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PROBLEMS PROPOSED IN THIS ISSUE 

H-542 Proposed by H.-J. Seiffert, Berlin, Germany 
Define the sequence (ck)k>l by 

fl if* = 2 (mod 5), 
1 if* = 3 (mod5), 

0 otherwise. 

Show that, for all positive integers n: 

n^Kn-k)^-1'^ 
211 'ck=Fln_2- (1) 

2«-l 

2n~ ZII'H)^^-,2-!)^^1^; (2) 

sI^^^V,. (3) 

H-543 Proposed by David M Bloom, Brooklyn College of CUNY, Brooklyn, NY 
Find all positive nonsquare integers d such that, in the continued-fraction expansion 

4d = ]p\ %..., ar_u2n], 

we have ax = • • • = ar_x = 1. (This includes the case r = 1 in which there are no a's.) 

H-544 Proposed by Paul S, Bruckman, Highwood, IL 
Given a prime p > 5 such that Z(p) = p + l, suppose that q = ±(p2 - 3) and r = p2 - p -1 are 

primes with Z(q) = q + l, Z(r) = y (r -1). Prove that n = pqr is a FPP (see previous proposals 
for definitions of the Z-fiinction and of FPP's). 
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SOLUTIONS 
Re-enter 

H-525 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 35, no. 1, February 1997) 

Let/? be any prime ^ 2,5. Let 

q = \(p-M « = (}), r = \(p-e). 

Let Z(p) denote the entry-point of/? in the Fibonacci sequence. Given that 2p~l = 1 (mod p) and 
5q=e (mod/?), let 

^ l(2--l) , *-l<*-.X o g ^ l 
Prove that Z(p2) = Z(p) if and only if eA - B = C (mod p). 

Solution by the proposer 
Unless otherwise indicated, we will assume congruences (modp), but will omit the "(mod/?)" 

notation. Note that (5/ p) = (-1/ p) = 1. It follows from [1] that a and q have the same parity 
and, in fact, are both even. Since /? = 1 (mod 4), let r = q/2, an integer. Define the function 
Sp = S as follows: 

f+1 i f p s i ( m o d 20) , 
[-1 ifp = 9 (mod 20). U 

We may therefore express the desired result as follows: 
S-5r = (-l)a/2+r. (2) 

The following result was shown in [2]: 

^ + i - ( - l ) f l / 2 + r - (3) 

Also, note that (afl I p) = (-1 / p) = 1, hence (a I /?) = (/?/ p); note that since (5 / p) = 1, V5 and, 
hence, a and J3 are ordinary residues. Then, 

Fq+l = 5"1/2(a*+1 -/?*+1) = 5~m(aqa -/Pfi) = (a -P)~l{(a lp)a-((3l /?)/?}, 

or 

Fq+l = (a/p). (4) 

In light of (2), (3), and (4), it suffices to prove that 

(a/p) = S5r. (5) 

Note that 5r = (S)q = (V5//?). Therefore, it suffices to prove that 

(a/p) = S(j5/p). (6) 

However, the last result is an old result attributable to E. Lehmer (see [3]); we have only changed 
the notation to conform with that employed herein. Thus, the desired result is established. 
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Generator Trouble 

H-526 Proposed by Paul S. Bruckman^ Highwood? IL 
(Vol 35, no. 2, May 1997) 

Following H-465, let r1? r2, and r3 be natural integers such that 
3 

(1) ]T krk - n, where n is a given natural integer. 
k=l 

Let 
/2) B 1 fa+r2+r3)! 
1 } ri'r2';"3 rx + r2+r3 rx\r2\r3\ 

Also, let 

(3) Q = I 5 r , r , r J summed over all possible rx,r2, and r3. 

Define the generating function 

(4) *"(*) = fX*": 
(a) find a closed form for F(x); 
(b) obtain an explicit expression for C„; 
(c) show that C„ is a positive integer for all n>l,n prime. 

Solution by the proposer 
Solution of part (a): Note that 2 < 2r2 < n-l-3r3 < n-4 (eliminating rl=n-2r2-3r3). 

Then 

11=6 r3=l r2=l r 2 ! l W J / 3 Z / 2 i ! 

- f _L f J ^ V * , -r,-l)| 
^ U t ^ £ r2\(n-3r3-2r2y: 

Changing variables, we obtain 

FM _ v i v r m + 3 v + 3 [ % 2 ) \ m + 2 + v-u)\ 
K)~^iv\^n ~ «!(w + 3-2«)! 

v=l w=0 w=l v / 
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n=l n v=l V J 

2\-n 

-m^y i - -
1-x2 -[o-*3r-i] 

-s l - x ^ x 3 l - * 1 l - x 3 + x" 

= -log 1 + log 1 X 1 + l Q g f l - * log ( l - x ) 
l-x2-x3) \ l-x2) V l - x 3 , 

- l o g ( l - x - x 2 - x 3 ) + log( l -x 2 -x 3 ) + l o g ( l - x - x 2 ) - l o g ( l - x 2 ) 
+ l og ( l -x -x 3 ) - l og ( l -x 3 ) - l og ( l -x ) , 

or 
F( ,_, [ (1 -X-X 2 ) (1 -X 2 -X 3 ) (1 -X-X 3 ) 
* W JOg | ( i _ ^ _ ^ 2 ) ( i _ ^ _x_x2_x3) 

Solution of part (b): Suppose 

1 - x2 - x3 = (1 - rx)(l - sx)(l - tx), 
1 - X - X3 = (1 - MX)(1 - Vx)(l - WX), 
\-x~x2 -x3 = (\- jx)(\- gx)(\-hx). 

Then 
F(x) = log (1 - car) + log (1 - /3x) + log (1 - rx) + log (1 - sx) + log (1 - tx) 

+ log (1 - ux) + log (1 - vx) + log (1 - wx) - 3 log ( l -x ) - log (1 + x) 
- log (1 - cox) - log (1 - co2x) - log (1 - fx) - log (1 - gx) - log (1 - hx), 

where a and /? are the usual Fibonacci constants and co = exp(2ix / 3). We then obtain 

F(x) = £ — [ - ( a " + / O - (/•" + 5" + r ) - (a" +v"+ w") 

+ 3 + (-1)" + co" + a)2" + (J" + g" + h")]. 

Comparison of coefficients yields the explicit formula: 

where 

Cn = ^(Jn + 3 + (-ir+co"+co2n-Ln-Gn-H„), n = l,2,3,. 

Ln = a"+/3" (Lucas numbers), G„ = r" + ̂  + t", 

H„ = u" + v"+w", J„ = f"+g"+h", #1 = 1,2,.... 

(*) 

(**) 

(***) 

(****) 
The initial values and recurrence relations satisfied by the Jn% G„'s, and Hn'$ may be obtained 
from (**), and are as follows: 
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(i) Jn+3 = J„+2 + J„+i + J„, « = 1,2,...; ^ = 1 ,^ = 3 , ^ = 7; 
(ii) G„+3 = G„+l + G„, n = 1,2,...; Gx = 0,G2= 2,G3 = 3; 

(iii) ff„+3 = H„+2+H„, n = l,2,...; H^H2 = 1,H3 = 4. 

If n > 5 is prime, of + a>2" = - 1 ; thus, for prime n > 1, we obtain the slightly simplified formula 
forC„: 

Cn = —(Jn + l-Ln-Gn-Hn), n>7, n prime. (*****) 

To obtain values of Jn, G„, and Hn without means of the recurrence relations (i)-(iii), we would 
need to solve for the roots in (**); we shall omit this exercise and assume that these roots are 
known. Also, it is of interest to note, as can be verified, that Cn given by (* * *) vanishes for 
n = 1,2,3,4,5, as we would expect. 

Solution of part (c): As was determined in Problem H-465 as a special case, B is an 
integer for prime n > 7. From (3), it then follows immediately that C„ is an integer if n is prime 
(even for n - 2, 3,5, since C2 = C3 = C5 = 0.) 

Note: It may be shown that Ln = l (mod ri) for all prime n; from this result and the expression in 
(*****)?we deduce that 

Jn = Gn+ Hn (mod «), if n is prime. (#) 

Sum Formula 

H-527 Proposed by K Gauthier, Royal Military College of Canada 
(Vol 35, no. 2, May 1997) 

Let q, a, and h be positive integers, with (a, h) = 1. Prove or disprove the following: 
a-l jj-\ p p p 
\* \* (__\\q(br+as) j _ q(a+b-ab)£qab , <i\q(l-ab) rq{2ab-l) . 

a \ Zu2L\ V ^2q(br+as)- r r +\ L) p 
m/ r=0s=0 IqaIqb Aq 

(br+as<ab) 

S V X^ f-1\<l(br+as) T - ( n g d - ^ ) q(2ab-l) ^qab^qja+b-ab) 
ft) DZ,Z,\ l) ^2q{br+as)-\ l) p F F ' 
UJ r=0s=0 Aq J qa1 qb 

(br+as<ab) 

Solution by the proposer 
Consider 

s(X;a,b)=a£b£xbr+as> 
r=0 s=0 I 1 ) 

(br+as<ab) 

for a, b positive integers, with (a, b) = 1, and x * 1 an arbitrary variable. L. Carlitz has shown 
["Some Restricted Multiple Sums," The Fibonacci Quarterly 18.1 (1980):58-65, eqns. (1.1) and 
(1.2)] that 

1 _ yab yab 

* * * » > - ( I - I T O - . * ) - ^ - <2) 

Now, for q a positive integer, consider 
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T±(q;a, b) = S{aqI fiq\a,h)±S(J3q /aq;a,b\ 

where a - \[a + V5], /? - \[1 - V5], a/3 = -1. It is readily seen that (2) in (3) gives 

ST+ = -Rq{a+b~ab) qab + aqabBq{^~ab) — 
FqaFqb 

+ a 
F 1 

q{a+b-ab) gab _ nqab q{l-ab) _}_ 
F F 
rqarqb 

where F„ = (a" - /?") IJ5. Similarly, (1) in (3) gives 

q \br+as f ^q \br+as a-\ b-\ 

r=0 s=0 
(br+as<ab) 

a-\ b-l 

a 
(3q \ a J 

- V 5 T T (-\y{br+as)\a
29(br+as) ± f)2q(br+as)] 

r=0 s=0 
(br+as<ab) 

(3) 

(4) 

(5) 

The solution to part (a) follows by choosing T+ in (4) and (5); equating the results gives 
a-lb-\ 

ZuZ^y V ^2q{br+as) 
r=0 s=0 

(br+as<ab) 

rq{a+b-ab)rqab + /_j\q(l-ab) rq{2ab-l) 
rqarqb -*-q 

For the solution to part (b), choose T_ in (4) and (5) to obtain 
a-lb-l J F T 

5 V V ( _ \\Q(l>r+as) T _/_ i\q(l-ab) ^q{2ab-l) _ J qab^qja+b-ab) 

r=0 s=0 
(br+as<ab) 

FqaFqb 

Also solved by P. Bruckman. 
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