ON CERTAIN SUMS OF FUNCTIONS OF BASE \boldsymbol{B} EXPANSIONS

Curtis Cooper, Robert E. Kennedy, and Milo Renberg

Dept. of Mathematics, Central Missouri State University, Warrensburg, MO 64093-5045
(Submitted January 1997-Final Revision June 1997)

0. INTRODUCTION

Let $s_{b}(i)$ denote the base 10 sum of the digits in the base b representation of the nonnegative integer i and $L_{b}(i)$ denote the number of large digits ($\lceil b / 2\rceil$ or more) in the base b representation of the nonnegative integer i. For example, $s_{10}(4567)=22, s_{7}(7079)=17$ since $7079=26432$, and $s_{2}(19)=3$ since $19=10011_{2}$. In addition, $L_{10}(4567)=3, L_{7}(7079)=2$, and $L_{2}(19)=3$. The mathematical literature has many instances of sums involving s_{b} and L_{b}. Bush [1] showed that

$$
\frac{1}{x} \sum_{n<x} s_{b}(n) \sim \frac{b-1}{2 \log b} \log x
$$

Here, $\log x$ denotes the natural logarithm of x. Mirsky [7], and later Cheo and Yien [2], proved that

$$
\frac{1}{x} \sum_{n<x} s_{b}(n)=\frac{b-1}{2 \log b} \log x+O(1)
$$

Trollope [9] discovered the following result. Let $g(x)$ be periodic of period one and defined on [0, 1] by

$$
g(x)= \begin{cases}\frac{1}{2} x, & 0 \leq x \leq \frac{1}{2} \\ \frac{1}{2}(1-x), & \frac{1}{2}<x \leq 1\end{cases}
$$

and let

$$
f(x)=\sum_{i=0}^{\infty} \frac{1}{2^{i}} g\left(2^{i} x\right)
$$

Now, if $n=2^{m}(1+x), 0 \leq x<1$, then

$$
\sum_{i<n} s_{2}(i)=\frac{1}{2 \log 2} n \log n-E_{2}(n)
$$

where

$$
E_{2}(n)=2^{m-1}\left\{2 f(x)+(1+x) \frac{\log (1+x)}{\log 2}-2 x\right\}
$$

In addition, it was shown in [6] that

$$
\sum_{i=1}^{\infty} \frac{L_{10}\left(2^{i}\right)}{2^{i}}=\frac{2}{9}
$$

We will discuss some other sums involving s_{b} and L_{b}. In particular, we will give formulas for

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(L_{b}(i)\right)^{m} \quad \text { and } \frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(s_{b}(i)\right)^{m}
$$

where m and n are positive integers. Then, we will find a formula for

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1} s_{b}(i) \cdot L_{b}(i)
$$

We define $C_{b}(x ; y)$ to be the sum of the carries when the positive integer x is multiplied by y, using the normal multiplication algorithm in base b arithmetic. That is, we convert x and y to base b and then multiply in base b. In this algorithm, we consider the carries above the numbers as well as in the columns. We will prove that

$$
\sum_{i=1}^{\infty} \frac{C_{b}\left(a ; a^{i}\right)}{\left(s_{b}(a)\right)^{i}}=\frac{s_{b}(a)}{b-1} .
$$

We will conclude the paper with some open questions.

1. FIRST SUM

To compute

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(L_{b}(i)\right)^{m},
$$

we begin with the function

$$
f(x)=(\underbrace{1+\cdots+1}_{\lceil b / 2\rceil \text { times }}+\underbrace{e^{x}+\cdots+e^{x}}_{\lfloor b / 2\rfloor \text { times }})^{n}=\left(\lceil b / 2\rceil+\lfloor b / 2\rfloor e^{x}\right)^{n} .
$$

The motivation for this function comes from the fact that in the base b representation of $i=i_{n} \ldots$ $i_{2} i_{1}$, the $j^{\text {th }}$ digit of i, i_{j}, is either small or large and thus contributes 0 or 1 to the number of large digits in i. Expanding the product, we see that there is a $1-1$ correspondence between the numbers $0 \leq i \leq b^{n}-1$ and the b^{n} terms $1 \cdot e^{L_{b}(i) x}$. Therefore,

$$
f(x)=\left(\lceil b / 2\rceil+\lfloor b / 2\rfloor e^{x}\right)^{n}=\sum_{i=0}^{b^{n}-1} 1 \cdot e^{L_{b}(i) x} .
$$

Thus,

$$
f^{(m)}(x)=\sum_{i=0}^{b^{n}-1}\left(L_{b}(i)\right)^{m} e^{L_{b}(i) x},
$$

and so we have that

$$
f^{(m)}(0)=\sum_{i=0}^{b^{n}-1}\left(L_{b}(i)\right)^{m} .
$$

To continue our discussion, we need the idea of Stirling numbers of the first and second kinds. A discourse on this subject can be found in [3]. A Stirling number of the second kind, denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, symbolizes the number of ways to partition a set of n things into k nonempty subsets. A Stirling number of the first kind, denoted by $\left[\begin{array}{l}n \\ k\end{array}\right]$, counts the number of ways to arrange n objects into k cycles. These cycles are cyclic arrangements of the objects. We will use the notation [A, B, C, D] to denote a clockwise arrangement of the four objects A, B, C, and D in a circle. For example, there are eleven different ways to make two cycles from four elements:

$$
\begin{array}{llll}
{[1,2,3][4],} & {[1,2,4][3],} & {[1,3,4][2]} & {[2,3,4][1],} \\
{[1,3,2][4],} & {[1,4,2][3],} & {[1,4,3][2],} & {[2,4,3][1],} \\
{[1,2][3,4]} & {[1,3][2,4],} & {[1,4][2,3] .} &
\end{array}
$$

Hence, $\left[\begin{array}{l}4 \\ 2\end{array}\right]=11$. Now it can be shown, by induction on m, that

$$
f^{(m)}(x)=\sum_{j=1}^{m}\left\{\begin{array}{c}
m \\
j
\end{array}\right\} n^{j}\left(\lfloor b / 2\rfloor e^{x}\right)^{j}\left(\lceil b / 2\rceil+\lfloor b / 2\rfloor e^{x}\right)^{n-j},
$$

where $n^{j}=n(n-1) \cdots(n-j+1)$. The last quantity is known as the $j^{\text {th }}$ falling factorial of n. A discussion of this idea can be found in [3]. Thus,

$$
\sum_{i=0}^{b^{n}-1}\left(L_{b}(i)\right)^{m}=\sum_{j=1}^{m}\left\{\begin{array}{c}
m \\
j
\end{array}\right\} n^{j}\lfloor b / 2\rfloor^{j} \cdot b^{n-j}=b^{n} \sum_{j=1}^{m}\left\{\begin{array}{c}
m \\
j
\end{array}\right\}\left(\frac{\lfloor b / 2\rfloor}{b}\right)^{j} n^{\underline{j}} .
$$

Since $n^{j}=j!\binom{n}{j}$, we have proved the following theorem.
Theorem 1: Let m and n be nonnegative integers. Then

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(L_{b}(i)\right)^{m}=\sum_{j=1}^{m}\left\{\begin{array}{c}
m \\
j
\end{array}\right\}\left(\frac{\lfloor b / 2\rfloor}{b}\right)^{j} \cdot j!\binom{n}{j} .
$$

To illustrate this theorem, if $b=5, m=3$, and n is a nonnegative integer, then

$$
\frac{1}{5^{n}} \sum_{i=0}^{5^{n}-1}\left(L_{5}(i)\right)^{3}=\frac{8}{125} n^{3}+\frac{36}{125} n^{2}+\frac{6}{125} n .
$$

2. SECOND SUM

Let m and n be positive integers. The determination of the sum

$$
\frac{1}{10^{n}} \sum_{i=0}^{10^{n}-1}\left(s_{10}(i)\right)^{m}
$$

was an open question in [4]. In [10], David Zeitlin presented the following answer to the problem in base 10. He stated that if $B_{i}^{(n)}$ denotes Bernoulli numbers of order n, where

$$
\binom{n-1}{i} \cdot B_{i}^{(n)}=\left[\begin{array}{c}
n \\
n-i
\end{array}\right],
$$

then

$$
\frac{1}{10^{n}} \sum_{i=0}^{10^{n}-1}\left(s_{10}(i)\right)^{m}=\binom{n+m}{m}^{-1} \sum_{i=0}^{m} 10^{i} \cdot\binom{n+m}{m-i}\left\{\begin{array}{c}
n+i \\
n
\end{array}\right\} \cdot B_{m-i}^{(n)} .
$$

To compute

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(s_{b}(i)\right)^{m}
$$

we make use of the function $(g(x))^{n}$, where $g(x)=1+e^{x}+e^{2 x}+\cdots+e^{(b-1) x}$. The motivation for this function comes from the fact that in the base b representation of $i=i_{n} \ldots i_{2} i_{1}$, the $j^{\text {th }}$ digit of i, i_{j}, contributes i_{j} to the digital sum of i. Expanding the product, we see that there is a $1-1$ correspondence between the numbers $0 \leq i \leq b^{n}-1$ and the b^{n} terms $1 \cdot e^{s_{b}(i) x}$. Therefore,

$$
(g(x))^{n}=\sum_{i=0}^{b^{n}-1} 1 \cdot e^{s_{b}(i) x} .
$$

Thus, for $m>1$, we have

$$
\frac{d^{m}}{d x^{m}}(g(x))^{n}=\sum_{i=0}^{b^{n}-1}\left(s_{b}(i)\right)^{m} e^{s_{b}(i) x}
$$

and so we have that

$$
\frac{d^{m}}{d x^{m}}(g(0))^{n}=\sum_{i=0}^{b^{n}-1}\left(s_{b}(i)\right)^{m}
$$

Now we need Faá di Bruno's formula [8]. This formula states that if $f(x)$ and $g(x)$ are functions for which all the necessary derivatives are defined and m is a positive integer, then

$$
\begin{aligned}
\frac{d^{m}}{d x^{m}} f(g(x))= & \sum_{n_{1}+2 n_{2}+\cdots+m n_{m}=m} \frac{m!}{n_{1}!\ldots n_{m}!}\left(\frac{d^{n_{1}+\cdots+n_{m}}}{d x^{n_{1}+\cdots+n_{m}}} f\right)(g(x)) \\
& \cdot\left(\frac{\frac{d}{d x} g(x)}{1!}\right)^{n_{1}} \cdots\left(\frac{\frac{d^{m}}{d x^{m}} g(x)}{m!}\right)^{n_{m}}
\end{aligned}
$$

where $n_{1}, n_{2}, \ldots, n_{m}$ are nonnegative integers.
It follows that

$$
\begin{aligned}
\frac{d^{m}}{d x^{m}}(g(x))^{n} & =\sum_{n_{1}+2 n_{2}+\cdots+m n_{m}=m} n^{n_{1}+n_{2}+\cdots+n_{m}} g(x)^{n-n_{1}-n_{2}-\cdots-n_{m}} \\
& \cdot \frac{m!}{(1!)^{n_{1}} n_{1}!(2!)^{n_{2}} n_{2}!\cdots(m!)^{n_{m}} n_{m}!}\left(g^{(1)}(x)\right)^{n_{1}}\left(g^{(2)}(x)\right)^{n_{2} \cdots\left(g^{(m)}(x)\right)^{n_{m}}}
\end{aligned}
$$

where m is a positive integer and $n_{1}, n_{2}, \ldots, n_{m}$ are nonnegative integers. Thus,

$$
\begin{aligned}
\frac{d^{m}}{d x^{m}}(g(0))^{n} & =\sum_{n_{1}+2 n_{2}+\cdots+m n_{m}=m} n^{n_{1}+n_{2}+\cdots+n_{m}} g(0)^{n-n_{1}-n_{2}-\cdots-n_{m}} \\
& \cdot \frac{m!}{(1!)^{n_{1}} n_{1}!(2!)^{n_{2}} n_{2}!\cdots(m!)^{n_{m}} n_{m}!}\left(g^{(1)}(0)\right)^{n_{1}}\left(g^{(2)}(0)\right)^{n_{2}} \cdots\left(g^{(m)}(0)\right)^{n_{m}}
\end{aligned}
$$

Equating the two expressions for $\frac{d^{m}}{d x^{m}}(g(0))^{n}$ and simplifying gives the following theorem.
Theorem 2: Let n and m be positive integers and $n_{1}, n_{2}, \ldots, n_{m}$ be nonnegative integers. Then

$$
\begin{aligned}
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(s_{b}(i)\right)^{m}= & \sum_{n_{1}+2 n_{2}+\cdots+m n_{m}=m} \frac{m!}{(1!)^{n_{1}} n_{1}!(2!)^{n_{2}} n_{2}!\cdots(m!)^{n_{m}} n_{m}!} \\
& \cdot\left(g^{(1)}(0) / b\right)^{n_{1}}\left(g^{(2)}(0) / b\right)^{n_{2}} \cdots\left(g^{(m)}(0) / b\right)^{n_{m}} n^{n_{1}+n_{2}+\cdots+n_{m}}
\end{aligned}
$$

where $g^{(i)}(0)=0^{i}+1^{i}+\cdots+(b-1)^{i}$.
It might be noted that, in [4], formulas for the sums

$$
\frac{1}{10^{n}} \sum_{i=0}^{10^{n}-1}\left(s_{10}(i)\right)^{m}
$$

were given for $m=0,1, \ldots, 8$. Using the formulas we just derived, we have the new formula for $m=9$, that is,

$$
\begin{aligned}
\frac{1}{10^{n}} \sum_{i=0}^{10^{n}-1}\left(s_{10}(i)\right)^{9}= & \frac{387420489}{512} \cdot n^{9}+\frac{1420541793}{128} \cdot n^{8} \\
& +\frac{12153524229}{256} \cdot n^{7}+\frac{7215728751}{160} \cdot n^{6} \\
& -\frac{30325460319}{512} \cdot n^{5}-\frac{2286016425}{128} \cdot n^{4} \\
& +\frac{30058716303}{640} \cdot n^{3}-\frac{2699999973}{160} \cdot n^{2}
\end{aligned}
$$

3. THIRD SUM

We next try to tackle the sum

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1} s_{b}(i) \cdot L_{b}(\dot{i})
$$

The base 10 result is

$$
\frac{1}{10^{n}} \sum_{i=0}^{10^{n}-1} s_{10}(i) \cdot L_{10}(i)=\frac{9}{4} n^{2}+\frac{5}{4} n .
$$

From the previous two sections, we have established the formulas

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(s_{b}(i)\right)^{2}=\frac{b^{2}-2 b+1}{4} n^{2}+\frac{b^{2}-1}{12} n
$$

and

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(L_{b}(i)\right)^{2}=\left(\frac{\lfloor b / 2\rfloor}{b}\right)^{2} n^{2}+\left(\left(\frac{\lfloor b / 2\rfloor}{b}\right)-\left(\frac{\lfloor b / 2\rfloor}{b}\right)^{2}\right) n
$$

Now, consider the function

$$
h(x)=\left(1+e^{x}+e^{2 x}+\cdots+e^{(\Gamma b / 2\rceil-1) x}+e^{(\Gamma b / 2\rceil+1) x}+\cdots+e^{b x}\right)^{n}
$$

The motivation for this function comes from the fact that, in the base b representation of $i=i_{n} \ldots$ $i_{2} i_{1}$, the $j^{\text {th }}$ digit of i, i_{j}, contributes either i_{j} or $i_{j}+1$, depending upon whether or not the $i_{j}^{\text {th }}$ digit is small or large, respectively. That is, the $h(x)$ function considers both the digital sum and the number of large digits, compared to the $g(x)$ function, where we were only concerned with the digital sum. Expanding the product, we see that there is a $1-1$ correspondence between the numbers $0 \leq i \leq b^{n}-1$ and the b^{n} terms $1 \cdot e^{\left(s_{b}(i)+L_{b}(i)\right) x}$. Therefore,

$$
\begin{aligned}
h(x) & =\left(1+e^{x}+e^{2 x}+\cdots+e^{([b / 27-1) x}+e^{([b / 27+1) x}+\cdots+e^{b x}\right)^{n} \\
& =\sum_{i=0}^{b^{n}-1} 1 \cdot e^{\left(s_{b}(i)+L_{b}(i)\right) x} .
\end{aligned}
$$

Thus,

$$
h^{\prime \prime}(x)=\sum_{i=0}^{b^{n}-1}\left(s_{b}(i)+L_{b}(i)\right)^{2} e^{\left(s_{b}(i)+L_{b}(i)\right) x},
$$

and so we have that

$$
h^{\prime \prime}(0)=\sum_{i=0}^{b^{n}-1}\left(s_{b}(i)+L_{b}(i)\right)^{2} .
$$

Computing $h^{\prime \prime}(0)$ and dividing by b^{n}, we obtain

$$
\begin{aligned}
& \frac{1}{b^{n}} \sum_{i=0}^{b^{n-1}}\left(s_{b}(i)+L_{b}(i)\right)^{2}=n(n-1) b^{-2} \cdot\left(\frac{b(b+1)}{2}-\left\lceil\frac{b}{2}\right\rceil\right)^{2}+n b^{-1} \cdot\left(\frac{b(b+1)(2 b+1)}{6}-\left\lceil\frac{b}{2}\right\rceil^{2}\right) \\
& \quad=\left(\frac{b^{2}+b-2\lceil b / 2\rceil}{2 b}\right)^{2} n^{2}+\left(\left(\frac{2 b^{3}+3 b^{2}+b-6\lceil b / 2\rceil^{2}}{6 b}\right)-\left(\frac{b^{2}+b-2\lceil b / 2\rceil}{2 b}\right)^{2}\right) n .
\end{aligned}
$$

But,

$$
\begin{aligned}
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1} s_{b}(i) \cdot L_{b}(i) & =\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1} \frac{\left(s_{b}(i)+L_{b}(i)\right)^{2}-\left(s_{b}(i)\right)^{2}-\left(L_{b}(i)\right)^{2}}{2} \\
& =\frac{1}{2}\left(\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(s_{b}(i)+L_{b}(i)\right)^{2}-\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(s_{b}(i)\right)^{2}-\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(L_{b}(i)\right)^{2}\right) .
\end{aligned}
$$

Substituting our three formulas in the above expression, we have

$$
\begin{aligned}
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1} s_{b}(i) \cdot L_{b}(i)= & \frac{1}{2}\left(\frac{b^{2}+b-2\lceil b / 2\rceil}{2 b}\right)^{2} n^{2} \\
& +\frac{1}{2}\left(\left(\frac{2 b^{3}+3 b^{2}+b-6\lceil b / 2\rceil^{2}}{6 b}\right)-\left(\frac{b^{2}+b-2\lceil b / 2\rceil}{2 b}\right)^{2}\right) n \\
& -\frac{1}{2}\left(\frac{b^{2}-2 b+1}{4} n^{2}+\frac{b^{2}-1}{12} n\right) \\
& -\frac{1}{2}\left(\left(\frac{\lfloor b / 2\rfloor}{b}\right)^{2} n^{2}+\left(\left(\frac{\lfloor b / 2\rfloor}{b}\right)-\left(\frac{\lfloor b / 2\rfloor}{b}\right)^{2}\right) n\right) .
\end{aligned}
$$

Collecting like terms, we have the following theorem.
Theorem 3: Let n be a positive integer. Then

$$
\begin{aligned}
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1} s_{b}(i) \cdot L_{b}(i)= & \frac{1}{2}\left(\left(\frac{b^{2}+b-2\lceil b / 2\rceil}{2 b}\right)^{2}-\frac{b^{2}-2 b+1}{4}-\left(\frac{\lfloor b / 2\rfloor}{b}\right)^{2}\right) n^{2} \\
& +\frac{1}{2}\left(\left(\frac{2 b^{3}+3 b^{2}+b-6\lceil b / 2\rceil^{2}}{6 b}\right)-\left(\frac{b^{2}+b-2\lceil b / 2\rceil}{2 b}\right)^{2}\right. \\
& \left.-\frac{b^{2}-1}{12}-\left(\left(\frac{\lfloor b / 2\rfloor}{b}\right)-\left(\frac{\lfloor b / 2\rfloor}{b}\right)^{2}\right)\right) n .
\end{aligned}
$$

Furthermore, we have the following corollary.

Corollary: Let n be a positive integer and b be a positive even integer. Then

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1} s_{b}(i) \cdot L_{b}(i)=\frac{b-1}{4} n^{2}+\frac{b}{8} n .
$$

4. FOURTH SUM

We next determine the sum

$$
\sum_{i=1}^{\infty} \frac{C_{b}\left(a ; a^{i}\right)}{\left(s_{b}(a)\right)^{i}}
$$

where $C_{b}(x ; y)$ denotes the sum of the carries when the positive integer x is multiplied by y, using the normal multiplication algorithm in base b arithmetic.

Noting that $L_{10}\left(2^{i}\right)=C_{10}\left(2 ; 2^{i}\right)$, this sum is a generalization of the sum

$$
\sum_{i=1}^{\infty} \frac{L_{10}\left(2^{i}\right)}{2^{i}}
$$

which was a problem considered in [6].
To compute this sum, we need the following lemma.
Lemma 1: Let d be a digit in base b and y be any positive integer. Then

$$
C_{b}(d ; y)=\frac{1}{b-1}\left(d \cdot s_{b}(y)-s_{b}(d y)\right) .
$$

Proof: The proof of Lemma 1 relies on Legendre's theorem,

$$
s_{b}(n)=n-(b-1) \sum_{t \geq 1}\left\lfloor\frac{n}{b^{t}}\right\rfloor,
$$

where n is a positive integer. Legendre's theorem and its proof can be found in [5].
To prove Lemma 1, we note that

$$
s_{b}(y)=y-(b-1) \sum_{t \geq 1}\left\lfloor\frac{y}{b^{t}}\right\rfloor \text { and } s_{b}(d y)=d y-(b-1) \sum_{t \geq 1}\left\lfloor\frac{d y}{b^{t}}\right\rfloor .
$$

Multiplying the first equality by d and subtracting the second equality from the first yields

$$
d \cdot s_{b}(y)-s_{b}(d y)=(b-1) \sum_{t \geq 1}\left(\left\lfloor\frac{d y}{b^{t}}\right\rfloor-d\left\lfloor\frac{y}{b^{t}}\right\rfloor\right) .
$$

Dividing by $b-1$ and observing that the sum is $C(d ; y)$ gives us the result.
Armed with Lemma 1, we have the next lemma.
Lemma 2: Let $s_{b}(n)$ denote the base b digital sum of the positive integer n and $C_{b}\left(a ; a^{i}\right)$ denote the base b carries in the normal multiplication algorithm of multiplying a and a^{i}. Let x and y be positive integers. Then $s_{b}(x \cdot y)=s_{b}(x) \cdot s_{b}(y)-(b-1) C_{b}(x ; y)$.

Proof: Consider $x=\sum_{i=0}^{n} x_{i} b^{i}$, the base b representation of x. Then, counting the top carries from the multiplication using Lemma 1 and counting the bottom carries from the addition, we have

$$
\begin{aligned}
C_{b}(x ; y)= & \left.\frac{1}{b-1} \sum_{i=0}^{n}\left(x_{i} s_{b}(y)-s_{b}\left(x_{i} y\right)\right)+\sum_{t \geq 1}\left(\left.\left\lfloor\frac{\sum_{i=0}^{n} x_{i} b^{i} y}{b^{t}}\right\rfloor-\sum_{i=0}^{n} \right\rvert\, \frac{x_{i} b^{i} y}{b^{t}}\right]\right) \\
= & \left.\left.\frac{1}{b-1} s_{b}(x) s_{b}(y)-\frac{1}{b-1} \sum_{i=0}^{n} s_{b}\left(x_{i} y\right)+\sum_{t \geq 1}\left|\frac{x y}{b^{t}}\right|-\sum_{i=0}^{n} \sum_{t \geq 1} \right\rvert\, \frac{x_{i} b^{i} y}{b^{t}}\right] \\
= & \frac{1}{b-1} s_{b}(x) s_{b}(y)-\frac{1}{b-1} \sum_{i=0}^{n} s_{b}\left(x_{i} y\right)+\frac{1}{b-1}\left(x y-s_{b}(x y)\right) \\
& -\sum_{i=0}^{n} \frac{1}{b-1}\left(x_{i} b^{i} y-s_{b}\left(x_{i} b^{i} y\right)\right) \\
= & \frac{1}{b-1}\left(s_{b}(x) s_{b}(y)-s_{b}(x y)\right) .
\end{aligned}
$$

Next, applying Lemma 2, we obtain $s_{b}\left(a^{i+1}\right)=s_{b}(a) \cdot s_{b}\left(a^{i}\right)-(b-1) C_{b}\left(a ; a^{i}\right)$. Thus, if n is a positive integer,

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{C_{b}\left(a ; a^{i}\right)}{s_{b}(a)^{i}} & =\frac{1}{b-1} \sum_{i=1}^{n}\left(\frac{s_{b}\left(a^{i}\right)}{\left(s_{b}(a)\right)^{i-1}}-\frac{s_{b}\left(a^{i+1}\right)}{\left(s_{b}(a)\right)^{i}}\right) \\
& =\frac{1}{b-1} s_{b}(a)-\frac{1}{b-1} \frac{s_{b}\left(a^{n+1}\right)}{\left(s_{b}(a)\right)^{n}} .
\end{aligned}
$$

Therefore, we have the following theorem.
Theorem 4: Let $s_{b}(n)$ denote the base b digital sum of the positive integer n and $C_{b}\left(a ; a^{i}\right)$ denote the base b carries in the normal multiplication algorithm of multiplying a and a^{i}. Then

$$
\sum_{i=1}^{\infty} \frac{C_{b}\left(a ; a^{i}\right)}{\left(s_{b}(a)\right)^{i}}=\frac{s_{b}(a)}{b-1} .
$$

To illustrate this theorem, if $b=3$ and $a=14$, then

$$
\sum_{i=1}^{\infty} \frac{C_{3}\left(14 ; 14^{i}\right)}{4^{i}}=2 .
$$

That is, if we count the carries in multiplying $14=112_{3}$ by powers of 14 , using the usual base 3 multiplication algorithm, and divide by the appropriate power of 4 , the result is 2 . In fact, the infinite series begins with

$$
\frac{5}{4}+\frac{7}{16}+\frac{14}{64}+\frac{18}{256}+\cdots
$$

5. QUESTIONS

Some open questions remain. Can a formula be found for

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1}\left(s_{b}(i)\right)^{n_{1}} \cdot\left(L_{b}(i)\right)^{n_{2}}
$$

where n, n_{1}, and n_{2} are positive integers? Can a formula be found for

$$
\frac{1}{b^{n}} \sum_{i=1}^{b^{n}-1} \frac{1}{s_{b}(i)} ?
$$

Also, can a formula be found for

$$
\frac{1}{b_{1}^{n}} \sum_{i=0}^{b_{i}^{n}-1} s_{b_{1}}(i) \cdot s_{b_{2}}(i)
$$

where $b_{1}=b_{2}^{m}$? What about a formula for

$$
\frac{1}{b^{n}} \sum_{i=0}^{b^{n}-1} s_{b}\left(s_{b}(i)\right) ?
$$

Finally, find the sum

$$
\sum_{i=1}^{\infty} \frac{s_{b}\left(a^{i}\right)}{a^{i}} .
$$

REFERENCES

1. L. E. Bush. "An Asymptotic Formula for the Average Sum of Digits of Integers." Amer. Math. Monthly 47 (1940):154-56.
2. P. Cheo \& S. Yien. "A Problem on the K-adic Representation of Positive Integers." Acta Math. Sinica 5 (1955):433-38.
3. R. Graham, D. E. Knuth, \& O. Patashnik. Concrete Mathematics, p. 47. Reading, Mass.: Addison-Wesley, 1989.
4. R. E. Kennedy \& C. Cooper. "Sums of Powers of Digital Sums." The Fibonacci Quarterly 31.4 (1993):341-45.
5. A. M. Legendre. Théorie des Nombres, 4th ed., 1:12. Librairie Scientifique et Technique. Paris: Blanchard, 1955.
6. E. Levine. Problem 386. College Math. J. 21 (1990):151-52.
7. L. Mirsky. "A Theorem on Representations of Integers in the Scale of r." Scripta. Math. 15 (1949):11-12.
8. S. Roman. "The Formula of Faá di Bruno." Amer. Math. Monthly 87 (1980):805-09.
9. J. R. Trollope. "An Explicit Expression for Binary Digital Sums." Math. Mag. 41 (1968): 21-25.
10. D. Zeitlin. Abstract 94T-11-93: "On a General Exact Formula for Sums of Powers of Digital Sums." Abstracts of the American Mathematical Society 95 (1994):431.
AMS Classification Number: 11A63
