangle in much the same way as **Pascal's triangle is formed from the binomial coefficients; namely, the Fibonacci triangle is formed by letting the** k^{th} element of the n^{th} row be $\begin{bmatrix} n \\ k \end{bmatrix}_{a}$.

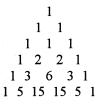


FIGURE 1. Rows 0 to 5 of the Fibonacci Triangle

The parity of the binomial coefficients and the iterative structure of Pascal's triangle have been the subject of many papers (see, e.g., [2], [3], [13]). More recently, the Fibonacci coefficients and the iterative structure of the Fibonacci triangle modulo 2 and 3 has been examined in [5], [11], and [12]. In this paper we extend the results of [11] and [12] from the Fibonacci coefficients and triangle modulo 2 and 3 to modulus p for p an odd prime.

For an odd prime p other than 5 and $i \ge 0$, define $r_i \in \mathbb{N}$ as the smallest number such that $p^i | F_{r_i}$. In particular, $r_0 = 1$ and r_1 is what is commonly called the rank of apparition of p. We will denote $\wp = \{r_0, r_1, ...\}$. It is well known that $r_i | r_{i+1}$ for all $i \in \mathbb{N}$, so any $n \in \mathbb{N}$ can be written uniquely as $n = n_k r_k + n_{k-1} r_{k-1} + \cdots + n_l r_l + n_0$ for $0 \le n_i < \frac{r_{i+1}}{r_i}$. We call this the base \wp representation of $n \in \mathbb{N}$.

Our main results are

Theorem 1: Let $r = \max_{i \ge 0} \frac{r_{i+1}}{r_i}$. The number of entries in the *n*th row of the Fibonacci triangle not divisible by *p* is $2^{s_1}3^{s_2}4^{s_3}...r^{s_{r-1}}$, where s_i is the number of *i*'s in the base \wp expansion of *n*.

Theorem 2: Let $p \neq 2, 5$ be a prime. There is the following connection between the Fibonacci and binomial coefficients modulo p:

[JUNE-JULY

$$\begin{bmatrix} m_1 \\ kr_1 \end{bmatrix}_{\mathfrak{F}} \equiv \binom{n}{k} F_{r_1+1}^{k(n-k)r_1} \pmod{p}.$$

In particular, the triangle Δ_{F_p} formed by having $\begin{bmatrix} nr_1 \\ kr_1 \end{bmatrix}_{\mathfrak{F}} \pmod{p}$ as the $k^{\mathfrak{th}}$ entry of the $n^{\mathfrak{th}}$ row is Pascal's triangle modulo p if and only if r_1 is even.

Theorem 3: For $p \neq 2, 5$ a prime, we have

$$\begin{bmatrix} m_1 + j \\ mr_1 + i \end{bmatrix}_{\mathfrak{F}} \equiv \binom{n}{m} \begin{bmatrix} j \\ i \end{bmatrix}_{\mathfrak{F}} F_{r_1+1}^{r_1m(n-m)+i(n-m)+m(j-i)} \pmod{p}.$$

2. PRELIMINARY FACTS

Of fundamental importance in our investigation are the following two well-known facts (see [9]): First, if (a, b) denotes the greatest common divisor of two natural numbers, then

$$(F_n, F_m) = F_{(m,n)}.$$
 (2)

Second,

$$F_{n+m} = F_n F_{m-1} + F_{n+1} F_m.$$
(3)

A sequence $\{A_j\}$ is said to be regularly divisible by $d \in \mathbb{N}$ if there exists $r(d) \in \mathbb{N}$ such that $d|A_j$ if and only if r(d)|j. A sequence is regularly divisible if it is regularly divisible for all $d \in \mathbb{N}$ (see [5]). From (2), we see that the sequence $\{F_n\}_{n=1}^{\infty}$ is regularly divisible. To simplify notation, for p our fixed prime and for $i \ge 0$, we let $r_i \in \mathbb{N}$ be the smallest number such that $p^i | F_{r_i}$. Notice that $r_0 = 1$ and r_1 is what is generally called the rank of apparition of p. Let $\wp = \{r_0, r_1...\}$. Since the Fibonacci sequence is regularly divisible $r_i | r_{i+1}$ so each $n \in \mathbb{N}$ can be written uniquely as $n = n_t r_t + n_{t-1} r_{t-1} + \cdots + n_t r_1 + n_0$ with $0 \le n_i < \frac{r_{i+1}}{r_i}$. We call this the base \wp representation of n and denote it by $n = (n_i n_{t-1} \dots n_t n_0)_{\wp}$ (see [6]).

It is well known from [7] that for $i \ge 1$ we have

$$\frac{r_{i+1}}{r_i} = \begin{cases} 1 \\ \text{or} \\ p. \end{cases}$$
(4)

The following theorem was first shown in [5] in a different form. The introduction of the base \wp allows us to state the theorem more succinctly. The theorem was given in this form in [10]. The proof is reproduced here with the permission of the first author of [10].

Kummer's Theorem for Generalized Binomial Coefficients: Let $\mathcal{A} = \{A_j\}_{j=1}^{\infty}$ be a sequence of positive integers. If \mathcal{A} is regularly divisible by the powers of p, then the highest power of p that divides

$$\begin{bmatrix} m+n\\m \end{bmatrix}_{\mathcal{A}} = \frac{A_{m+n}A_{m+n-1}\dots A_{n+1}}{A_m A_{m-1}\dots A_2 A_1}$$

is the number of carries that occur when the integers *n* and *m* are added in base \wp , where $\wp = \{r_i\}_{i=0}^{\infty}$ for r_i defined by $p^j | A_{r_i}, p^j | A_r$ for $0 < r < r_i$.

Proof: By definition of r_i , A_{r_i} is the first element in \mathcal{A} divisible by p^i . By regular divisibility of the sequence $\{A_j\}_{j=1}^{\infty}$, we see that $p^i | A_k$ if and only if $r_i | k$. This means the number of A_k , $k \le n$ that are multiples of p^i is

1998]

195

$$\left\lfloor \frac{n}{r_i} \right\rfloor = \left\lfloor \frac{n_t r_t + \dots + n_l r_1 + n_0}{r_i} \right\rfloor = n_t \frac{r_t}{r_i} + \dots + n_{i+1} \frac{r_{i+1}}{r_i} + n_i.$$

Now suppose, in base \wp , we have $m = m_t r_t + m_{t-1} r_{t-1} + \dots + m_1 r_1 + m_0$ and $n = n_t r_t + n_{t-1} r_{t-1} + \dots + n_1 r_1 + n_0$, where we allow some of the initial digits to be 0 so we may assume *m* and *n* are written with the same number of digits in base \wp . Counting the multiples of p^i in $\{A_1, A_2, \dots, A_{m+n}\}$, $\{A_1, A_2, \dots, A_m\}$, and $\{A_1, A_2, \dots, A_n\}$, we see a carry at the *i*th place,

$$(m_{i-1}r_{i-1} + \dots + m_ir_1 + m_0) + (n_{i-1}r_{i-1} + \dots + n_ir_1 + n_0) \ge r_i$$

occurs if and only if the number of multiples of p^i in $\{A_1, A_2, ..., A_{m+n}\}$ is one greater than the number of multiples of p^i in $\{A_1, A_2, ..., A_m\}$ plus the number of multiples of p^i in $\{A_1, A_2, ..., A_m\}$. Therefore, the number of carries is the highest power of p that divides $\begin{bmatrix} m+n\\m \end{bmatrix}_{a}$. \Box

In particular, the theorem applies to the Fibonacci sequence: $\{\mathcal{A}_i\}_{i=1}^{\infty} = \{F_i\}_{i=1}^{\infty}$.

Corollary (Knuth and Wilf) [5]: The highest power of p that divides $\begin{bmatrix} m+n \\ n \end{bmatrix}_{\mathfrak{F}}$ is the number of carries that occur when the integers n and m are added in base \mathfrak{D} , where $\mathfrak{D} = \{r_j\}_{j=0}^{\infty}$ for r_j defined by $p^j | F_{r_i}, p^j | F_r$ for $0 < r < r_j$.

3. CONGRUENCES FOR FIBONACCI NUMBERS AND COEFFICIENTS

In this section we give a series of lemmas about congruences of Fibonacci numbers and coefficients.

Lemma 1: For $i \ge 1$, $F_{nr_i+1} \equiv F_{nr_i-1} \equiv F_{r_i+1} \pmod{p^i}$.

Proof: Since $p^i | F_{nr_i}$, we have $F_{nr_i+1} = F_{nr_i} + F_{nr_i-1} \equiv F_{nr_i-1} \pmod{p^i}$, so we will switch freely between F_{nr_i+1} and F_{nr_i-1} modulo p^i throughout the rest of the article. Since $p^i | F_{r_i}$, $F_{r_i+1}^1 = F_{r_i} + F_{r_i-1} \equiv F_{1r_i-1} \pmod{p^i}$, so the lemma is true for n = 1. Assume $F_{kr_i-1} \equiv F_{r_i+1}^k \pmod{p^i}$. Using (3) with $n = kr_i$, $m = r_i + 1$ gives

$$F_{(k+1)r_i-1} \equiv F_{(k+1)r_i+1} \equiv F_{kr_i}F_{r_i} + F_{kr_i+1}F_{r_i+1} \equiv F_{kr_i+1}F_{r_i+1} \equiv F_{r_i+1}^{k+1} \pmod{p^i}.$$

Lemma 2: For $i \ge 1$, $F_{nr_i} \equiv F_{r_i}(nF_{r_i+1}^{n-1}) \pmod{p^{2i}}$.

Proof: This is clearly true for n = 1. Now assume $F_{kr_i} \equiv F_{r_i}(kF_{r_i+1}^{k-1}) \pmod{p^{2i}}$. Then, using (3) with $n = kr_i - 1$, $m = r_i + 1$ gives

$$F_{(k+1)r_i} = F_{kr_i-1}F_{r_i} + F_{kr_i}F_{r_i+1} \equiv F_{r_i}(F_{kr_i-1} + kF_{r_i+1}^{k-1}F_{r_i+1}) \pmod{p^{2i}}.$$
(5)

Since Lemma 1 says $F_{k_{r_i}-1} \equiv F_{r_i+1}^k \pmod{p^i}$, we get

$$F_{k\eta-1} + kF_{\eta+1}^{k-1}F_{\eta+1} \equiv F_{\eta+1}^k + kF_{\eta+1}^k \equiv (k+1)F_{\eta+1}^k \pmod{p^i}.$$

Since $p^i | F_r$, this congruence gives

$$F_{r_i}(F_{kr_i-1} + kF_{r_i+1}^{k-1}F_{r_i+1}) \equiv F_{r_i}(k+1)F_{r_i+1}^k \pmod{p^{2i}}$$

This congruence together with (5) gives $F_{(k+1)r_i} \equiv F_{r_i}(k+1)F_{r_i+1}^k \pmod{p^{2i}}$. \Box

JUNE-JULY

196

Lemma 3: For $0 \le j, \ell$ and $0 \le m \le r_1 - 1$, we have $F_{\ell r_1 + m} F_{jr_1 + 1} \equiv F_{\ell r_1 + 1} F_{jr_1 + m} \pmod{p}$.

Proof: For m = 0, both sides are congruent to 0 modulo p since $p|F_{\ell r_1}$ and $p|F_{jr_1}$. For m = 1, both sides are identical. Assume that $F_{\ell r_1+m}F_{jr_1+1} \equiv F_{\ell r_1+1}F_{jr_1+m} \pmod{p}$ for all $m < k \le r_1 - 1$ for some k. Using our induction hypothesis, $F_{jr_1+k} = F_{jr_1+(k-1)} + F_{jr_1+(k-2)}$, and $F_{\ell r_1+k} = F_{\ell r_1+(k-1)} + F_{\ell r_1+(k-2)}$, we get

$$\begin{aligned} F_{\ell r_1 + k} F_{j r_1 + 1} &= F_{\ell r_1 + (k-1)} F_{j r_1 + 1} + F_{\ell r_1 + (k-2)} F_{j r_1 + 1} \\ &\equiv F_{\ell r_1 + 1} F_{j r_1 + (k-1)} + F_{\ell r_1 + 1} F_{j r_1 + (k-2)} = F_{\ell r_1 + 1} F_{j r_1 + k} \pmod{p}. \quad \Box \end{aligned}$$

Note that alternate forms of Lemma 3 are

$$\frac{F_{\ell_{r_1+m}}}{F_{\ell_{r_1+1}}} \equiv \frac{F_{jr_1+m}}{F_{jr_1+1}} \pmod{p},$$

which will be used below in Lemma 6 and, for $m \neq 0$,

$$\frac{F_{\ell r_1+m}}{F_{jr_1+m}} \equiv \frac{F_{\ell r_1+1}}{F_{jr_1+1}} \pmod{p},$$

which we will use in Theorem 2 below.

Lemma 4: For $0 \le j, \ell$ we have

$$\frac{F_{\ell r_{1}+1}}{F_{1}} \equiv \frac{F_{(\ell+j)r_{1}+1}}{F_{jr_{1}+1}} \pmod{p}.$$

Proof: By (3) with $n = \ell r_1$, $m = jr_1 + 1$, we have

$$F_{(\ell+j)r_1+1} = F_{\ell r_1} F_{jr_1} + F_{\ell r_1+1} F_{jr_1+1} \equiv F_{\ell r_1+1} F_{jr_1+1} \pmod{p}.$$

Since F_{jr_1+1} is invertible modulo p, we may divide to put this in the form of the statement of the lemma. \Box

Lemma 5: For $p \neq 2, 5$,

$$F_{r_1-1} \equiv \begin{cases} 1 \pmod{p} & \text{if } r_1 \equiv 2 \pmod{4}, \\ -1 \pmod{p} & \text{if } r_1 \equiv 0 \pmod{4}, \\ \text{an element of order 4} \pmod{p} & \text{if } r_1 \text{ is odd.} \end{cases}$$

Proof: From (3) with n = a - 1, m = a, we get $F_a^2 + F_{a-1}^2 = F_{2a-1}$. From (3) with n = a, m = a + 1, we get $F_a^2 + F_{a+1}^2 = F_{2a+1}$. If $r_1 = 2a$, then $F_{2a+1} = F_{2a} + F_{2a-1} \equiv F_{2a-1} \pmod{p}$, so

$$F_a^2 + F_{a-1}^2 = F_{2a-1} \equiv F_{2a+1} \equiv F_a^2 + F_{a+1}^2 \equiv 2F_a^2 + F_{a-1}^2 + 2F_aF_{a-1} \pmod{p},$$

where the last equality is found by expanding $F_{a+1}^2 = (F_a + F_{a-1})^2$. This means $0 \equiv F_a^2 + 2F_aF_{a-1}$ (mod p). Since $F_a \neq 0 \pmod{p}$, we can factor it out to get $0 \equiv F_a + 2F_{a-1} \pmod{p}$ or, stated differently, $F_a \equiv -2F_{a-1} \pmod{p}$. Then $F_{a+1} \equiv F_a + F_{a-1} \equiv -F_{a-1} \pmod{p}$. If $F_{a+k} \equiv (-1)^k F_{a-k} \pmod{p}$ for all $0 \leq k < \ell \leq a-1$, then

$$\begin{split} F_{a+\ell} &= F_{a+\ell-1} + F_{a+\ell-2} \equiv (-1)^{\ell-1} F_{a-\ell+1} + (-1)^{\ell-2} F_{a-\ell+2} \\ &= (-1)^{\ell} (F_{a-(\ell-2)} - F_{a-(\ell-1)}) = (-1)^{\ell} F_{a-\ell} \pmod{p}, \end{split}$$

so

$$F_{r_1-1} = F_{a+(a-1)} \equiv (-1)^{a-1} F_{a-(a-1)} = (-1)^{a-1} \pmod{p}.$$

This means that if $r_1 \equiv 2 \pmod{4}$, we have a odd, so $F_{r_1-1} \equiv 1 \pmod{p}$. If $r_1 \equiv 0 \pmod{4}$, we have a even, so $F_{r_1-1} \equiv -1 \pmod{p}$.

Now assume that r_1 is odd. Since $F_{r_1} \equiv 0 \pmod{p}$, we get $F_{r_1-1} \equiv F_{r_1+1} \pmod{p}$. Assume $F_{r_1+k} \equiv (-1)^{k-1}F_{r_1-k} \pmod{p}$ for all $0 \le k < \ell \le r_1 - 1$. Then

$$F_{r_1+\ell} = F_{r_1+(\ell-1)} + F_{r_1+(\ell-2)} \equiv (-1)^{\ell-1} (F_{r_1-(\ell-2)} - F_{r_1-(\ell-1)})$$
$$\equiv (-1)^{\ell-1} F_{r_1-\ell} \pmod{p}.$$

Therefore, $F_{2r_1-1} = F_{r_1+(r_1-1)} \equiv (-1)^{r_1-2} F_{r_1-(r_1-1)} \equiv -1 \pmod{p}$. By (3) with $n = r_1 - 1$, $m = r_1$, we get $F_{2r_1-1} = F_{r_1}^2 + F_{r_1-1}^2 \equiv F_{r_1-1}^2 \pmod{p}$,

so $F_{r_i-1}^2 \equiv -1 \pmod{p}$, i.e., has order 4 modulo p. \Box

Lemma 6: For $0 \le i \le j < r_1$,

$$\begin{bmatrix} m_1 + j \\ m_1 + i \end{bmatrix}_{\mathfrak{F}} \equiv \begin{bmatrix} m_1 \\ m_1 \end{bmatrix}_{\mathfrak{F}} \begin{bmatrix} j \\ i \end{bmatrix}_{\mathfrak{F}} F_{(n-m)r_1-1}^i F_{mr_1-1}^{j-i} \pmod{p}$$

Proof: This is clear for i = 0 = j. Assume true for all $0 \le i \le j < k < r_1$ for some k. Take $1 \le \ell \le k - 1$. Then, by (1),

$$\begin{bmatrix} nr_1 + k \\ mr_1 + \ell \end{bmatrix}_{\mathfrak{F}} = F_{mr_1 + \ell + 1} \begin{bmatrix} nr_1 + k - 1 \\ mr_1 + \ell \end{bmatrix}_{\mathfrak{F}} + F_{(n-m)r_1 + k - \ell - 1} \begin{bmatrix} nr_1 + k - 1 \\ mr_1 + \ell - 1 \end{bmatrix}_{\mathfrak{F}}$$

The induction hypothesis gives

$$\begin{bmatrix} nr_{1}+k\\ mr_{1}+\ell \end{bmatrix}_{\mathfrak{F}} \equiv F_{mr_{1}+\ell+1} \begin{bmatrix} nr_{1}\\ mr_{1} \end{bmatrix}_{\mathfrak{F}} \begin{bmatrix} k-1\\ \ell \end{bmatrix}_{\mathfrak{F}} F_{(n-m)r_{1}-1}^{\ell} F_{mr_{1}-1}^{k-\ell-1} + F_{(n-m)r_{1}+k-\ell-1} \begin{bmatrix} nr_{1}\\ mr_{1} \end{bmatrix}_{\mathfrak{F}} \begin{bmatrix} k-1\\ \ell-1 \end{bmatrix}_{\mathfrak{F}} F_{(n-m)r_{1}-1}^{\ell-1} F_{mr_{1}-1}^{k-\ell} \\ \equiv \begin{bmatrix} nr_{1}\\ mr_{1} \end{bmatrix}_{\mathfrak{F}} F_{(n-m)r_{1}-1}^{\ell} F_{mr_{1}-1}^{k-\ell} \left(\frac{F_{mr_{1}+\ell+1}}{F_{mr_{1}-1}} \begin{bmatrix} k-1\\ \ell \end{bmatrix}_{\mathfrak{F}} + \frac{F_{(n-m)r_{1}+k-\ell-1}}{F_{(n-m)r_{1}-1}} \begin{bmatrix} k-1\\ \ell-1 \end{bmatrix}_{\mathfrak{F}} \right) \pmod{p}.$$

Using Lemma 3, we find this is equivalent to

$$\begin{bmatrix} mr_1 + k \\ mr_1 + \ell \end{bmatrix}_{\mathfrak{F}} \equiv \begin{bmatrix} mr_1 \\ mr_1 \end{bmatrix}_{\mathfrak{F}} F_{(n-m)r_1-1}^{\ell} F_{mr_1-1}^{k-\ell} \left(\frac{F_{\ell+1}}{F_1} \begin{bmatrix} k-1 \\ \ell \end{bmatrix}_{\mathfrak{F}} + \frac{F_{k-\ell-1}}{F_1} \begin{bmatrix} k-1 \\ \ell-1 \end{bmatrix}_{\mathfrak{F}} \right) \pmod{p}.$$

By (1), we conclude that

$$\begin{bmatrix} nr_1 + k \\ mr_1 + \ell \end{bmatrix}_{\mathfrak{F}} \equiv \begin{bmatrix} nr_1 \\ mr_1 \end{bmatrix}_{\mathfrak{F}} \begin{bmatrix} k \\ \ell \end{bmatrix}_{\mathfrak{F}} F_{(n-m)r_1-1}^{\ell} F_{mr_1-1}^{k-\ell} \pmod{p}.$$

The cases $\ell = 0$ and $\ell = k$ are dealt with similarly. \Box

JUNE-JULY

198

4. MAIN RESULTS

Theorem 1: Let $r = \max_{i \ge 0} \frac{r_{i+1}}{r_i}$. The number of entries in the n^{th} row of the Fibonacci triangle not divisible by p is $2^{s_1} 3^{s_2} 4^{s_3} \dots r^{s_{r-1}}$, where s_i is the number of i's in the base \wp expansion of n.

Proof: First, we note that the maximum exists. It is well known that $r_1 \le p+1$. By (4), we know that $\frac{r_{i+1}}{r_i} \le p$ for $i \ge 1$, so $r \le p+1$.

By Kummer's Theorem for Generalized Binomial Coefficients, $p \nmid [n_k]_{\mathfrak{F}}$ if and only if there is no carry when k and n-k are added in base \wp . Let the base \wp expansions of n and k be $n = (n_t \dots n_2 n_1 n_0)_{\wp}$ and $k = (k_t \dots k_2 k_1 k_0)_{\wp}$. Then there is no carry when adding k and n-k in base \wp if and only if $k_i \leq n_i$ for all i. For a fixed n, the number of such k is $\prod_i (n_i + 1)$ since there are $(n_i + 1)$ possible values of k_i less than or equal to n_i . \Box

The iterative structure of Pascal's triangle modulo 2 has been studied extensively (see [13]). Recently, the iterative structure of the Fibonacci triangle modulo 2 has also been studied. In particular, a map between the Fibonacci triangle modulo 2 and Pascal's triangle modulo 2 was found in [11]. For all primes $p \neq 2, 5$ whose rank of apparition is even, we get an analogous result: a map between the Fibonacci triangle modulo p and Pascal's triangle modulo p. While the result for these primes is similar to the case p = 2, our method of proof is different and, in fact, breaks down for p = 2.

Theorem 2: Let $p \neq 2, 5$ be a prime. There is the following connection between the Fibonacci and binomial coefficients modulo p:

$$\begin{bmatrix} nr_1\\ kr_1 \end{bmatrix}_{\mathfrak{F}} \equiv \binom{n}{k} F_{r_1+1}^{k(n-k)r_1} \pmod{p}.$$

In particular, the triangle Δ_{F_p} formed by having $\begin{bmatrix} nr_1 \\ kr_1 \end{bmatrix}_{\mathfrak{F}} \pmod{p}$ as the k^{th} entry of the n^{th} row is Pascal's triangle modulo p if and only if r_1 is even.

Proof: By definition

$$\begin{bmatrix} nr_1 \\ kr_1 \end{bmatrix}_{\mathfrak{V}} = \frac{F_{nr_1}F_{nr_1-1}\dots F_{(n-k)r_1+1}}{F_{kr_1}F_{kr_1-1}\dots F_2F_1}.$$

Separating the factors divisible by p from those not divisible by p, we get

$$\begin{bmatrix} m_{1}^{r} \\ kr_{1} \end{bmatrix}_{\mathfrak{F}} = \frac{F_{n\eta} F_{(n-1)\eta} \dots F_{(n-k+1)\eta}}{F_{k\eta} F_{(k-1)\eta} \dots F_{r_{1}}} \cdot \frac{F_{n\eta-1} F_{n\eta-2} \dots F_{(n-k)\eta+1}}{F_{k\eta-1} F_{k\eta-2} \dots F_{1}}.$$

Using Lemmas 3 and 4 to simplify, we obtain

$$\begin{bmatrix} nr_{1} \\ kr_{1} \end{bmatrix}_{\mathfrak{F}} \equiv \frac{F_{n\eta}F_{(n-1)\eta}\dots F_{(n-k+1)\eta}}{F_{k\eta}F_{(k-1)\eta}\dots F_{\eta}} \cdot \frac{F_{n\eta+1}}{F_{k\eta+1}} \cdot \frac{F_{n\eta+1}}{F_{k\eta+1}} \cdot \dots \cdot \frac{F_{n\eta+1}}{F_{k\eta+1}}$$
$$\equiv \frac{F_{n\eta}F_{(n-1)\eta}\dots F_{(n-k+1)\eta}}{F_{k\eta}F_{(k-1)\eta}\dots F_{\eta}} \left(\frac{F_{n\eta+1}}{F_{k\eta+1}}\right)^{k(\eta-1)} \pmod{p}.$$

Using Lemma 4 to simplify further, we get

$$\begin{bmatrix} m_{1} \\ kr_{1} \end{bmatrix}_{\mathfrak{F}} \equiv \frac{F_{n\eta} F_{(n-1)\eta} \dots F_{(n-k+1)\eta}}{F_{k\eta} F_{(k-1)\eta} \dots F_{\eta}} (F_{(n-k)\eta+1})^{(\eta-1)k} \pmod{p}.$$
(6)

Now there are two cases to consider. If the number of factors of p in the numerator of the fraction

$$\frac{F_{nr_1}\dots F_{(n-k+1)r_1}}{F_{kr_1}\dots F_{r_1}}$$

is greater than the number of factors of p in the denominator, then $\begin{bmatrix} nr_i \\ kr_i \end{bmatrix}_{\Re} \equiv 0 \pmod{p}$. But by Kummer's theorem applied to $\mathcal{A} = \{F_{n_j}\}_{j=1}^{\infty}$, $p | \begin{bmatrix} n \\ k \end{bmatrix}_{s}$ if and only if there is a carry when adding kand n-k in base $\mathcal{O}' = \{\rho_0, \rho_1, \rho_2 \dots\}$, where ρ_i is defined by $p^i | F_{n_j}$ if and only if $\rho_i | j$. By (4), all the ρ_i are powers of p, so there is a carry when adding k and n-k in base \mathcal{O}' if and only if there is a carry when adding k and n-k in base p (i.e., $\{1, p, p^2, \dots\}$). By Kummer's Theorem for Generalized Binomial Coefficients, there is a carry when adding k and n-k in base p if and only if $p | \binom{n}{k}$. In short, modulo p, the zeros of $\begin{bmatrix} nr_i \\ kr_i \end{bmatrix}_{\Re}$ correspond to the zeros of $\binom{n}{k}$, since the base \mathcal{O}' for $\mathcal{A} = \{F_{n_j}\}_{j=1}^{\infty}$ is the same, up to repeated terms, as the base corresponding to $\binom{n}{k}$, namely, $\{1, p, p^2, \dots\}$.

Now consider the case where the number of factors of p in the numerator of the above fraction is the same as the number of factors of p in the denominator. We know that $F_{nr_1} \equiv F_{r_1}(nF_{r_1+1}^{n-1})$ (mod p^2) by Lemma 2, so

$$\frac{F_{n\eta}F_{(n-1)\eta}\dots F_{(n-k+1)\eta}}{F_{k\eta}F_{(k-1)\eta}\dots F_{\eta}} \equiv \binom{n}{k} \frac{F_{\eta+1}^{n-1}F_{\eta+1}^{n-2}\dots F_{\eta+1}^{n-k}}{F_{\eta+1}^{k-1}F_{\eta+1}^{k-2}\dots F_{\eta+1}^{0}} \equiv \binom{n}{k}F_{\eta+1}^{k(n-k)} \pmod{p}.$$

This means that (6) can be simplified to

$$\begin{bmatrix} nr_1\\ kr_1 \end{bmatrix}_{\mathfrak{F}} \equiv \binom{n}{k} F_{r_1+1}^{k(n-k)} F_{(n-k)r_1+1}^{(r_1-1)k} \pmod{p}.$$

$$\tag{7}$$

By Lemma 1, this simplifies to

$$\begin{bmatrix} nr_{1} \\ kr_{1} \end{bmatrix}_{\mathfrak{F}} \equiv \binom{n}{k} F_{r_{1}+1}^{k(n-k)} F_{r_{1}+1}^{(n-k)(r_{1}-1)k} \equiv \binom{n}{k} F_{r_{1}+1}^{k(n-k)r_{1}} \pmod{p}.$$
(8)

This proves the first assertion of the theorem.

Now suppose that r_1 is even. By Lemma 5, $F_{r_1+1} \equiv \pm 1 \pmod{p}$. Then (8) reduces to

$$\begin{bmatrix} nr_1 \\ kr_1 \end{bmatrix}_{\mathfrak{F}} \equiv \begin{pmatrix} n \\ k \end{pmatrix} \pmod{p}.$$

Finally, we need to show that when r_1 is odd, Δ_{F_p} is not the same as Pascal's triangle modulo p (p = 2 being the lone exception). For this, it is enough to show a single entry that does not match. By (8),

$$\begin{bmatrix} 2r_1\\r_1\end{bmatrix}_{\mathfrak{F}} \equiv \begin{pmatrix} 2\\1 \end{pmatrix} F_{r_1+1}^{(1)(2-1)r_1} \pmod{p}.$$

JUNE-JULY

By Lemma 5, when r_1 is odd, F_{r_1+1} has order 4 modulo p. In particular, an odd power of F_{r_1+1} cannot be congruent to 1 modulo p, so

$$\begin{bmatrix} 2r_1\\r_1\end{bmatrix}_{\mathfrak{F}} \neq \begin{pmatrix} 2\\1 \end{pmatrix} \pmod{p}. \square$$

In the case p = 5, we find Δ_{F_5} is the same as the Fibonacci triangle modulo 5. The case p = 2 was dealt with previously in [11].

We note that there are infinitely many primes p for which Δ_{F_p} is the same as Pascal's triangle modulo p and there are infinitely many for which Δ_{F_p} is not the same as Pascal's triangle modulo p. By Theorem 2, this is equivalent to saying there are infinitely many primes p for which r_1 is even, since there are infinitely many F_{2^i} and for $i \ge 2$ there is always a prime factor of F_{2^j} which is not a prime factor of F_{2^j} for any j < i [this follows from $r_1(2) = 3$, $F_{2^j} > F_{2^j}$ for i > j and (4)]. Similarly, F_{3^i} , $i \ge 2$ may be used to show that infinitely many primes p have odd r_1 .

As a result of Theorem 2 and Lemma 6, we have the following connection between an arbitrary nonzero Fibonacci coefficient modulo p and a well-defined Fibonacci coefficient in the first r_1 rows of the Fibonacci triangle.

Theorem 3: For $p \neq 2, 5$ a prime, we have

$$\begin{bmatrix} nr_1 + j \\ mr_1 + i \end{bmatrix}_{\mathfrak{F}} \equiv \binom{n}{m} \begin{bmatrix} j \\ i \end{bmatrix}_{\mathfrak{F}} F_{r_1+1}^{r_1m(n-m)+i(n-m)+m(j-i)} \pmod{p}.$$
(9)

Proof: By Lemma 6,

$$\begin{bmatrix} nr_1 + j \\ mr_1 + i \end{bmatrix}_{\mathfrak{F}} \equiv \begin{bmatrix} nr_1 \\ mr_1 \end{bmatrix}_{\mathfrak{F}} \begin{bmatrix} j \\ i \end{bmatrix}_{\mathfrak{F}} F^i_{(n-m)r_1-1} F^{j-i}_{mr_1-1} \pmod{p}.$$

By (8), this becomes

$$\begin{bmatrix} nr_1+j\\mr_1+i\end{bmatrix}_{\mathfrak{F}} \equiv \binom{n}{m} \begin{bmatrix} j\\i\end{bmatrix}_{\mathfrak{F}} F_{r_1+1}^{r_1m(n-m)} F_{(n-m)r_1-1}^{i} F_{mr_1-1}^{j-i} \pmod{p}.$$

Applying Lemma 1, we get

$$\begin{bmatrix} nr_1 + j \\ mr_1 + i \end{bmatrix}_{\mathfrak{F}} \equiv \binom{n}{m} \begin{bmatrix} j \\ i \end{bmatrix}_{\mathfrak{F}} F_{n+1}^{n,m(n-m)} F_{n+1}^{i(n-m)} F_{n+1}^{m(j-i)}$$
$$\equiv \binom{n}{m} \begin{bmatrix} j \\ i \end{bmatrix}_{\mathfrak{F}} F_{n+1}^{n,m(n-m)+i(n-m)+m(j-i)} \pmod{p}. \Box$$

Theorem 3 allows rapid computation of $\begin{bmatrix} n \\ k \end{bmatrix}_{\mathfrak{F}} \pmod{p}$ for large n, k as shown in Examples 1 and 2 in the next section. Theorem 3 may be interpreted geometrically as a relation between columns in rows nr_1 to $nr_1 + (r_1 - 1)$ and the first r_1 rows of the Fibonacci triangle modulo p; each entry in the first r_1 rows is multiplied by the constant $\binom{n}{m}F_{r_1+1}^{r_1m(n-m)+i(n-m)+m(j-i)}$ modulo p to get the corresponding entry between rows nr_1 and $nr_1 + (r_1 - 1)$. This is demonstrated in Example 3 of Section 5.

5. EXAMPLES

Example 1: In order to calculate $\begin{bmatrix} 83\\46\end{bmatrix}_{\Re}$ (mod 13), we first note that for p = 13, $r_1 = 7$, and $F_{r_1-1} = F_6 \equiv 8 \pmod{13}$. Then by (9) we have

$$\begin{bmatrix} 83\\ 46\\ 3\end{bmatrix}_{\mathfrak{F}} = \begin{bmatrix} 11(7) + 6\\ 6(7) + 4 \end{bmatrix}_{\mathfrak{F}} \equiv \begin{pmatrix} 11\\ 6 \end{pmatrix} \begin{bmatrix} 6\\ 4 \end{bmatrix}_{\mathfrak{F}} F_6^{7(6)(11-6)} \pmod{13}.$$

Remembering that F_6 has order 4 modulo 13 (since r_1 is odd), we have

$$\begin{bmatrix} 83\\46 \end{bmatrix}_{\mathfrak{F}} \equiv \begin{pmatrix} 11\\6 \end{pmatrix} \begin{bmatrix} 6\\4 \end{bmatrix}_{\mathfrak{F}} 8^{(3)(2)(1)} \equiv \begin{pmatrix} 11\\6 \end{bmatrix} \begin{bmatrix} 6\\4 \end{bmatrix}_{\mathfrak{F}} 8^2 \pmod{13}.$$

Since $\binom{11}{6} \equiv 7 \pmod{13}$ and $\begin{bmatrix} 6\\4 \end{bmatrix}_{\Re} \equiv 1 \pmod{13}$, we conclude that

$$\begin{bmatrix} 83\\ 46 \end{bmatrix}_{\mathfrak{F}} \equiv 7(1)(-1) \equiv 6 \pmod{13}.$$

Example 2: In order to calculate $\begin{bmatrix} 1000\\ 768 \end{bmatrix}_{\mathfrak{F}} \pmod{89}$, we note for p = 89, $r_1 = 11$, and $F_{r_1-1} = F_{10} \equiv 55 \pmod{89}$. Then by (9) we have

$$\begin{bmatrix} 1000\\768\end{bmatrix}_{\mathfrak{F}} = \begin{bmatrix} 90(11) + 10\\69(11) + 9\end{bmatrix}_{\mathfrak{F}} \equiv \begin{pmatrix} 90\\69 \end{pmatrix} \begin{bmatrix} 10\\9\\9\\\mathfrak{F}_{10} \end{bmatrix}_{\mathfrak{F}} F_{10}^{(11)(69)(90-69)} \pmod{89}.$$

Since $\binom{90}{69} \equiv 0 \pmod{89}$ (i.e., a carry occurs when adding 21 and 69 base 89), we conclude that

$$\begin{bmatrix} 1000\\ 768 \end{bmatrix}_{\mathfrak{F}} \equiv 0 \pmod{89}.$$

Example 3: Theorem 3 can be interpreted geometrically. For p = 3 we have $r_1 = 4$ and $F_{r_1-1} = 2 \equiv -1 \pmod{3}$. The first four rows of the Fibonacci triangle taken modulo 3 are:

$$\begin{array}{c}1\\1\\1\\1\\1\\2\\1\end{array}$$

FIGURE 2. Basic Triangle Modulo 3

By Theorem 3, this 4-row triangle with variations based on the parity of m and n will build the entire Fibonacci triangle modulo 3. Specifically for the 4 cases of m, n even or odd, we have

1	1	1	1
11	12	2 1	22
111	121	121	111
1221	1122	2211	2112
m, n even	<i>m</i> even	neither	n even

FIGURE 3. The Four Variants of the Basic Triangle Modulo 3

For example, the triangle in rows 4 to 7 (n = 1) and columns 0 to 3 (m = 0) is the second triangle in Figure 3 with entry multiplied by $\binom{1}{0} = 1$. The triangle in rows 8 to 11 (n = 2) and columns 4 to 7 (m = 1) is the fourth triangle in Figure 3 with each entry multiplied by $\binom{2}{1} = 2$. These are shown in Figure 4.

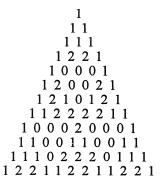


FIGURE 4. Rows 0 to 11 of the Fibonacci Triangle Modulo 3

More generally, to determine the triangle in rows 4n to 4n+3 and columns 4m to 4m+3, we pick the appropriate triangle in Figure 3, based on the parity of m, n and multiply each entry by $\binom{n}{m}$ (mod 3).

ACKNOWLEDGMENTS

The author would like to thank two of his MA students, Rob and Nicole Fraser, for preliminary discussions in general and for conjecturing Theorem 1 in particular.

REFERENCES

- 1. N. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 54 (1947):589-92.
- 2. A. Granville. "Zaphod Beeblebrox's Brain and the Fifty-Ninth Row of Pascal's Triangle." Amer. Math. Monthly 99.4 (1992):318-31.
- 3. H. Harborth. "Number of Odd Binomial Coefficients." Proc. Amer. Math. Soc. 62 (1977): 19-22.
- 4. V. E. Hoggatt, Jr. "Fibonacci Numbers and Generalized Binomial Coefficients." *The Fibonacci Quarterly* 5.5 (1967):383-400.
- 5. D. E. Knuth & H. S. Wilf. "The Power of a Prime that Divides a Generalized Binomial Coefficient." J. Reine Angew. Math. 396 (1989):212-19.
- 6. C. T. Long & N. Woo. "On Bases for the Set of Integers." Duke Math. J. 38 (1971):583-90.
- 7. E. Lucas. "Sur la théorie des nombres premiers." Atti R. Acad. Sci. Torino (Math.) 11 (1875-1876):928-37.
- 8. D. Singmaster. "Divisibility of Binomial and Multinomial Coefficients by Primes and Prime Powers." In *A Collection of Manuscripts Related to Fibonacci Sequences* **3**98-113. Santa Clara, Calif.: The Fibonacci Association, 1980.
- 9. N. N. Vorobyov. *The Fibonacci Numbers*. Tr. Normal Whaland & Olga Titelbaum. Boston: D. Heath and Co., 1963.
- 10. W. A. Webb & D. Wells. "Kummer's Theorem for Generalized Binomial Coefficients." Personal correspondence, September 6, 1995.
- 11. D. Wells. "The Fibonacci and Lucas Triangles Modulo 2." *The Fibonacci Quarterly* **32.2** (1994):111-23.
- 12. D. Wells. "Residue Counts Modulo Three for the Fibonacci Triangle." In Applications of Fibonacci Numbers 6:521-26. Dordrecht: Kluwer, 1996.
- 13. S. Wolfram. "Geometry of Binomial Coefficients." Amer. Math. Monthly 91 (1984):566-71.

AMS Classification Numbers: 11B39, 11B65