WILSON'S THEOREM VIA EULERIAN NUMBERS

Neville Robbins

Mathematics Department, San Francisco State University, San Francisco, CA 94132
(Submitted October 1996-Final Revision May 1997)

INTRODUCTION

In 1770, Edward Waring, in a work entitled "Meditationes Algebraicae," announced without proof the following result, which he attributed to his student, John Wilson:

$$
\text { If } p \text { is prime, then }(p-1)!\equiv-1(\bmod p) .
$$

This statement, now known as Wilson's Theorem, was first proved by Lagrange in 1771, and may have been known earlier by Leibniz.

In this note, we present a new proof of Wilson's Theorem, based on properties of Eulerian numbers, which are defined below. Consider the following triangular array, which is somewhat reminiscent of Pascal's triangle.

1										
				1		1				
			1		4		1			
		1		11		11		1		
	1		26		66		26		1	
1		57		302		302		57		1

The numbers that appear in this array were first discovered by Euler [1] and are known as Eulerian numbers. Following Knuth [2], we denote the $k^{\text {th }}$ entry in row n by $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$, where $1 \leq k \leq n$.

Eulerian numbers may be defined recursively via:

$$
\left\langle\begin{array}{l}
n \tag{1}\\
1
\end{array}\right\rangle=\left\langle\begin{array}{l}
n \\
n
\end{array}\right\rangle=1 ; \quad\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=k\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle+(n+1-k)\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle \text { if } 2 \leq k \leq n-1 .
$$

(See [2], p. 35, eq. (2).)
They enjoy a symmetry property:

$$
\left\langle\begin{array}{l}
n \tag{2}\\
k
\end{array}\right\rangle=\left\langle\begin{array}{c}
n \\
n+1-k
\end{array}\right\rangle \text { for all } k \text { such that } 1 \leq k \leq n .
$$

Adding all the Eulerian numbers in a given row, we get

$$
\sum_{k=1}^{n}\left\langle\begin{array}{l}
n \tag{3}\\
k
\end{array}\right\rangle=n!
$$

Furthermore,

$$
\left\langle\begin{array}{l}
n \tag{4}\\
k
\end{array}\right\rangle=\sum_{j=0}^{k}(-1)^{j}(k-j)^{n}\binom{n+1}{j} .
$$

Remarks: (2) follows easily from (1), (3) follows from (1), using induction on n, and (4) is equation (13) on page 37 in [2].

We will also need
Definition 1: If m and n are integers larger than 1 and k is a nonnegative integer, we say that $O_{n}(m)=k$ if $n^{k} \mid m$ but $n^{k+1} \nmid m$.

$$
\begin{equation*}
\text { If } p \text { is prime, } p \nmid a, j \leq m \text {, and } 0<a<p^{m-j} \text {, then } O_{p}\left(\binom{p^{m}}{a p^{j}}\right)=m-j . \tag{5}
\end{equation*}
$$

Remark: (5) is Theorem 4 in [3].

THE MAIN RESULTS

Lemma 1: If p is prime, $m \geq 1$, and $1 \leq k \leq p^{m}-1$, then $\left(p_{k}^{m}\right) \equiv 0(\bmod p)$.
Proof: This follows from the hypothesis and (5).
Theorem 1: If p is prime, $m \geq 1$, and $1 \leq k \leq p^{m}-1$, then

$$
\left\langle p^{m}-1\right\rangle \equiv\left\{\begin{array}{lll}
0 & (\bmod p) & \text { if } k \equiv 0(\bmod p), \\
1 & (\bmod p) & \text { if } k \not \equiv 0(\bmod p) .
\end{array}\right.
$$

Proof: (4) implies

$$
\left\langle\begin{array}{c}
p^{m}-1 \\
k
\end{array}\right\rangle=\sum_{j=0}^{k}(-1)^{j}(k-j)^{p^{m}-1}\binom{p^{m}}{j} .
$$

Now Lemma 1 implies

$$
\left\langle\begin{array}{c}
p^{m}-1 \\
k
\end{array}\right\rangle \equiv k^{p^{m}-1}(\bmod p) .
$$

If $k \equiv 0(\bmod p)$, then

$$
\left\langle\begin{array}{c}
p^{m}-1 \\
k
\end{array}\right\rangle \equiv 0^{p^{m}-1} \equiv 0(\bmod p) .
$$

If $k \not \equiv 0(\bmod p)$, then, by Fermat's Little Theorem,

$$
\left\langle p^{m}-1\right\rangle \equiv\left(k^{p-1}\right)^{\left(\frac{f^{m}-1}{p-1}\right)} \equiv 1^{\left(\frac{p^{m}-1}{p-1}\right)} \equiv 1(\bmod p) .
$$

Theorem 2 (Wilson's Theorem): If p is prime, then $(p-1)!\equiv-1(\bmod p)$.
Proof: (3) $\operatorname{implies}(p-1)!=\sum_{k=1}^{p-1}\left\langle\begin{array}{c}p-1 \\ k\end{array}\right\rangle$. Theorem 1 implies $\left\langle\begin{array}{c}p-1 \\ k\end{array}\right\rangle \equiv 1(\bmod p)$ for $1 \leq k \leq p-1$. Therefore, $(p-1)!\equiv \sum_{k=1}^{p-1} 1 \equiv p-1 \equiv-1(\bmod p)$.

REFERENCES

1. L. Euler. Opera Omnia (1) $\mathbf{1 0}$ (1913):373-75.
2. D. E. Knuth. The Art of Computer Programming. Vol. 3. New York: Addison-Wesley, 1973.
3. N. Robbins. "On the Number of Binomial Coefficients Which Are Divisible by Their Row Number." Canad. Math. Bull. 25.30 (1982):363-65.
AMS Classification Number: 11A99
