ADVANCED PROBLEMS AND SOLUTIONS

Ealited by
Raymond E. Whitney

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-542 Proposed by H.-J. Seiffert, Berlin, Germany
Define the sequence $\left(c_{k}\right)_{k \geq 1}$ by

$$
c_{k}= \begin{cases}1 & \text { if } k \equiv 2(\bmod 5) \\ -1 & \text { if } k \equiv 3(\bmod 5) \\ 0 & \text { otherwise }\end{cases}
$$

Show that, for all positive integers n :

$$
\begin{gather*}
\frac{1}{n} \sum_{k=1}^{n} k\binom{2 n}{n-k} c_{k}=F_{2 n-2} \tag{1}\\
\frac{1}{2 n-1} \sum_{k=1}^{2 n-1}(-1)^{k} k\binom{4 n-2}{2 n-k-1} c_{k}=5^{n-1} F_{2 n-2} \tag{2}\\
\frac{1}{2 n} \sum_{k=1}^{2 n}(-1)^{k} k\binom{4 n}{2 n-k} c_{k}=5^{n-1} L_{2 n-1} . \tag{3}
\end{gather*}
$$

H-543 Proposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn, NY

Find all positive nonsquare integers d such that, in the continued-fraction expansion

$$
\sqrt{d}=\left[n ; \overline{a_{1}, \ldots, a_{r-1}, 2 n}\right]
$$

we have $a_{1}=\cdots=a_{r-1}=1$. (This includes the case $r=1$ in which there are no a^{\prime} '.)

H-544 Proposed by Paul S. Bruckman, Highwood, IL

Given a prime $p>5$ such that $Z(p)=p+1$, suppose that $q=\frac{1}{2}\left(p^{2}-3\right)$ and $r=p^{2}-p-1$ are primes with $Z(q)=q+1, Z(r)=\frac{1}{2}(r-1)$. Prove that $n=p q r$ is a FPP (see previous proposals for definitions of the Z-function and of FPP's).

SOLUTIONS

Re-enter

H-525 Proposed by Paul S. Bruckman, Highwood, IL

 (Vol. 35, no. 1, February 1997)Let p be any prime $\neq 2,5$. Let

$$
q=\frac{1}{2}(p-1), e=\left(\frac{5}{p}\right), \quad r=\frac{1}{2}(p-e) .
$$

Let $Z(p)$ denote the entry-point of p in the Fibonacci sequence. Given that $2^{p-1} \equiv 1(\bmod p)$ and $5^{q} \equiv e(\bmod p)$, let

$$
A=\frac{1}{p}\left(2^{p-1}-1\right), \quad B=\frac{1}{p}\left(5^{q}-e\right), \quad C=\sum_{k=1}^{q} \frac{5^{k-1}}{2 k-1} .
$$

Prove that $Z\left(p^{2}\right)=Z(p)$ if and only if $e A-B \equiv C(\bmod p)$.

Solution by the proposer

Unless otherwise indicated, we will assume congruences $(\bmod p)$, but will omit the $"(\bmod p)$ " notation. Note that $(5 / p)=(-1 / p)=1$. It follows from [1] that a and q have the same parity and, in fact, are both even. Since $p \equiv 1(\bmod 4)$, let $r=q / 2$, an integer. Define the function $\delta_{p}=\delta$ as follows:

$$
\delta= \begin{cases}+1 & \text { if } p \equiv 1(\bmod 20), \tag{1}\\ -1 & \text { if } p \equiv 9(\bmod 20) .\end{cases}
$$

We may therefore express the desired result as follows:

$$
\begin{equation*}
\delta \cdot 5^{r} \equiv(-1)^{a / 2+r} \tag{2}
\end{equation*}
$$

The following result was shown in [2]:

$$
\begin{equation*}
F_{q+1} \equiv(-1)^{a / 2+r} . \tag{3}
\end{equation*}
$$

Also, note that $(\alpha \beta / p)=(-1 / p)=1$, hence $(\alpha / p)=(\beta / p)$; note that since $(5 / p)=1, \sqrt{5}$ and, hence, α and β are ordinary residues. Then,

$$
F_{q+1}=5^{-1 / 2}\left(\alpha^{q+1}-\beta^{q+1}\right)=5^{-1 / 2}\left(\alpha^{q} \alpha-\beta^{q} \beta\right) \equiv(\alpha-\beta)^{-1}\{(\alpha / p) \alpha-(\beta / p) \beta\},
$$

or

$$
\begin{equation*}
F_{q+1} \equiv(\alpha / p) \tag{4}
\end{equation*}
$$

In light of (2), (3), and (4), it suffices to prove that

$$
\begin{equation*}
(\alpha / p) \equiv \delta \cdot 5^{r} \tag{5}
\end{equation*}
$$

Note that $5^{r}=(\sqrt{5})^{q} \equiv(\sqrt{5} / p)$. Therefore, it suffices to prove that

$$
\begin{equation*}
(\alpha / p)=\delta(\sqrt{5} / p) \tag{6}
\end{equation*}
$$

However, the last result is an old result attributable to E. Lehmer (see [3]); we have only changed the notation to conform with that employed herein. Thus, the desired result is established.

References

1. D. M. Bloom. Problem H-494. The Fibonacci Quarterly 33.1 (1995):91. The solution by H.-J. Seiffert appeared in The Fibonacci Quarterly 34.2 (1996):190-91.
2. P. S. Bruckman. Problem H-515. The Fibonacci Quarterly 34.4 (1996):379.
3. E. Lehmer. "On the Quadratic Character of the Fibonacci Root." The Fibonacci Quarterly 4.2 (1966):135-38.

Also solved by H.-J. Seiffert.

Generator Trouble

H-526 Proposed by Paul S. Bruckman, Highwood, IL

 (Vol. 35, no. 2, May 1997)Following H-465, let r_{1}, r_{2}, and r_{3} be natural integers such that
(1) $\sum_{k=1}^{3} k r_{k}=n$, where n is a given natural integer.

Let
(2) $B_{r_{1}, r_{2}, r_{3}}=\frac{1}{r_{1}+r_{2}+r_{3}} \frac{\left(r_{1}+r_{2}+r_{3}\right)!}{r_{1}!r_{2}!r_{3}!}$.

Also, let
(3) $C_{n}=\sum B_{r_{1}, r_{2}, r_{3}}$, summed over all possible r_{1}, r_{2}, and r_{3}.

Define the generating function

$$
\begin{equation*}
F(x)=\sum_{n=6}^{\infty} C_{n} x^{n}: \tag{4}
\end{equation*}
$$

(a) find a closed form for $F(x)$;
(b) obtain an explicit expression for C_{n};
(c) show that C_{n} is a positive integer for all $n \geq 7, n$ prime.

Solution by the proposer

Solution of part (a): Note that $2 \leq 2 r_{2} \leq n-1-3 r_{3} \leq n-4$ (eliminating $r_{1}=n-2 r_{2}-3 r_{3}$).
Then

$$
\begin{aligned}
F(x) & =\sum_{n=6}^{\infty} x^{n} \sum_{r_{3}=1}^{[n / 3-1]^{3}} 1 / r_{3}!\sum_{r_{2}=1}^{\left[\frac{1}{2}\left(n-1-3 r_{3}\right)\right]} \frac{\left(n-2 r_{3}-r_{2}-1\right)!}{r_{2}!\left(n-3 r_{3}-2 r_{2}\right)!} \\
& =\sum_{r_{3}=1}^{\infty} \frac{1}{r_{3}!} \sum_{n=3 r_{3}+3}^{\infty} x^{n} \sum_{r_{2}=1}^{\left[\frac{1}{2}\left(n-1-3 r_{3}\right)\right]} \frac{\left(n-2 r_{3}-r_{2}-1\right)!}{r_{2}!\left(n-3 r_{3}-2 r_{2}\right)!}
\end{aligned}
$$

Changing variables, we obtain

$$
\begin{aligned}
F(x) & =\sum_{v=1}^{\infty} \frac{1}{v!} \sum_{m=0}^{\infty} x^{m+3 v+3} \sum_{u=1}^{\left[\frac{1}{2}(m+2)\right]} \frac{(m+2+v-u)!}{u!(m+3-2 u)!} \\
& =\sum_{m=0}^{\infty} x^{m+1} \sum_{u, v=1}^{\infty} x^{2 u+3 v} \frac{(m+u+v)!}{(m+1)!u!v!}=\sum_{n=1}^{\infty} \frac{x^{n}}{n} \sum_{v=1}^{\infty} x^{3 v}\binom{n-1+v}{v} \sum_{u=1}^{\infty} x^{2 u}\binom{n+v-1+u}{u}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{n=1}^{\infty} \frac{x^{n}}{n} \sum_{v=1}^{\infty} x^{3 v}\binom{n-1+v}{v} \cdot\left[\left(1-x^{2}\right)^{-n-v}-1\right] \\
= & \sum_{n=1}^{\infty} \frac{x^{n}}{n} \sum_{v=1}^{\infty}\left(-x^{3}\right)^{v}\binom{n}{v}\left[\left(1-x^{2}\right)^{-n-v}-1\right] \\
= & \sum_{n=1}^{\infty} \frac{x^{n}}{n}\left\{\left(1-x^{2}\right)^{-n}\left[\left(1-\frac{x^{3}}{1-x^{2}}\right)^{-n}-1\right]-\left[\left(1-x^{3}\right)^{-n}-1\right]\right\} \\
= & \sum_{n=1}^{\infty} \frac{1}{n}\left[\left(\frac{x}{1-x^{2}-x^{3}}\right)^{n}-\left(\frac{x}{1-x^{2}}\right)^{n}-\left(\frac{x}{1-x^{3}}\right)^{n}+x^{n}\right] \\
= & -\log \left(1-\frac{x}{1-x^{2}-x^{3}}\right)+\log \left(1-\frac{x}{1-x^{2}}\right)+\log \left(1-\frac{x}{1-x^{3}}\right)-\log (1-x) \\
= & -\log \left(1-x-x^{2}-x^{3}\right)+\log \left(1-x^{2}-x^{3}\right)+\log \left(1-x-x^{2}\right)-\log \left(1-x^{2}\right) \\
& +\log \left(1-x-x^{3}\right)-\log \left(1-x^{3}\right)-\log (1-x),
\end{aligned}
$$

or

$$
\begin{equation*}
F(x)=\log \left\{\frac{\left(1-x-x^{2}\right)\left(1-x^{2}-x^{3}\right)\left(1-x-x^{3}\right)}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)\left(1-x-x^{2}-x^{3}\right)}\right\} . \tag{*}
\end{equation*}
$$

Solution of part (b): Suppose

$$
\begin{align*}
& 1-x^{2}-x^{3}=(1-r x)(1-s x)(1-t x), \\
& 1-x-x^{3}=(1-u x)(1-v x)(1-w x), \tag{**}\\
& 1-x-x^{2}-x^{3}=(1-f x)(1-g x)(1-h x) .
\end{align*}
$$

Then

$$
\begin{aligned}
F(x)= & \log (1-\alpha x)+\log (1-\beta x)+\log (1-r x)+\log (1-s x)+\log (1-t x) \\
& +\log (1-u x)+\log (1-v x)+\log (1-w x)-3 \log (1-x)-\log (1+x) \\
& -\log (1-\omega x)-\log \left(1-\omega^{2} x\right)-\log (1-f x)-\log (1-g x)-\log (1-h x),
\end{aligned}
$$

where α and β are the usual Fibonacci constants and $\omega=\exp (2 i \pi / 3)$. We then obtain

$$
\begin{aligned}
F(x)= & \sum_{n=1}^{\infty} \frac{x^{n}}{n}\left[-\left(\alpha^{n}+\beta^{n}\right)-\left(r^{n}+s^{n}+t^{n}\right)-\left(u^{n}+v^{n}+w^{n}\right)\right. \\
& \left.+3+(-1)^{n}+\omega^{n}+\omega^{2 n}+\left(f^{n}+g^{n}+h^{n}\right)\right] .
\end{aligned}
$$

Comparison of coefficients yields the explicit formula:

$$
\begin{equation*}
C_{n}=\frac{1}{n}\left(J_{n}+3+(-1)^{n}+\omega^{n}+\omega^{2 n}-L_{n}-G_{n}-H_{n}\right), \quad n=1,2,3, \ldots \tag{***}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{n}=\alpha^{n}+\beta^{n} \text { (Lucas numbers), } \quad G_{n}=r^{n}+s^{n}+t^{n}, \\
& H_{n}=u^{n}+v^{n}+w^{n}, \quad J_{n}=f^{n}+g^{n}+h^{n}, \quad n=1,2, \ldots \tag{****}
\end{align*}
$$

The initial values and recurrence relations satisfied by the J_{n} 's, G_{n} 's, and H_{n} 's may be obtained from (**), and are as follows:
(i) $J_{n+3}=J_{n+2}+J_{n+1}+J_{n}, n=1,2, \ldots ; J_{1}=1, J_{2}=3, J_{3}=7$;
(ii) $G_{n+3}=G_{n+1}+G_{n}, n=1,2, \ldots ; G_{1}=0, G_{2}=2, G_{3}=3$;
(iii) $H_{n+3}=H_{n+2}+H_{n}, n=1,2, \ldots ; H_{1}=H_{2}=1, H_{3}=4$.

If $n \geq 5$ is prime, $\omega^{n}+\omega^{2 n}=-1$; thus, for prime $n \geq 7$, we obtain the slightly simplified formula for C_{n} :

$$
\begin{equation*}
C_{n}=\frac{1}{n}\left(J_{n}+1-L_{n}-G_{n}-H_{n}\right), n \geq 7, n \text { prime } . \tag{*****}
\end{equation*}
$$

To obtain values of J_{n}, G_{n}, and H_{n} without means of the recurrence relations (i)-(iii), we would need to solve for the roots in (**); we shall omit this exercise and assume that these roots are known. Also, it is of interest to note, as can be verified, that C_{n} given by ($* * *$) vanishes for $n=1,2,3,4,5$, as we would expect.

Solution of part (c): As was determined in Problem H-465 as a special case, $B_{r_{1}, r_{2}, r_{3}}$ is an integer for prime $n \geq 7$. From (3), it then follows immediately that C_{n} is an integer if n is prime (even for $n=2,3,5$, since $C_{2}=C_{3}=C_{5}=0$.)
Note: It may be shown that $L_{n} \equiv 1(\bmod n)$ for all prime n; from this result and the expression in $(* * * * *)$, we deduce that

$$
J_{n} \equiv G_{n}+H_{n}(\bmod n) \text {, if } n \text { is prime. }
$$

Sum Formula

H-527 Proposed by N. Gauthier, Royal Military College of Canada

 (Vol. 35, no. 2, May 1997)Let q, a, and b be positive integers, with $(a, b)=1$. Prove or disprove the following:
a) $\sum_{\substack{r=0 \\(b r+a s<a b)}}^{a-1 b-1}(-1)^{q(b r+a s)} L_{2 q(b r+a s)}=\frac{F_{q(a+b-a b)} F_{q a b}}{F_{q a} F_{q b}}+(-1)^{q(1-a b)} \frac{F_{q(2 a b-1)}}{F_{q}}$;
b) $5 \sum_{\substack{r=0 \\(b r+a s<a b)}}^{a-1 b-1}(-1)^{q(b r+a s)} L_{2 q(b r+a s)}=(-1)^{q(1-a b)} \frac{L_{q(2 a b-1)}}{F_{q}}-\frac{F_{q a b} L_{q(a+b-a b)}}{F_{q a} F_{q b}}$.

Solution by the proposer

Consider

$$
\begin{equation*}
S(x ; a, b) \equiv \sum_{\substack{r=0 \\(b r+a s<a b)}}^{a-1} \sum_{s=0}^{b-1} x^{b r+a s}, \tag{1}
\end{equation*}
$$

for a, b positive integers, with $(a, b)=1$, and $x \neq 1$ an arbitrary variable. L. Carlitz has shown ["Some Restricted Multiple Sums," The Fibonacci Quarterly 18.1 (1980):58-65, eqns. (1.1) and (1.2)] that

$$
\begin{equation*}
S(x ; a, b)=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)}-\frac{x^{a b}}{1-x} . \tag{2}
\end{equation*}
$$

Now, for q a positive integer, consider

$$
\begin{equation*}
T_{ \pm}(q ; a, b) \equiv S\left(\alpha^{q} / \beta^{q} ; a, b\right) \pm S\left(\beta^{q} / \alpha^{q} ; a, b\right) \tag{3}
\end{equation*}
$$

where $\alpha=\frac{1}{2}[a+\sqrt{5}], \beta=\frac{1}{2}[1-\sqrt{5}], \alpha \beta=-1$. It is readily seen that (2) in (3) gives

$$
\begin{align*}
\sqrt{5} T_{ \pm}= & -\beta^{q(a+b-a b)} \frac{F_{q a b}}{F_{q a} F_{q b}}+\alpha^{q a b} \beta^{q(1-a b)} \frac{1}{F_{q}} \\
& \pm\left[\alpha^{q(a+b-a b)} \frac{F_{q a b}}{F_{q a} F_{q b}}-\beta^{q a b} \alpha^{q(1-a b)} \frac{1}{F_{q}}\right] \tag{4}
\end{align*}
$$

where $F_{n} \equiv\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$. Similarly, (1) in (3) gives

$$
\begin{align*}
\sqrt{5} T_{ \pm}= & \sqrt{5} \sum_{\substack{r=0 \\
(b r+a s<a b)}}^{a-1} \sum_{s=0}^{b-1}\left[\left(\frac{\alpha^{q}}{\beta^{q}}\right)^{b r+a s} \pm\left(\frac{\beta^{q}}{\alpha^{q}}\right)^{b r+a s}\right] \\
= & \sqrt{5} \sum_{\substack{r=0 \\
(b r+a s<a b)}}^{a-1} \sum_{\substack{s=0}}^{b-1}(-1)^{q(b r+a s)}\left[\alpha^{2 q(b r+a s)} \pm \beta^{2 q(b r+a s)}\right] \tag{5}
\end{align*}
$$

The solution to part (a) follows by choosing T_{+}in (4) and (5); equating the results gives

$$
\sum_{\substack{r=0 \\(b r+a s<a b)}}^{a-1} \sum^{b-1}(-1)^{q(b r+a s)} L_{2 q(b r+a s)}=\frac{F_{q(a+b-a b)} F_{q a b}}{F_{q a} F_{q b}}+(-1)^{q(1-a b)} \frac{F_{q(2 a b-1)}}{F_{q}}
$$

For the solution to part (b), choose T_{-}in (4) and (5) to obtain

$$
5 \sum_{\substack{r=0 \\(b r+a s<a b)}}^{a-1} \sum_{s=0}^{b-1}(-1)^{q(b r+a s)} L_{2 q(b r+a s)}=(-1)^{q(1-a b)} \frac{L_{q(2 a b-1)}}{F_{q}}-\frac{F_{q a b} L_{q(a+b-a b)}}{F_{q a} F_{q b}}
$$

Also solved by P. Bruckman.

