PSEUDOPRIMES, PERFECT NUMBERS, AND A PROBLEM OF LEHMER

Walter Carlip
Ohio University, Athens, OH 45701
Eliot Jacobson
Ohio University, Athens, OH 45701
Lawrence Somer
Catholic University of America, Washington, D.C. 20064
(Submitted December 1996-Final Revision April 1997)

1. INTRODUCTION

Two classical problems in elementary number theory appear, at first, to be unrelated. The first, posed by D. H. Lehmer in [7], asks whether there is a composite integer N such that $\phi(N)$ divides $N-1$, where $\phi(N)$ is Euler's totient function. This question has received considerable attention and it has been demonstrated that such an integer, if it exists, must be extraordinary. For example, in [2] G. L. Cohen and P. Hagis, Jr., show that an integer providing an affirmative answer to Lehmer's question must have at least 14 distinct prime factors and exceed 10^{20}.

The second is the ancient question whether there exists an odd perfect number, that is, an odd integer N, such that $\sigma(N)=2 N$, where $\sigma(N)$ is the sum of the divisors of N. More generally, for each integer $k>1$, one can ask for odd multiperfect numbers, i.e., odd solutions N of the equation $\sigma(N)=k N$. This question has also received much attention and solutions must be extraordinary. For example, in [1] W. E. Beck and R. M. Rudolph show that an odd solution to $\sigma(N)=3 N$ must exceed 10^{50}. Moreover, C. Pomerance [9], and more recently D. R. HeathBrown [4], have found explicit upper bounds for multiperfect numbers with a bounded number of prime factors.

In recent work [13], L. Somer shows that for fixed d there are at most finitely many composite integers N such that some integer a relatively prime to N has multiplicative order $(N-1) / d$ modulo N. A composite integer N with this property is a Fermat d-pseudoprime. (See [12], p. 117, where Fermat d-pseudoprimes are referred to as Somer d-pseudoprimes.) More recently, Somer [14] showed that under suitable conditions, there are at most finitely many Lucas d-pseudoprimes, i.e., pseudoprimes that arise via tests employing recurrence sequences. (Lucas d-pseudoprimes are discussed on pp. 131-132 of [12] where they are also called Somer-Lucas d pseudoprimes. For a complete discussion of these and other pseudoprimes that arise from recurrence relations, see [12] or [11].)

The methods used by Somer in his papers motivated the present work. While attempting to simplify and extend the arguments in [13] and [14] we discovered that, in fact, Lehmer's problem, the existence of odd multiperfect numbers, and Somer's theorems about pseudoprimes are intimately related. In this paper we present a unified approach to the study of these four questions.

2. PRELIMINARIES

We adopt the convention that p always represents a prime number. Define the set $\delta(N)=$ $\{p \mid p$ divides $N\}$ and for each i such that $1 \leq i \leq|\delta(N)|$, define $\delta_{i}(N)$ to the $i^{\text {th }}$ largest prime in the decomposition of N. Thus, if N has decomposition

$$
\begin{equation*}
N=\prod_{i=1}^{t} p_{i}^{k_{i}}, \tag{2.1}
\end{equation*}
$$

with $p_{1}<p_{2}<\cdots<p_{t}$, then $\delta_{i}(N)=p_{i}$. If Ω is a set of natural numbers, define

$$
\delta(\Omega)=\bigcup_{N \in \Omega} \delta(N)
$$

and, similarly, $\delta_{i}(\Omega)=\left\{\delta_{i}(N) \mid N \in \Omega\right\}$.
In the arguments below we will have need to extract the square-free part of certain integers. If N has decomposition (2.1), we will write

$$
\begin{equation*}
N_{1}=\prod_{i=1}^{t} p_{i} \quad \text { and } \quad N_{2}=\prod_{i=1}^{t} p_{i}^{k_{i}-1} \tag{2.2}
\end{equation*}
$$

so that $N=N_{1} N_{2}$ with N_{1} square-free.
In the definitions and lemmas below, we will need a semigroup homomorphism from the natural numbers \mathbf{N} to the multiplicative semigroup $\{-1,0,1\}$. Such a function will be called a signature function, and we will single out the case in which $\varepsilon=1$, the constant function. Clearly, a signature function is determined by its values on the primes. We say that N is supported by ε if $\varepsilon(N) \neq 0$ or, equivalently, if $\varepsilon(p) \neq 0$ for all p that divide N. Similarly, a set Ω of natural numbers is supported by ε if $\varepsilon(N) \neq 0$ for all $N \in \Omega$. Note that if D is a fixed integer, the Jacobi symbol $\varepsilon(i)=\left(\frac{D}{i}\right)$ is a signature function.

If N is any natural number and ε is a signature function, define the number theoretic function $\xi(N)$ as follows:

$$
\begin{equation*}
\xi(N)=\xi_{\varepsilon}(N)=\frac{1}{N} \prod_{p \mid N}(p-\varepsilon(p)) \tag{2.3}
\end{equation*}
$$

Note that if N has decomposition (2.1), we can write $N=N_{1} N_{2}$ as in (2.2) and

$$
\begin{equation*}
\xi(N)=\frac{1}{N_{2}} \prod_{i=1}^{t}\left(\frac{p_{i}-\varepsilon\left(p_{i}\right)}{p_{i}}\right)=\frac{1}{N_{2}} \prod_{i=1}^{t}\left(1-\frac{\varepsilon\left(p_{i}\right)}{p_{i}}\right) . \tag{2.4}
\end{equation*}
$$

We will be interested in certain limiting values of $\xi(N)$ for N in a set Ω. In particular, if Ω is an infinite set of positive integers, then

$$
\begin{equation*}
\lim _{N \in \Omega} \xi(N)=L \tag{2.5}
\end{equation*}
$$

means that for every $\varepsilon>0$ there is an M such that $|\xi(N)-L|<\varepsilon$ whenever $N>M$ and $N \in \Omega$. Although in most applications the signature ε will be fixed, we also allow ε to vary with N, requiring only that N be supported by its associated signature.

The following elementary lemma is an easy exercise.
Lemma 2.1: Suppose that Ω is a set of positive integers and $f: \Omega \rightarrow \mathbf{R}$ a function such that $\lim _{N \in \Omega} f(N)=L$. Suppose as well that there exist functions f_{1} and $f_{2}: \Omega \rightarrow \mathbf{R}$ such that
(a) $f(N)=f_{1}(N) f_{2}(N)$ for all $N \in \Omega$;
(b) $\left\{f_{2}(N) \mid N \in \Omega\right\}$ has finite cardinality; and
(c) $\lim _{N \in \Omega} f_{1}(N)=1$.

Then $f_{2}(N)=L$ for some $N \in \Omega$.

Lemma 2.2: If $N>1$ is an integer supported by the signature ε and (c, d) is a pair of integers such that $\xi(N)=c / d$, then $(N, d) \neq 1$.

Proof: If $\xi(N)=c / d$, then

$$
d \prod_{p \mid N}(p-\varepsilon(p))=c N .
$$

Since N is supported by ε, it follows that $\varepsilon(p) \neq 0$ for all p dividing N. Thus, if p is the largest prime divisor of N, then $p \mid d$.

Theorem 2.3: Suppose that Ω is an infinite set of positive integers with each $N \in \Omega$ supported by corresponding signature ε and for which $|\delta(N)|=t$ for all $N \in \Omega$. Suppose as well that $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded. If c and d are integers such that $(N, d)=1$ for all $N \in \Omega$ and

$$
\begin{equation*}
\lim _{N \in \Omega} \xi(N)=c / d, \tag{2.6}
\end{equation*}
$$

then $c=d$.
Proof: If $\delta_{t}(\Omega)$ is bounded, then $\delta(\Omega)$ is bounded. Since $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded, it follows from (2.4) that $\xi(N)$ takes on finitely many values as N ranges over Ω. It follows that $\lim _{N \in \Omega} \xi(N)=\xi\left(N_{0}\right)$ for some $N_{0} \in \Omega$, and $\xi\left(N_{0}\right)=c / d$, contrary to Lemma 2.2.

Consequently $\delta_{t}(\Omega)$ is unbounded. Choose s to be minimal such that $\delta_{s}(\Omega)$ is unbounded. Since $\delta_{s}(\Omega)$ is unbounded, we can find an infinite subset of Ω such that $\delta_{s}(N)$ is increasing and, without loss of generality, we may replace Ω with this subset. Now, if

$$
f_{1}(N)=\prod_{i=s}^{t} \frac{\delta_{i}(N)-\varepsilon\left(\delta_{i}(N)\right)}{\delta_{i}(N)},
$$

then

$$
\begin{equation*}
\lim _{N \in \Omega} f_{1}(N)=1 . \tag{2.7}
\end{equation*}
$$

Since $\delta_{k}(\Omega)$ is bounded for all $k<s$ and $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded, it follows that

$$
f_{2}(N)= \begin{cases}\frac{1}{N_{2}} \prod_{i=1}^{s-1} \frac{\delta_{i}(N)-\varepsilon\left(\delta_{i}(N)\right)}{\delta_{i}(N)} & \text { if } s>1 \tag{2.8}\\ \frac{1}{N_{2}} & \text { if } s=1\end{cases}
$$

takes on finitely many values. Since, in both cases, $\xi(N)=f_{1}(N) f_{2}(N)$, Lemma 2.1 implies that $f_{2}(N)=c / d$ for some $N \in \Omega$. If $s>1$, it follows that

$$
\begin{equation*}
d \prod_{i=1}^{s-1}\left(\delta_{i}(N)-\varepsilon\left(\delta_{i}(N)\right)\right)=c N_{2} \prod_{i=1}^{s-1} \delta_{i}(N) \tag{2.9}
\end{equation*}
$$

But then $\delta_{s-1}(N)$ divides d, contrary to the hypothesis that $(N, d)=1$. It now follows that $s=1$. But then Lemma 2.1 implies that $d=c N_{2}$ for some $N \in \Omega$. Since ($\left.N_{2}, d\right)=1$ for all $N \in \Omega$, this implies that $N_{2}=1$ and $c=d$, as desired.

Corollary 2.4: Suppose that Ω is an infinite set of positive integers that is supported by the signature ε and for which $\{|\delta(N)|\}_{N \in \Omega}$ is bounded. Suppose as well that $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded. If c and d are integers such that $(N, d)=1$ for all $N \in \Omega$ and

$$
\begin{equation*}
\lim _{N \in \Omega} \xi(N)=c / d, \tag{2.10}
\end{equation*}
$$

then $c=d$.
Proof: If Ω is infinite and $\{|\delta(N)|\}_{N \in \Omega}$ is bounded, then there is some integer t such that $\hat{\Omega}=\{N \in \Omega|t=|\delta(N)|\}$ is infinite. We can now apply Theorem 2.3 to $\hat{\Omega}$.

3. FERMAT PSEUDOPRIMES

Suppose that N is a composite integer and $a>1$ is an integer such that $(N, a)=1$ and $a^{N-1} \equiv 1(\bmod N)$. Then N is called a Fermat pseudoprime to the base a. Moreover, if a has multiplicative order $(N-1) / d$ in $(\mathbf{Z} / N \mathbf{Z})^{*}$, then N is said to be a Fermat d-pseudoprime to the base a. In general, if there exists an integer $a>1$ such that N is a Fermat d-pseudoprime to the base a, then we call N a Fermat d-pseudoprime.

If N has prime decomposition (2.1), then the structure of the unit group $(\mathbf{Z} / N \mathbf{Z})^{*}$ is well known. If N is not divisible by 8 , then $(\mathbf{Z} / N \mathbf{Z})^{*}$ is a product of cyclic groups of order $p_{i}^{k_{i}-1}\left(p_{i}-1\right)$, while if N is divisible by 8 , then $p_{1}=2$ and $(\mathbf{Z} / N \mathbf{Z})^{*}$ has an additional factor that is a product of a cyclic group of order 2 and a cyclic group of order $2^{k_{1}-2}$. It follows that the multiplicative orders of integers a relatively prime to N in $(\mathbf{Z} / N \mathbf{Z})^{*}$ are just the divisors of $\lambda(N)=$ $\operatorname{lcm}\left\{p_{i}^{s_{i}}\left(p_{i}-1\right)\right\}$, where $s_{i}=k_{i}-1$ when p_{i} is odd, $s_{1}=k_{1}-1$ if $p_{1}=2$ and $k_{1}=1$ or 2 , and $s_{1}=$ $k_{1}-2$ if $p_{1}=2$ and $k_{1} \geq 3$. Therefore N is a Fermat d-pseudoprime if and only if $(N-1) / d$ divides $\lambda(N)$. Moreover, since $(N, N-1)=1$, a composite integer N is a Fermat d-pseudoprime if and only if $(N-1) / d$ divides $\lambda^{\prime}(N)=\operatorname{lcm}\left\{p_{i}-1\right\}$.

If N has decomposition (2.1), define

$$
\psi(N)=\frac{1}{2^{s}} \prod_{i=1}^{t}\left(p_{i}-1\right),
$$

where $s=t-2$ when $2 \mid N$ and $t \geq 2$, and $s=t-1$ otherwise. It is easy to see that if N is composite, then $\psi(N)$ is an integer and $\lambda^{\prime}(N)$ divides $\psi(N)$. Therefore, if N is a Fermat d-pseudoprime, then $(N-1) / d$ divides $\psi(N)$, and hence, there is an integer c such that

$$
\begin{equation*}
\frac{\psi(N)}{N-1}=\frac{c}{d} . \tag{3.1}
\end{equation*}
$$

We will need several lemmas concerning the properties of Fermat d-pseudoprimes and $\psi(N)$. Similar lemmas appear in [13], but the proofs are short and we include them here for completeness.

Lemma 3.1: If N is a Fermat d-pseudoprime with prime decomposition (2.1), then $(N, d)=1$ and there exists an integer c such that

$$
\begin{equation*}
\frac{\psi(N)}{N-1}=\frac{c}{d}<\frac{1}{2^{t-1}} . \tag{3.2}
\end{equation*}
$$

Proof: If $t=1$, then (3.2) follows immediately from the definition of $\psi(N)$ and the fact that N is composite. Assume that $t>1$. By (3.1) and the preceding comments, it suffices to show that $c / d<1 / 2^{t-1}$. This is immediate from the observation that

$$
\frac{\prod_{p \mid N}(p-1)}{\prod_{p \mid N} p-1}<1
$$

in general, and

$$
\frac{\prod_{p \mid N}(p-1)}{\prod_{p \mid N} p-1}<\frac{1}{2}
$$

when $2 \mid N$.
Lemma 3.2: If N is a Fermat d-pseudoprime with prime decomposition (2.1), then $t<\log _{2}(d)+1$.
Proof: By Lemma 3.1,

$$
\frac{1}{d} \leq \frac{c}{d}<\frac{1}{2^{t-1}}
$$

and hence $d>2^{t-1}$. Thus $t-1<\log _{2}(d)$, and therefore $t<\log _{2}(d)+1$.
Lemma 3.3: If N is a Fermat d-pseudoprime with prime decomposition (2.1) and $k_{i} \geq 2$, then

$$
\begin{equation*}
p_{i}^{k_{i}-1}<\frac{p_{i}^{k_{i}}}{p_{i}-1} \leq d+1 . \tag{3.3}
\end{equation*}
$$

Proof: Clearly,

$$
\begin{aligned}
p_{i}^{k_{i}-1}<\prod_{j=1}^{t} \frac{p_{j}^{k_{j}}}{p_{j}-1} & =\frac{1}{2^{s}}\left(\frac{\Pi p_{j}^{k_{j}}}{\frac{1}{2^{s}} \Pi\left(p_{j}-1\right)}\right)=\frac{1}{2^{s}}\left(\frac{N}{\psi(N)}\right) \\
& =\frac{1}{2^{s}}\left(\frac{N-1}{\psi(N)}\right)+\frac{1}{2^{s} \psi(N)}=\frac{1}{2^{s}}\left(\frac{d}{c}\right)+\frac{1}{2^{s} \psi(N)} \\
& \leq \frac{d}{2^{s}}+\frac{1}{2^{s}}=\frac{1}{2^{s}}(d+1) \leq d+1 .
\end{aligned}
$$

The following theorem first appeared in [13].
Theorem 3.4: For fixed positive integer d, there are at most a finite number of Fermat d-pseudoprimes.

Proof: By way of contradiction, suppose that there are an infinite number of Fermat d pseudoprimes. By Lemma 3.2, there exists an integer t, with $t<\log _{2}(d)+1$, such that an infinite number of these Fermat d-pseudoprimes have exactly t distinct prime divisors. Moreover, an infinite number of these Fermat d-pseudoprimes have the same parity. Then (3.2) is satisfied by an infinite number of integers N of the same parity. There are, however, only a finite number of possible values for c, and it follows that there is some value of c for which (3.2) has an infinite number of solutions N of the same parity. Fix this value of c and let Ω be an (infinite) set of positive integers N of the same parity that satisfy (3.2) for these fixed values of c and d.

If $\delta(\Omega)$ is bounded, then, by Lemma 3.3, Ω is finite, contrary to our choice of c. Consequently $\delta(\Omega)$ is unbounded. Moreover, by Lemma 3.2, $\{|\delta(N)|\}_{N \in \Omega}$ is bounded, and it follows that

$$
\lim _{N \in \Omega} \frac{1}{\psi(N)}=0 .
$$

Consequently, with constant signature $\varepsilon=1$, and $s=t-2$ if the elements of Ω are even and $t \geq 2$, and $s=t-1$ otherwise, we obtain

$$
\begin{align*}
\frac{2^{s} c}{d} & =2^{s} \lim _{N \in \Omega}\left(\frac{\psi(N)}{N-1}\right)=2^{s} \lim _{N \in \Omega} \frac{1}{\left(\frac{N-1}{\psi(N)}\right)} \\
& =2^{s} \lim _{N \in \Omega} \frac{1}{\left(\frac{N}{\psi(N)}-\frac{1}{\psi(N)}\right)}=2^{s} \lim _{N \in \Omega}\left(\frac{\psi(N)}{N}\right)=\lim _{N \in \Omega} \xi(N) . \tag{3.4}
\end{align*}
$$

By Lemma 3.3, $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded and, by Lemma 3.1, $(N, d)=1$ for all $N \in \Omega$. Clearly, Ω is supported by the constant signature $\varepsilon=1$. Therefore Theorem 2.3 implies that $2^{s} c / d=1$.

Finally, by (3.2),

$$
\begin{equation*}
1=\frac{2^{s} c}{d}<\frac{2^{s}}{2^{t-1}} \leq 1, \tag{3.5}
\end{equation*}
$$

a contradiction.

4. LUCAS PSEUDOPRIMES

Let $U(P, Q)$ be the recurrence sequence defined by $U_{0}=0, U_{1}=1$, and

$$
\begin{equation*}
U_{n+2}=P U_{n+1}-Q U_{n} \tag{4.1}
\end{equation*}
$$

for all $n \geq 0$. The sequence $U(P, Q)$ is called a Lucas sequence with parameters P and Q. Associated with $U(P, Q)$ is an integer $D=P^{2}-4 Q$ known as the discriminant of $U(P, Q)$ and, as noted above, the function $\varepsilon(i)=\left(\frac{D}{i}\right)$ is a signature function. For the duration of this section, $\varepsilon(N)$ will be the Jacobi symbol.

If N is an integer and $U(P, Q)$ a Lucas sequence, we define $\rho_{U}(N)$ to be the least positive integer n such that N divides U_{n}. The number $\rho(N)$ is called the rank of appearance (or simply the rank) of N in $U(P, Q)$. If $(N, Q)=1$, then it is well known that $U(P, Q)$ is purely periodic modulo N and, since $U_{0}=0, \rho(N)$ exists. Moreover, in this case $U_{n} \equiv 0(\bmod N)$ if and only if $\rho(N)$ divides n. It was proven by Lucas [8] that, if a prime p does not divide $2 Q D$, then $U_{p-\varepsilon(p)} \equiv 0(\bmod p)$ and hence $\rho(p)$ divides $p-\varepsilon(p)$.

Motivated by Lucas' theorem, we say that an odd composite integer N is a Lucas pseudoprime if there is a Lucas sequence $U(P, Q)$ with discriminant D such that $(N, Q D)=1$ and $U_{N-\varepsilon(N)} \equiv 0(\bmod N)$, where $\varepsilon(N)=\left(\frac{D}{N}\right)$. Moreover, if $\rho(N)=(N-\varepsilon(N)) / d$, then N is said to be a Lucas d-pseudoprime.

Suppose that ε is any signature function and N an odd integer with decomposition (2.1) that is supported by ε. Analogous to the functions $\lambda, \lambda^{\prime}$, and ψ defined in the previous section, define

$$
\begin{aligned}
\lambda(N) & =\operatorname{lcm}\left\{p_{i}^{k_{i}-1}\left(p_{i}-\varepsilon\left(p_{i}\right)\right)\right\}, \\
\lambda^{\prime}(N) & =\operatorname{lcm}\left\{p_{i}-\varepsilon\left(p_{i}\right)\right\}, \text { and } \\
\psi(N) & =\frac{1}{2^{t-1}} \prod_{i=1}^{t}\left(p_{i}-\varepsilon\left(p_{i}\right)\right) .
\end{aligned}
$$

In [14], L. Somer shows that an integer N is a Fermat d-pseudoprime if and only if it is a Lucas d-pseudoprime with a signature ε satisfying $\varepsilon(p)=1$ for all primes p dividing N. Since for each d there are only a finite number of Fermat d-pseudoprimes, it may seem reasonable to conjecture that there are also a finite number of Lucas d-pseudoprimes. This conjecture seems highly unlikely, however, since d-pseudoprimes with three prime divisors and d divisible by 4 are easy to construct.

If k is an even integer with the property that $p=3 k-1, q=3 k+1$, and $r=3 k^{2}-1$ are prime, set $N=p q r$ and choose D relatively prime to N and congruent to 0 or $1(\bmod 4)$ such that $\varepsilon(p)=1$ and $\varepsilon(q)=\varepsilon(r)=-1$. Then

$$
\begin{aligned}
N-\varepsilon(N) & =p q r-1=(3 k-1)(3 k+1)\left(3 k^{2}-1\right)-1 \\
& =3 k^{2}\left(9 k^{2}-4\right)=(3 k-2)(3 k+2)\left(3 k^{2}\right) \\
& =(p-1)(q+1)(r+1)
\end{aligned}
$$

It is a consequence of elementary properties of Lucas sequences and a theorem of $\mathrm{H} . \mathrm{C}$. Williams [15] that for any odd integer N and discriminant D relatively prime to N and satisfying $D \equiv 0$ or $1(\bmod 4)$, there is a Lucas sequence U satisfying $\rho_{U}(N)=\lambda(N)$. Thus, for

$$
d=\frac{(p-1)(q+1)(r+1)}{\operatorname{lcm}(p-1),(q+1),(r+1)}=\frac{N-\varepsilon(N)}{\lambda(N)}
$$

Williams' theorem implies that N is a Lucas d-pseudoprime. Since $p-1, q+1$, and $r+1$ are all even, it is clear that d is divisible by 4 , and when $\lambda(N)$ is maximal, $d=4$. For example, taking $k=4$ yields the Lucas 4-pseudoprime $N=11 \cdot 13 \cdot 47=6721$ and $k=60$ yields the 4-pseudoprime $N=179 \cdot 181 \cdot 10799=349876801$.

More general algorithms for generating Lucas d-pseudoprimes are described in [14] and will be discussed in detail in a future paper. It is worth noting that the computational evidence presented in [14] suggests that there are infinitely many Lucas d-pseudoprimes with exactly three distinct prime divisors when 4 divides d and d is a square, and that there is a relationship between the number of Lucas d-pseudoprimes N, the precise power of 2 that divides d, and the number of prime divisors of N. We prove below that there are at most a finite number of Lucas d-pseudoprimes N such that $2^{r} \| N$ and $|\delta(N)| \geq r+2$. In light of the computational evidence presented in [14], the requirement that $|\delta(N)| \geq r+2$ appears to be best possible.

As in the previous section, we require a few lemmas that describe properties of Lucas d pseudoprimes and $\psi(N)$. The following three lemmas can be proved by methods analogous to those used to prove Lemma 3.1, Lemma 3.2, and Lemma 3.3.

Lemma 4.1: If N is a Lucas d-pseudoprime, then $(N, d)=1$ and there exist integers b and c such that

$$
\begin{equation*}
\frac{\lambda^{\prime}(N)}{N-\varepsilon(N)}=\frac{b}{d} \leq \frac{\psi(N)}{N-\varepsilon(N)}=\frac{c}{d}<2\left(\frac{2}{3}\right)^{t} \tag{4.2}
\end{equation*}
$$

Lemma 4.2: If N is a Lucas d-pseudoprime with prime decomposition (2.1), then $t<\log _{3 / 2}(2 d)$.
Lemma 4.3: If N is a Lucas d-pseudoprime with prime decomposition (2.1) and $k_{i} \geq 2$, then

$$
\begin{equation*}
p_{i}^{k_{i}-1}<2(2 / 3)^{t}(d+1) . \tag{4.3}
\end{equation*}
$$

The following theorem is new; it sharpens a result of the third author in [14].
Theorem 4.4: Let d be a fixed positive integer and suppose that 2^{r} exactly divides d. Then there are at most a finite number of Lucas d-pseudoprimes N such that $|\delta(N)| \geq r+2$.

Proof: Suppose that there are an infinite number of Lucas d-pseudoprimes N with $|\delta(N)| \geq$ $r+2$. By Lemma 4.2, there exists an integer t, with $r+1<t<\log _{3 / 2}(2 d)$, such that an infinite number of these Lucas d-pseudoprimes have exactly t distinct prime divisors. Thus (4.2) is satisfied by an infinite number of integers N. There are, however, only a finite number of possible values for c, and it follows that there is some value of c for which (4.2) has an infinite number of solutions N. Fix this value of c and let Ω be the (infinite) set of positive integers N that satisfy (4.2) for these fixed values of c and d.

If $\delta(\Omega)$ is bounded, then, by Lemma 4.3, Ω is finite, contrary to our choice of c. Consequently $\delta(\Omega)$ is unbounded. Moreover, by Lemma $4.2,\{|\delta(N)|\}_{N \in \Omega}$ is bounded and it follows that

$$
\lim _{N \in \Omega} \frac{\varepsilon(N)}{\psi(N)}=0 .
$$

It then follows that

$$
\begin{align*}
\frac{2^{t-1} c}{d} & =2^{t-1} \lim _{N \in \Omega}\left(\frac{\psi(N)}{N-\varepsilon(N)}\right)=2^{t-1} \lim _{N \in \Omega} \frac{1}{\left(\frac{N-\varepsilon(N)}{\psi(N)}\right)} \\
& =2^{t-1} \lim _{N \in \Omega} \frac{1}{\left(\frac{N}{\psi(N)}-\frac{\varepsilon(N)}{\psi(N)}\right)}=2^{t-1} \lim _{N \in \Omega}\left(\frac{\psi(N)}{N}\right)=\lim _{N \in \Omega} \xi(N) . \tag{4.4}
\end{align*}
$$

By Lemma 4.3, $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded and, by Lemma 4.1, $(N, d)=1$ for all $N \in \Omega$. Moreover, since $\varepsilon(N)=\left(\frac{D}{N}\right)$ and, by definition of Lucas d-pseudoprime, $(D, N)=1$, it follows that Ω is supported by ε. Therefore Theorem 2.3 implies that $2^{t-1} c / d=1$. Thus $d=2^{t-1} c$. Since 2^{r} exactly divides d, the hypothesis that $t>r+1$ implies that $r \geq t-1>(r+1)-1=r$, a contradiction.

The following two corollaries are stated in [14].
Corollary 4.5: If d is odd, then there are at most finitely many Lucas d-pseudoprimes.
Proof: Theorem 4.4 handles the case in which N has at least 2 distinct prime divisors and Lemma 4.3 handles the case in which N is a prime power.

Corollary 4.6: If 2 exactly divides d, then there are at most finitely many Lucas d-pseudoprimes.
Proof: Suppose otherwise and fix d such that $d \equiv 2(\bmod 4)$ and there are infinitely many d-pseudoprimes N. Then, by Theorem 4.4 and Lemma 4.3, there are infinitely many d-pseudoprimes with $|\delta(N)|=2$. By Lemma 4.1 and the argument in the proof of Theorem 4.4,

$$
\begin{equation*}
\frac{\psi(N)}{N-\varepsilon(N)}=\frac{1}{2} \tag{4.5}
\end{equation*}
$$

and hence, if N has decomposition (2.1),

$$
\begin{equation*}
\frac{\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)}{N-\varepsilon(N)}=1 \tag{4.6}
\end{equation*}
$$

If either $k_{1}>1$ or $k_{2}>1$, then

$$
\begin{align*}
\frac{\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)}{N-\varepsilon(N)} & =\frac{\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)}{p_{1}^{k_{1}} p_{2}^{k_{2}}-\varepsilon(N)} \tag{4.7}\\
& \leq \frac{\left(p_{1}+1\right)\left(p_{2}+1\right)}{p_{1}^{2} p_{2}-1} \leq \frac{(3+1)(5+1)}{9 \cdot 5-1}=\frac{24}{44}<1
\end{align*}
$$

a contradiction. Therefore $k_{1}=k_{2}=1$.
It now follows that

$$
\begin{align*}
\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right) & =p_{1} p_{2}-\varepsilon\left(p_{1}\right) \varepsilon\left(p_{2}\right), \text { and } \tag{4.8}\\
p_{1} \varepsilon\left(p_{2}\right)+p_{2} \varepsilon\left(p_{1}\right) & =2 \varepsilon\left(p_{1}\right) \varepsilon\left(p_{2}\right)
\end{align*}
$$

If $\varepsilon\left(p_{1}\right)=\varepsilon\left(p_{2}\right)$, then $p_{1}+p_{2}= \pm 2$, which is impossible. Hence, $\varepsilon\left(p_{1}\right)=-\varepsilon\left(p_{2}\right)$.
Since $p_{2}>p_{1}$, it now follows that $p_{2}-p_{1}=2$, i.e., p_{1} and p_{2} are twin primes.
Now, by Lemma 4.1,

$$
\begin{equation*}
\frac{b}{d}=\frac{\lambda^{\prime}(N)}{N-\varepsilon(N)}=\frac{\operatorname{lcm}\left\{\left(p_{1}+1\right),\left(p_{1}+2-1\right)\right\}}{p_{1}\left(p_{1}+2\right)+1}=\frac{1}{p_{1}+1} \tag{4.9}
\end{equation*}
$$

It follows that $d=b\left(p_{1}+1\right)$. Clearly, there are only finitely many prime twins p_{1} and $p_{1}+2$ such that $p_{1}+1$ divides d. This final contradiction completes the proof of the corollary.

5. LEHMER'S PROBLEM

In [7], D. H. Lehmer asks whether there exist composite integers N such that $\phi(N)$ divides $N-1$. If N has prime decomposition (2.1), then

$$
\begin{equation*}
\phi(N)=N \prod_{p \mid N} \frac{p-1}{p} \tag{5.1}
\end{equation*}
$$

Consequently, if $d \phi(N)=N-1$, it follows that

$$
\begin{equation*}
d N \prod_{p \mid N}(p-1)=(N-1) \prod_{p \mid N} p \tag{5.2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
d N_{2} \prod_{p \mid N}(p-1)=(N-1) \tag{5.3}
\end{equation*}
$$

Since $(N, N-1)=1$, this implies that $N_{2}=1$, i.e., N is square-free.
The following theorem was first proven by C. Pomerance in [10].
Theorem 5.1: For any integers $t>1$ and $d>1$, there are at most a finite number of integers $N>2$ such that $d \phi(N)=N-1$ and $|\delta(N)| \leq t$.

Proof: Fix positive integers t and d, and let Ω be the set of all positive integers N such that $d \phi(N)=N-1$ and $|\delta(N)| \leq t$. By way of contradiction, assume that Ω has infinite cardinality.

It follows from the hypotheses that $(N, d)=1$ for all $N \in \Omega$ and, from the remarks above, that N is square-free. Moreover, since $\phi(N)$ is even for N greater than 2, every element of Ω is odd.

It now follows for each $N \in \Omega$ that $\phi(N) /(N-1)=1 / d$. As in the previous sections, replacing Ω with a subset if necessary, we obtain

$$
\begin{equation*}
\frac{1}{d}=\frac{\phi(N)}{N-1}=\lim _{N \in \Omega} \frac{\phi(N)}{N-1}=\lim _{N \in \Omega} \frac{N \xi(N)}{N-1}=\lim _{N \in \Omega} \xi(N) . \tag{5.4}
\end{equation*}
$$

It now follows from Corollary 2.4 that $d=1$, a contradiction.

6. PERFECT NUMBERS

If N is a positive integer, define $\sigma(N)$ to be the sum of the positive divisors of N. A positive integer N is called a perfect number if $\sigma(N)=2 N$. It is well known that every even perfect number is a Euclid number, i.e., an integer of the form $2^{n}\left(2^{n+1}-1\right)$, where $2^{n+1}-1$ is a Mersenne prime. Moreover, it is well known that every odd perfect number can be written in the form $N=p M^{2}$ for some integer $M>1$. It follows that 6 is the only square-free perfect number.

Recall that if N has decomposition (2.1), then

$$
\begin{equation*}
\sigma(N)=\prod_{p \mid N} \frac{p^{k_{i}+1}-1}{p-1} . \tag{6.1}
\end{equation*}
$$

If N is square-free, then (6.1) becomes

$$
\begin{equation*}
\sigma(N)=\prod_{p \mid N} \frac{p^{2}-1}{p-1}=\prod_{p \mid N}(p+1)=N \xi(N), \tag{6.2}
\end{equation*}
$$

where the signature function ε is given by $\varepsilon(p)=-1$ for all primes p. Thus, for N square-free, N is a perfect number if and only if

$$
\begin{equation*}
\xi(N)=2 . \tag{6.3}
\end{equation*}
$$

More generally, we can ask for square-free k-perfect integers N, that is, solutions N of

$$
\begin{equation*}
\xi(N)=k . \tag{6.4}
\end{equation*}
$$

L. E. Dickson [3] and I. S. Gradstein [5] have both proven that there are only a finite number of odd perfect numbers N with $|\delta(N)|$ bounded, and Dickson [3] generalized this result to primitive abundant numbers. H.-J. Kanold [6] has studied (6.4) for k rational, and proved that there are only finitely many primitive (and hence only finitely many odd) solutions N with a fixed number of prime factors. As mentioned in the introduction, these results have recently been generalized by Pomerance [9] and D. R. Heath-Brown [4]. Here we apply the methods developed above to prove a similar result for multiperfect numbers.

Theorem 6.1: For fixed k and t, there exist at most finitely many square-free integers N such that $|\delta(N)| \leq t$ and

$$
\begin{equation*}
\sigma(N)=k N \tag{6.5}
\end{equation*}
$$

Proof: By the remarks preceding the theorem, the condition $\sigma(N)=k N$ is equivalent to $\xi(N)=k$. Let $\Omega=\{N|\xi(N)=k,|\delta(N)| \leq t$, and N is square-free $\}$. By way of contradiction, suppose that Ω has infinite cardinality. Since each $N \in \Omega$ is square-free, $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded. It is clear that Ω satisfies the hypotheses of Corollary 2.4 , and we conclude that $k=1$. But, clearly, $\sigma(N) \geq N+1>k N$, a contradiction.

REFERENCES

1. Walter E. Beck \& Rudolph M. Najar. "A Lower Bound for Odd Triperfects." Math. Comp. 38 (1982):249-51.
2. G. L. Cohen \& P. Hagis. "On the Number of Prime Factors of n if $\phi(n)$ Divides $n-1 . "$ Niezw Arch. Wisc. (4) 28 (1980):177-85.
3. L. E. Dickson. "Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Divisors." Amer. J. Math. 35 (1913):413-22.
4. D. R. Heath-Brown. "Odd Perfect Numbers." Math. Proc. Cambridge Philos. Soc. 115 (1994):191-96.
5. I. S. Gradstein. "On Perfect Numbers" (in Russian) Mat. Sb. 32 (1925):476-510.
6. Hans-Joachim Kanold. "Über einen Satz von L. E. Dickson." Math. Annalen 131 (1956): 167-79.
7. D. H. Lehmer. "On Euler's Totient Function." Bull. Amer. Math. Soc. (N.S.) 38 (1932): 745-51.
8. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-250.
9. Carl Pomerance. "Multiple Perfect Numbers, Mersenne Primes, and Effective Computability." Math. Ann. 226 (1977):195-206.
10. Carl Pomerance. "On Composite n for Which $\phi(n)$ Divides $n-1$, II." Pacific J. Math. 69 (1977):177-86.
11. Paulo Ribenboim. The Little Book of Big Primes. New York: Springer-Verlag, 1991.
12. Paulo Ribenboim. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
13. Lawrence Somer. "On Fermat d-Pseudoprimes." In Number Theory, pp. 841-60. Ed. J.-M. De Koninck \& C. Levesque. Berlin: Walter de Gruyter, 1989.
14. Lawrence Somer. "On Lucas d-Pseudoprimes." In Applications of Fibonacci Numbers 7. Ed. A. N. Philippou, A. F. Horadam, \& G. E. Bergum. Dordrecht: Kluwer, 1998.
15. H. C. Williams. "On Numbers Analogous to the Carmichael Numbers." Can. Math. Bull. 20 (1977):133-43.

AMS Classification Numbers: 11B39, 11A25, 11A51, 11B36

