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It is the object of this note to demonstrate that the two equations of the title have only finitely 
many solutions in positive integers x and n for any given integers a and k, k * ±1. In these equa-
tions, (X)„>0 is the sequence of Chebyshev polynomials of the first kind. 

1. Chebyshev Polynomials of the First Kind (^(-^OX^o* 
These polynomials are defined by the recurrence relation 

Tn+1(x) = 2x-Tn(x)-T„_1(x), (V)x eC,n eN*, (1.1) 

where T0(x) = 1 and Tx(x) = x. 
We also have the sequence (Tn(x))n>Q of polynomials "associated" with the Chebyshev poly-

nomials (Jw(x))w>0: 
Tn+1(x) = 2x-Tn(x) + Tn_l(xl x sC,n eN\ (1.2) 

with TQ(x) = 1 and Tl(x) = x. 
The connection between the sequence (Tn)n>0 and the sequence (Tn)n>0 is given by the 

simple relations, 
Tk(x) = ^ , 

Tk(x) = ^,keN,xsC, 
(1.3) 

where / = - 1 . 
Two important properties of the polynomials (X)„>0 are given by the formulas 

I^(cos^) = com<p, n eN,<p eC, (1.4) 

and 
UT„(x)) = Tm„(x), (\/)m,neN,(V)xzC. (1.40 

Also, we observe that 

ro(w) = 1 W = 1 

^(TTHTH2*2-3) % ) = T H 2 * 2 + 3 ) 
^ H * 4 - 4 x 2

+ l f4(^) = 2r4
+4*2

+l 
r

5 ( ^ ) = W - ( ^ 4 - 1 0 x 2 + 5 ) T5(-^) = ^.(4x2
 + l0x2

+5) 
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2. The Equation x2-k = Tn(a2 -1). 

Lemma 1: If (Tn(x))n>0 is the sequence of Chebyshev polynomials of the first kind, then one has 

Tr!(a2-l) = 2-T2(-^)-l, (MneN,<y)aeC. (2.1) 

Proof: Indeed, we have 

Tnia2 -1) = Tn ( 2 - ( - ) 2 -1) = r„(r2(-)) = r2„(-) 

=r2^(w))=2-r«2te)-1- Q-ED-
Lemma 2: We have 

2-T^)^z2
m,zmsN*, (2.2) 

where n-2m +1, THGN. 

Proof: Indeed 

2 - ^ ) = 2 . ^ + 1 ( ^ ) = 2 . ( - . ( . . . ) ) 2 

= a2-(-)2 = (a(-)Y=z2
m, zmeN*. Q.E.D. 

From Lemma 1 and Lemma 2 one obtains, for n - 2m +1, m e N, Tn(a -1) = T2m+l(a -l) = 
zm ~ 1> where zm e Z. Thus, x2 - A: = z2 - 1 , which can be solved immediately, giving only finitely 
many possible values of x, if k * + l (see [2]); hence, only finitely many possible corresponding 
values for n = 2m +1, m eN. 

For n = 2m, msN, from Lemma 1, one obtains 

T„(a2-\) + l = 2-T2(-^) = 2-z2
m,zmeN, 

where 

^=Ut)=rte))=2'%)-1=2'<-i 
if m is even. If m = 2X +1 is odd, we have 

/ x \v2
m-l,m = 2A + l,AGN, 

*.=u*H 2 (23) 
2w 2 - l , m = 2X,l&N. Consequently, one gets 

x
2-k = T„(a2-\) = 2.Tt(£-l=-

2 - ( v 2 - l ) 2 - l , modd, 

2-(2w2
m - 1 ) 2 - 1 , weven, 

2 - V m - 4 v m + 1 ' WOdd, 

8wl - 8w2 +1, w even. 

(2.4) 
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Thus, we obtain either 

x2 = 2v*m-4vl+k + l = T4fy) + k (2.5) 

or 
x 2 = 8 w i - 8 w i + * + l = Z J K ) + *, (2.6) 

and each of these equations has but a finite number of solutions in Integers for each given k-±\ 
(see [2]). Thus, for each given k eZ, k ^ ±1, there are but finitely many possible values of x, and 
hence of corresponding n = 2m, m GN . 

3, The Equation x2-k = Tn(a2 +1). 

Lemma 3: If (7^)„>0 is the sequence of polynomials "associated'8 with the Chebyshev polynomials 
(Tn)n>0> t h e n ° n e h a S : 

(a) f4^) = 2^Tn%)-(-l)\nsN; 

(b) TM2+l) = T2„(-^\nGN; 

(c) Tn(a2
 + l) = 2.T/(^)-(-l)\nGK 

Proof: 
(a) We have: 

%)=^4^=("ir-r2"(;'-^=("ir'r2W''*') 
= (-D"-[2-7;2(/.^)-i] = ( - i r . [2 . ( / ' ' . f„ (^) ) 2 - i ] 

= ( - l )"- (2 . ( - l )"- f n%)- l ) = 2 - f„ 2 (^ ) - ( - i r . Q.E.D. 

(b) 

^)-^^=(-1)"-r4^)=(-1)"-^(-w)) 
= ( - l ) " - ^ 2 - ( ^ - ) 2 - l j = (-l)"-r„(-a2-l) 

= (-l)"-(-l)"r„(a2+l). Q.E.D. 

(c) For « = 2/w + l,m GN, we have 

where 

Thus, In this case, we obtain x2 - k = z2
m +1, and the result follows as before. 
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For n - 2m, m e N, we have 

Tn(a2 + l) = T2m(a2 + l) = 2.T2
2

m(-%)-l = 2.tl-l, 
where 

\2wm - 1 , m even. 

Consequently, we have 

. 0 |2- (v2+l) 2 - l , modd, f2v*+4v2+l, m odd, 
7 > 2 + l) = 7 2 > 2

 + lH w ' ' = " " (3.1) 
\2-{2w2

m-\)2-\, meven, [8w* - 8HT +1, /w even. 
Thus, we obtain 

x2=2v4
m+4v2

m+k + l = f4(^) + k (3.2) 
or 

xi = Sw*m-8w2
m+k + l = T4(wm)+k (3.3) 

and the result follows. In this case, as before, for each given k^±l, there are finitely many pos-
sible values of x, and hence, only finitely many possible corresponding values for n = 2m, m GN . 

This concludes the proof of the result of this paper. 
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