
COMPLETE PARTITIONS 

SeiingKyung Park* 
Department of Mathematics, Yonsei University, Seoul 120-749, Korea 

{Submitted November 1996) 

1. INTRODUCTION 

MacMahon [4] introduced perfect partitions of a number. He defined a perfect partition of a 
positive integer n to be a partition such that every number from 1 to n can be represented by the 
sum of parts of the partition in one and only one way. For instance, (1 1 1 4) is a perfect partition 
of 7 because we can express each of the numbers 1 through 7 uniquely by using the parts of three 
l's and one 4; thus, (1), (1 1), (1 1 1), (4), (1 4), (1 1 4), and (1114) are the partitions referred to 
in this example. MacMahon considered the case of n - pa -1, where p is a prime number, and 
showed that the enumeration of perfect partitions is identical to the enumeration of compositions 
of the number a, using the correspondence between the factorizations of (l-xpa)/(l-x) and 
the compositions of a. Further, he considered perfect partitions of the number n = Pilp%2 1, 
where ph p29... are primes, and found that the number of perfect partitions of this number is equal 
to the number of compositions of the multipartite number (a1? a2, ...)• The fact that the number 
of perfect partitions of n is the same as the number of ordered factorizations of « + l was also 
shown. 

A similar idea of representing numbers as a sum of given numbers was used in later days. It 
seems that the word "complete" first appeared in a problem suggested by Hoggatt and King in 
[3], which was solved in Brown's paper [2]. They called an arbitrary sequence {fj^i of positive 
integers "complete" if every positive integer n could be represented in the form n = J^Llaif, 
where each at was either 0 or 1. Brown found a simple necessary and sufficient condition for the 
completeness of such sequences and showed that the Fibonacci numbers are characterized by cer-
tain properties involving completeness. His note also considered whether or not completeness 
was destroyed by the deletion of some terms. 

Now, turning our attention to partitions of a positive integer, we apply completeness to parti-
tions. Several properties, recurrence relations, and generating functions for complete partitions 
will be obtained. 

2. COMPLETE PARTITIONS 

We begin with a definition of partitions of a positive integer. 

Definition 2.1: A partition of a positive integer n is a finite non-decreasing sequence X = (/tl3..., 
Xk) such that Zf=1 Xt = n and Xx> 0 for all i = 1,..., k. The Xi are called the parts of the parti-
tion and k is called the length of the partition. 

We sometimes write X - (lWl2W2...), which means there are exactly mi parts equal to i in the 
partition X. For example, there are five partitions of 4: (I4), (122),(22), (1 3), and (4). We are 
now ready to define our main topic—complete partitions. 

* This research has been supported in part by YSRF and by Non Directed Research Fund, Korea Research 
Foundation. 
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Definition 2.2: A complete partition of an Integer n Is a partition X = (Xh ..., Xk) of w, with 
^i = 1, such that each Integer i, ! < / < « , can be represented as a sum of elements of Xp...,Xk. 
In other words, each i can be expressed as Sy=1 ajXj9 where a . is either 0 or 1. 

Example 23: Among the five partitions of 4, (I4) and (I2 2) are complete partitions of 4. 

From Definition 2.2, the following Is obvious. 

Lemma 2.4: Let X = (Xh..., Xk) be a complete partition of a positive integer. Then (Xl9...,Xt) 
Is a complete partition of the number X x + • • • + X t fori = 1,..., k. • 

Brown [2] found the following three facts on completeness of sequences of positive integers 
which are also true for partitions. 

Proposition 2.5 (Brown [2]): Let X = (Xh..., Xk) be a complete partition of a positive integer. 
Then, for i = 1,...,&-!, 

xi+l<i+±xr 

Proof: Suppose not. Then there exists at least one r > 2 such that Xr > 1 + SJT/ 2,-. There-
fore, Xr> Xr-l> Z;

r=i 2/ • Thus, the integer Xr-l cannot be represented as a sum of elements of 
Xh X2, ..., Xk. D 

The converse of Proposition 2.5 is also true, which we shall prove here in a manner different 
from that of Brown . 

Theorem 2.6 (Brown [2]): Let X = (Xh ...,Xk) be a partition of n with Xx = l such that 

Then X is a complete partition of w. 
Proof: Suppose not. Then there must be some numbers between 1 and n that cannot be 

expressed as a sum of elements of Xx,..., Xk. Let m be the least such number. Then we have 
Xl+-- + Xi<m<Xl + --- + Xi + Xj+l, for some / >1. We claim that m<Xi+l. From our choice of 
m, we know that m^Xi+v If m>Xi+l, then 0<m-Xi+l<m<n. So m-Xi+l must be repre-
sented in the form HJ=lajXj, where at = 0 or 1, which contradicts our choice of m. Therefore, 
m<Xi+l9 so l + Xl+---+Xj <a+m<Xj+l, a contradiction. D 

Corollary 2.7 (Brown [2]): Let X = (Xh..., Xk) be a complete partition. Then Xt < 2/_1 for each 

Proof: Obviously it is true fori = 1,..., k, since Xx = 1 < 2° = 1. Assuming Xi < 2/_1 for each 
i = l , . . . , j \wehave2y + 1<l + Z i 1 A^<l + l + 2-f22 + ---f2/-1 = 2-/'. D 

Now let us characterize complete partitions by the length and the size of parts. 

Proposition 2.8: Let X - (Xh ...,Xk) be a complete partition of a positive integer n. Then the 
minimum possible length k Is flog2(ft +1)~|, where \x] Is the least integer > x. 
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Proof: By Corollary 2.7, 
k k-\ » = 5>,*E2'=2*-1. 

1=1 1=0 

Therefore, n +1 < 2*, which gives k > [log2(n +1)]. D 

Proposition 2.9 Let X - (Xh..., Xk) be a complete partition of n. Then the largest possible part 
is l/^J* where |_*J is the greatest integer < x. 

Proof: Straightforward from Theorem 2.6. D 

3. RECURRENCE RELATIONS AND GENERATING FUNCTIONS 

In this section we find some recurrence relations to count complete partitions of a positive 
integer n. Let Q k(ri) be the number of complete partitions of n with length £ and largest part k. 
Then, by Proposition 2.9 and Lemma 2.7, k and £ must satisfy 

1 < k < L ^ J and [log2(w +1)] < £ < n. 

Obviously, Cek(ri) = l if n = k + £-l and Cu(l) = l in particular. Since k is the largest part, 
counting complete partitions ofn-k with length £-\ and largest parts from 1 to k gives the fol-
lowing recurrence relation. 

Proposition 3.1: Let Cik{ri) be the number of complete partition of n with length £ and largest 
part k. Then 

^ , , fe*-iQ-i>-*) i n < * 4 ^ J a n d r i o g 2 ( « + l)-|<^<«, 
[0 otherwise, 

with the initial condition Qj(l) = 1. • 

Example 3.2: There are two complete partitions of 8 with length £ = 4 and largest part k = 3: 
(122 3) and (l2 32). This is obtained by the recurrence relation 

Q,3(8) = t C3,(5) = q i (5 ) + C3j2(5) + C3;3(5) 
» = 1 

= Qi(5) + (C2J(3) + C2,2(3)) + C2?1(2) 
= 0 + (0 + l) + l = 2. 

Naturally, by adding C£ k(ri) for all possible £, we obtain the total number of complete parti-
tions of n as follows. 

Corollary 3.3: Let C(n) be the number of complete partitions of n. Then 
n L("+1)/2J 

Now let us take a look at the size of parts to get another recurrence relation. Let Ck(ri) be 
the number of complete partitions of a positive integer n with largest part at most k. We take 
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C0(n) = 0 for all n > 0 and Q(0) = 0 for all * > 1, and Q(l) = 1. So Ck(n) Is always positive if 
n,k>l; therefore, k ranges from 1 to [ ^ J by Proposition 2.9. From our definition of Ck(n), for 
anyA:>[2Z±lJ3 

Q(/t) = Q.1(/i) = -.. = CLJIflJ(/i). 

The set of complete partitions of n with largest part at most k can be partitioned Into two 
subsets: one with largest part exactly k; the other with largest part at most k-\. It is not difficult 
to see that the number of complete partitions of n with largest part exactly k Is equal to the num-
ber of complete partitions of n-k with largest part at most k. Therefore, we have the following 
theorem. 

Theorem 3.4: Let Ck(ri) be the number of complete partitions of a positive integer n with largest 
part at most k (k > 1). Then 

_|Cjt_1(/i) + Q( / i -*) i f l < * < [ ^ J , 
Q(w) = {cm(») if*>m 

with the Initial conditions CQ(n) = 0 for all n > 0, Q(0) = 0 for all k, and Q(l) = 1. 

Note that Cx{n) = 1 for all n > 1. Let us take some examples. 

Example 3.5: 
1. C2(5) = Q(5) + C2(3) = Q(5) + (Q(3) + C2(l)) = Q(5) + (Q(3) + Q(l)) = 1 + 1 + 1 = 3. 
2. C3(5) = C2(5) + C3(2) = C2(5) + C1(2) = 3 + 1 = 4. 

Corollary 3.6: lfk = \_{n +1) / 2 J, then Q(w) is the number of all complete partitions of n. 

Now we count complete partitions by the largest part. Let Dk{n) be the number of complete 
partitions of a positive Integer n with largest part exactly k. Then Dk{n) = Ck{n) - Ck_x{ri) = 
Ck(n- k) by the definition of Ck(n) and Theorem 3.4. Obviously, I\(n) = 1 for all n > 1. Thus, 
for k > 2, 

Dk(n) = Ck(n-k) 
= Ck(n-k)-Ck_l(n-k) + Ck_l(n-k) 
= £fc(n-*) + A-i("-l). 

Since each complete partition of n with largest part exactly k must have at least one A; as a part, 
Dk(n) = 0 ifl<n<2k-2 and Dk(n-k) = 0 If 2k-\ <n<3k-2. Thus, we obtain 

Theorem J. 7: Let Dk(n) be the number of complete partitions of a positive integer n with largest 
part exactly k. Then Dx{n) = 1 for all n > 1 and for k>2, 

i-k) i fw>3*-l , 

(/i)-iA-i^-i) Z\ (yi) = ^ A_, (n-1) if2k-l<n<3k-2, 
[0 ifl<n<2k-2, 

with the conditions DQ(n) = 0 for all n and D^(0) = 0 for all k. 
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Example 3.8: 
i. A(4) = A(3) = i; 
2. D2(5) = A(4) + A(3) = A(4) + A(3) = 1 + 1 = 2; 
3. jp3(7) = D2(6) = A(5) + A(4) = l + l = 2; 
* A(7) + A(5) = (A(6) + A(5)) + A(4) = (1 + 2) +1 - 4. 
The following table shows the first few values of complete partitions of n with largest part at 

most k, and C{ri) is the total number of complete partitions of n. 

k\n 

1 

2 

3 

4 

5 

6 

\c{n) 

1 2 3 4 5 

1 1 1 1 1 

1 1 2 

1 

1 1 2 2 4 

6 7 

1 1 

2 3 

2 2 

2 

5 8 

8 

1 

3 

4 

2 

10 

9 

1 

4 

5 

4 

2 

16 

10 

1 

4 

6 

5 

4 

20 

11 

1 

5 

8 

8 

5 

4 

31 

12 

1 

5 

10 

10 

8 

5 

39 

Now we find the generating function for the number Dk(n). 

Theorem 3.9: Let fk(q) = TZoDk(n)qn (fc>2). Then we have 

( i -^Xi-^-V-O-?) 
,2k-2 T\ /o7, c\~2fc-3 

<7~ 0-^Xi-**"1) +,'" + (i-^)(i-^"1)-(i-93)J' 
k+l (Dk_x{2k-3)q2k-2 Dk_2(2k-5)q ^ _ 

with/1(^) = 1 ! ? . 

i W / - Since A(») = 1 for all n, /,fo) = ̂ . Let /fc(?) = Z" 0 A W - Then 

/*<*)=SAW= I A W 
n=0 «=2A:-1 

3Ar—2 oo 

= EA-,(»-%"+ I [A- i («- i )+A(»-W 
n=2k-l n=3k-l 

= ZA-^-i^+ZAC"-^" 
n=2k-l n=3k-l 
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= <7 ZA-,(»-ir+?1 IA(«-*>T* 
n=2k-l n=3k-l 

: 9 L/i-ifo) - A-i(2* - 3)1U-3] + qkfM-
Thus, we have 

An iteration gives 

fM^h-M)-^^ 
2k-2 

1-? 1 - / 
,2t-2 

_ g 
1-fl* l - 9 

~2 

jt-l Jk-IXH) 
2fc-4 

W fc-1 
A_1(2A:-3)^-2 

l-<7* 

( l - ^ X i - ^ - 1 ) ufk-iiq)-
A-i(2*-3)g"- ' | A-2(2^-5) 

1-9* (i-<7*xi-<r') 

By continuing iteration on fk(q), we obtain 

A-i(2*-3)^*-2 ^ A-2(2* - 5)?: 

( l -^Xi-^O-O-? 3 ) -
,2fc-2 2A:-3 

i-<7* - + - -+...+- A(3)^ + 1 

Vt-1\ (i-^xi-^-1) (lY)o-n-(i-? 
Since A(3) = l , / i (?) = i , and 

Mq)-<\-ty\-q) \-q'-(l-q2){\-qy 
the theorem follows. D 

Note that the numbers Dk_t (2(k - i) -1), for i = 1,2,..., k - 2, in fk (q) can be simplified to 

%^J 3 ( * - Q - l 
2 

by Theorem 3.7. 

Example 3.10: The following are generating functions for A = 3,4, and 5. 
4 4 

q q fM = (l-q3)(l-q2)(l-q) l-q3' 

A(3) = (l-q4)(l-q3)(l-q2)(l-q) - + 
q 

l-q4 ( l - ^ X l - 9 3 ) . 

and 
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/ , (*) = (l-q5)(l-q4)(l-q3)(l-q2)(l-q) 

V , q1 , 2 
[\-q5 (\-q5)(l-q4) (l-q5)(l-q4)(l-q3)\ 

By expanding the above, we get the following, which is expected from the above table. 

/3(?) = q5 + V + 2#7 +4q* + 5q9 + 6#10 + Sq11 +10g12 + —, 

/4(?) = 2^7 4- 2#8 + 4q9 + 5^10 + Sq11 + I0qu + • • •, 

/5(?) = 2 ?
9 + V 0

+ 5 ?
n + 8?

l2
 + .... 
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