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PROBLEMS PROPOSED IN THIS ISSUE 

H-545 Proposed by Paul S. Bruckman, Highwood, IL 
Prove that for all odd primes p, 

(a) fiLk-k-l
s=§-(Lp-l) (modp); (b) I ^ - r ^ O (mod/?). 

fc=l F k=l 

H-546 Proposed by R. Andre-Jeannin, Longwy, France 
Find the triangular Mersenne numbers (the sequence of Mersenne numbers is defined by 

Mn = 2"-1). 
SOLUTIONS 

A Prime Problem 

H-528 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 35, no. 2, May 1997) 

Let 0(«) = E^nn e, given the prime decomposition of a natural number n - Upe. Prove the 
following: 

I(-l)Q(rf) 'Wo(cO = 0; (A) 
d\n 

j:(-l)Qid)LQ{nld)_a{d) =2Un, where Un = ftF^. (B) 
d\n p*\\n 

Solution by H.-J. Seiffert, Berlin, Germany 
Define the Fibonacci and Lucas polynomials by 

F0(x) = 0, Fx(x) = l, Fn+1(x) = xF„(x) + F„_1(x), n<=Z, 

L0(x) = 2, Ll(x) = x, L„+l(x) = xL„(x) + L„_l(x), neZ, 

respectively. We shall prove that for all complex numbers x and all positive integers n, 

IC-O^iWcwW-O; (A) 
d\n 

£(-i)n ( d )£w-o(,)(*) = 2.n^i(*); (B) 
d\n pe\\n 
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2̂ 2Q(w/<0-2Q(</)(X) ~2X afn I ±F2e+2(x)9 (C) 
d\n pe\\n 

where a)(n) denotes the number of distinct prime factors of n. 
The desired identities (A) and (B) are obtained from (A!) and (B*), respectively, by taking 

x = l. 
We need the following known equations [see A. F. Horadam & Bro. J. M. Mahon, "Pell and 

Pell-Lucas Polynomials, The Fibonacci Quarterly 23.1 (1985):7-20, equations (2.1), (3.23), and 
(325)], 

LJ(x) = FJ_l(x) + FJ+1(x),jeZ, (1) 

Lj+k(x) + (-lfLJ_k(x) = LJ(x)Lk(x), j,keZ, (2) 

and the easily verified relations, 

L_J(x) = (-iyLJ(x) and F_J(x) = (-iy-lFJ(x), j eZ. 

Proposition: For all nonnegative integers m and e, we have 
m-l 

X (-iy'4-2; w - Fe+l (x) - ( - i r ^ . ^ (x). 
Proof: This is true for #i = 0 (empty sums have the value zero). Suppose that the equation 

holds for m,fneNQ (whole numbers). Then 
m m-l 

X (- iy Le_y(x) = X (-l)JLe_2j(x) + (-l)mLe_2m(x) 
j=0 j=0 

= Fe+l(x) - (-l)m-e
JP2m_e_1(x) + {-\TLe_2m(x) 

= Fe+1(x) - ( - i r » - {Llm_e{x) - F2m_U*)) 
= Fe+l(x)-{-ir'-eF2m_e+l(x), 

where we have used (1). This completes the induction proof. Q.E.D. 

Corollary: For all nonnegative integers e, we have 

±(-iyLe_y(x) = 2Fe+l(x). 

Proof: Take m = e + l in the equation of the Proposition. Q.E.D. 

Now we are able to prove the desired identities. We note that if d runs through all positive 
divisors of w, so does nld. Hence, if S(n) denotes the left side of (A% then 

S(n) = I(-l)Q(n/<%rf)-n(n/<o(*) = - I ( - l ) n 0 % ^ ) - ^ ) ( * ) = Si"), 
d\n d\n 

ot$(n) = 0. This proves (A% 

The proof of (B*) is more interesting. Let T(n) denote the left side of (B*). If n - pe is a 
prime power, then by the identity of the above Corollary, 
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T(n) = T(p') = X(-iy'4-2,-(*) - 2Fe+1(x). 
/ = 0 

Thus, (B') holds for all prime powers n. The proof of (B1) is completed by showing that the func-
tion f:N->C defined by f(n) = T(n)12, n GN, is multiplicative. Let m and n be coprime 
natural numbers. If c | m and d \ «, then 

and 

so that by (2), 

(-l)Q(cd)L^hQ(cd)(x) + ( - 1 ) ^ ]LQ{fd)_Qh )(x) = ( - l ) ^ > H ) ^ ^ ? ^ c ) ( x ) ^ 

Summing over all positive divisors c of wi and d of w, we obtain the claimed equation: 
f(mri) = f(m)f(n). 

This completes the proof of (6% 

The desired identity (C1) easily follows from (B') when we replace x by i(x2+2), where 
/ = y/(-l), and use the known relations 

LJ(i(x2
+2)) = PL2J(x) 

and 

FJGtf+2)) = i'-lF2J(x)/x,jeZ. 

Let us look at what we get from (B) if we set x = 2/.. Now, since 1^(2/) = 2iJ and i^(2i) = 
jiJ~l, j eZ , (B1) gives, after some simplification, 

^)=zi=n^+i), 
where r(w) denotes the number of positive divisors of n. This is a well-known identity from 
Analytic Number Theory. 
Also solved by the proposer. 

Triple Play 

B-529 Proposed by Paul & Bruckman, Highwood, IL 
(Vol 35, no. 3f August 1997) 

Let p denote the set of Pythagorean triples (a, b, c) such that a2+h2 =^c2. Find all pairs of 
integers m,n>0 such that (a, A, c) = (FmFn, FmHFnU, Fm+2Fn+l) ep. 

Solution, by JL A. G Breself Readings England 
Let a = FmFn, b = Fm+1Fn+2, c = Fm+2Fn+v We shall prove that there is only one such Pythag-

orean triple with #w,« > 0, namely m = 3,n = 6, giving a = 16,b = 63,c = 65. We use the identity 
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SFJ^^L^-i-lTL^, so that 5c = Ln+m+^{-\T+lLn_m_x and 5b = Ln+m,3-(-ir+lL„_m+l. 
Hence, 5(c+h) = 2Ln+m+3-(-ir+lL„_m and (c-h) = (-ir+lF„_m. Since Ft and FM have no 
common factor, it follows that a, b, and c have no common factor, and the Pythagorean triples 
must take the form 2uv, u2-v2, #2+v2, where u>v>0, have no common factor; hence, c is 
odd, while just one of a and b is even. We now consider these two cases in turn. 

Case A. Let a = 2uv, then b and c wee odd, and we have 3\m and 31n, while c-b- 2v2 gives 
(-l)m+lFn_m = 2v2. Using a result proved by J. H. E. Cohn in [1], this implies that \n-m\=0 or 
6. We can reject n = rn, since this gives b-c and a - 0. Taking |«-JW| = 3, we have F±3 = 2 and 
v = 1, so that m must be odd. Furthermore, we have 5(c + b) = I0u2. Hence, if n = nt + 3, then 
10«2 = 2(I^(m+3)-2) = 10(Fm+3)2 gives u = Fm+3; if n = i» -3 , then 10«2 = 2(^ m + 2) = 10(FJ2 

gives w = i^,, since w is odd. Also, a = 2uv -2u- 2Fm+3 or 2Fn+3. But we also have a = i v ^ ; 
therefore, the smaller factor must be J^ = 2, and this must be Fm, since w is odd. Hence, m - 3 
and w = 6 is the only solution when \n - m| = 3. 

Next, take \n-tn\ = 6, so that 2v2 = (—l)WH_1î _Wf = 8. If n-rn = 6, m must be odd, and we 
obtain 1 Ou2 - 2(Z2;w+9 - 9 ) ; then, since 3\m, 2m + 9 is an odd multiple of 3, and 41 L2m+9. There-
fore, 5u2 = u2 = -1 (mod 4), which shows that there are no solutions in this case. 

Finally, ifn-rn = -6,m must be even, and we have 6\m and 6|w, so that F6\Fm and F6\Fn9 

making FmFn divisible by 64. But we have 2v2 = 8, giving v = 2, so that a = 2uv = 4u, where i/ is 
odd, since (u, v) = 1. Hence, it is not possible to satisfy a = FmFn if n - m = - 6 . 

Case B, Now, if 6 = 2wv, then c-b = u2+v2-2uv = (u-v)2, so that ( - l ) ^ 1 ^ ^ = (u-vf. It 
was also proved by J. H. E. Cohn in [1] that this implies \n-m\ = 0,1,2, or 12. But since a and c 
are odd, we must have both 31 (m +1) and 31 (n + 2). This implies 31 (w - m +1), which rules out 
|w - JW| = 0 and 12, and we are left with (~l)m+lFn_m = 1. We then find that m must be odd, of the 
form m = 6t - 1 (with t > 1), while the corresponding n can be either n = 6t + l or n = 6t - 2. But 
c - 6 = 1, so that a2 - c2 -b2 =c + b. Since a = /^v,, this gives 

(Z,m + 2)(Z2„ ± 2) = 5{2Z„+m+3 - (-1F+ I4_m}. 

Approximating by putting Lr = ar and ignoring terms that are small compared to Lr, we obtain 
a2(m+n) _ ioaw+m+3 approximately, and since a5 > 11, our equation gives a ^ " < 11a3 < a8. But 
the smallest pair of values for m and n is given above as m - 5 and w = 4, giving rn + n = 9. This 
gives a contradiction, and proves that there are no acceptable solutions in Case B. 
Reference 
1. J. H. E. Cohn. " Square Fibonacci Numbers, etc." The Fibonacci Quarterly 2,2 (1964): 109-13. 
Also solved by H.-J. Seiffert, I Strazdins, and the proposer. 

Some Period 

H-530 Proposed by Andre] Dujella, University of Zagreb, Croatia 
(Vol 35, no. 3, August 1997) 

Let k(n) be the period of a sequence of Fibonacci numbers {î } modulo n. Prove that 
k(n) < 6n for any positive integer n. Find all positive integers n such that k(n) - 6n. 
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Solution by PaulS. Bruckman, Highwood, IL 
For the first part of the problem, it suffices to prove the following lemma. 

Lemma 1: For all odd n, k(ri) < 4n. 

Of course, k(l) = 1, hence the result is trivially true for n - 1. If n > 1 is odd, let Ke denote 
k{2en), Ne = 2en, k = k(n), and Re = Ke/Ne. Assuming the result of Lemma 1, Kx = LCM(3, *) 
<3k, hence Rl<3kl2n<6, Next, K2 = LCM(6,k)<6k, hence R^ <6k/4n<6. Next, K3 = 
LCM(6,£)<6£, hence R3<6k/Sn<3. Finally, if e>4, Z, = LCM(3-2e"1, *) ^ 3 * - 2 ^ , hence 
Re<3k/2n<6. Thus, the result of Lemma 1 implies that k{n)<6n for all « > 1 ; it therefore 
suffices to prove Lemma 1. 

Proof of Lemma 1: We first assume that gcd(/i, 10) = 1. The following results are well 
known for all primes p & 2,5: A(w) is even for all n > 2; &(/?) | (p -1) if (5 / p) - 1, k(p) | (2/? + 2) 
if(5/p) = -l. Also, k(p°) = pe-'k(p) for some/with l < / < e . Therefore, if (5//?) = l, *(/?') = 
2pe~t(p -1) / 2a for some integer a, while if (5 / p) = - 1 , £(pe) = 4pe~* (p +1) / 2a for some inte-
ger a. If n = JJpe, k(n) = LCM{k(pe)}. We then see that k{n)<4Ilpelnpe~\p + l)l2. Then 
t(w)/w^4np |B(p + l)/2/?<4, since (p + X)l2p<\ for all/?. 

On the other hand, if we assume that n - 5e, then Z(n) = n and k(n) = 4n. Ifn = 5em, where 
gcd(w, 10) = 1, then k(n) = LCM(k(5e), k(m)) = LCM(4 • 5e, k(m)) < 4n. This proves Lemma 1. 
In conjunction with our earlier discussion, it follows that k(n) < 6n for all n. 

From. Lemma 1 and the earlier discussion, it is seen that the upper bound of 6n is possibly 
reached only if n - 2aSh for some integers a and b. Note that 

k(2 • 5*) = LCM(3,4 • 5b) = 12 • 5b = 6n. 

Next, 
^(4-56) = ̂ (8 = 5^)=:LCM(6,4'56) = 12-56 = 3/i or 3nl2<6n. 

Finally, if a > 4 , 
k{n) = LCM(3-2^, 4-56) = 3-2a_1 -5b = 3n/2< 6n. 

Thus, k(n) = 6n if and only if n = 2-5*, b = 1,2,.... 

/4&0 solved by IX Bloom, L. Dresel, and the proposer, 

A Rational Decision 

H-531 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 35, no. 3, August 1997) 

Consider the sum S = X ^ ( « ) / w 2 , where t(l) = l and t(n) = Iip]n(l-p~2)~\ n>ly the 
product taken over all prime/? dividing n. Evaluate S and show that it is rational. 

Solution byH.-J. Seiffert, Berlin, Germany 
We need the following results. 

Theorem 1: If / : JV-» C is a multiplicative function such that T^=if(n)/ns converges abso-
lutely for a - Re(s) > aQ, then 
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for cr>o-0? 
n=\ p 

where the product is over all primes/?. 

Proof: See ([1], pp. 230-31). 

Theorem 2: For a > 1, we have 

n0- />~ ' ) = !/«*) ^d Y[{\+p-) = as)ia2s\ 
• p p 

where £ denotes the Riemann Zeta function. 

Proof: See ([1], p. 231). 

Let Sk^irn=ltk(n)lnk,k&C,^{k)>\, where tk(\) = \ and tk(n) = II pl„(l-p~kyl for 
«>1.. Clearly, tk is a multiplicative function. Since tk(pJ) = (l-p~k)~l for all j e TV and all 
primes /?, we have 

oo 

£ fk (//) / //* = /T* (1 - /T* )~2 for all primes /?, 

where we have used the closed form expression for infinite geometric sums. Using 

l+^o-p-^-^o-^rHi-^r'o+p-3*). 
it follows from Theorems 1 and 2 that 

^ = £(Jfc)£(2*)£(3;fc) / £(6k), keC, Re(£) > 1. (1) 
Since ([1], p. 266) 

2(2/)! 
where the 5's are the Bernoulli numbers defined by ([1], p. 265, or [2], p. 9) 

5 = 1 and 4 = £ H B r , «<=#,«>2, 
r=Q\ J 

from (1) we obtain 

s - (12.7)! B2jB4jB6] 

^-4(2j)K4j)K6j)\ BUj >JSN> ( 2 ) 

showing that S2J, j e TV, is a rational number. Using the values ([2], p. 10) B2 =±, B4 = ~, 
B6 = -fi9 and Bn = ^ff£, from (2) it is easily calculated that S = S2 = | ^ | . This solves the present 
proposal. 

References 
1. T.M. Apostol. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976. 
2. H. Rademacher. Topics in Analytic Number Theory. New York: Springer-Verlag, 1973. 
Also solved by K. Lau, and the proposer, 

a2j) = (-iy+l^L;Bv,JGN, 

• ! • • ! • • > 
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