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1. INTRODUCTION 

The Zeckendorf decomposition of a natural number n is the unique expression of n as a sum 
of Fibonacci numbers with nonconsecutive indices and with each index greater than 1, where 
F0 = 0, Fx = 1, and Fi+2 = Ft +Fi+l form the Fibonacci numbers for i > 0 (see [13] and [17], or see 
[16, pp. 108-09]). The Zeckendorf decompositions of products of the forms kFm and kLm with 
fc,m GN (where Lm = Fm_l+Fm+1 is the m* Lucas number) have occurred in questions in cryp-
tography [3] and in the study of periodic points in algebraic topology [11]. They are also the 
subject of study in [5]. We describe here a simple method for finding results concerning the 
Zeckendorf decomposition of such a product. We let j5 - (1+ V5) / 2 throughout the paper, and 
we make use of the connection between the /^-expansion and the Zeckendorf decomposition as 
developed by Grabner et al. in [8] and [9]. 

The ^-expansion of n GN is the unique finite sum of integral powers of /? that equals n and 
contains no consecutive powers of /?. Grabner et al., in [8] and [9], prove that for m sufficiently 
large the Zeckendorf decomposition of kFm can be produced by replacing ff in the /^-expansion 
of k with Fm+i. For example, the /^-expansion of 5 is /?3 + /T1 + /T4, and the Zeckendorf decom-
position of 5Fl0 is Fl3 + F9 +F6. See [1], [2], [6], [10], [14], and Section 2 for background on the 
/^-expansion. 

We have found that by studying short lists of /^-expansions of small positive integers we can 
easily observe patterns that represent new results. In Section 4 we improve upon the results of 
[5] involving the number of addends in the Zeckendorf decomposition of mFm and we include a 
proof of Conjecture 3 from the same paper. This conjecture states that, for certain values of m 
and k, the Zeckendorf decomposition of (mL^ +l)(Fmi2k+{) contains iw^+i a s o n e of its terms. 
This is equivalent to saying that fP occurs in the /^-expansion of mLlk +1. Most of the identities 
in [5] can be discovered easily using the techniques given here, as we demonstrate in Section 3. 
While a computer can be used to form lists of /^-expansions, we were able to discover all the 
results in Sections 3 and 4 easily by hand. All proofs are provided in Section 6. 

The developments presented here provide the background necessary for [12], joint work with 
L. Sanchis, in which we prove Conjecture 1 from [5]. The conjecture involves the ratio of natural 
numbers k that do not have Fk in the Zeckendorf decomposition of kFk to those natural numbers 
that do. The list of ^-expansions of k for 1 < k < 500, produced easily by a computer, was suf-
ficient to allow us to discover the recursive patterns in the /^-expansions and then to prove that 
the conjecture is correct. This result also answers an equivalent question posed by Bergman in 
[1] concerning the frequency of positive integers n with ff appearing in the ^-expansion of n. 

We present an algorithm for finding the /^-expansion of a positive integer that can be used to 
efficiently produce a list of /^-expansions. The beginning of this list is given in Section 2. The 
algorithm actually applies more generally. Given a sum n = T^im^iFt with m, M G Z and Xt GN 
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for all i, the algorithm produces a representation of n as a sum of nonconsecutive Fibonacci num-
bers, some of which may have negative indices. If the smallest index in the resulting sum is at 
least 2, then the algorithm has produced the Zeckendorf decomposition of n without requiring the 
calculation of the value of n. This algorithm runs in time that is linear in M-m + Yffm^i. For 
another algorithm that produces the Zeckendorf decomposition of n with the same input (but does 
not give the /?-expansion of a number) see, for example, [7]. 

2. PRELIMINARIES 

Remark 2.1: Note that in [8] and [9] the indices for Fibonacci and Lucas numbers are different 
from the standard used here. We use F0 = 0, Fl = 1,1^ = 2, and 1^ = 1. For x < 0, let Fx be equal 
to(-ir+lF_x. 
Definition 2.2: Let n GN. The Zeckendorf decomposition of n is the unique expression of n as a 
sum of Fibonacci numbers of the form E ^ Mi^y w^h r G^l Mi G $> 1}> a nd with MiMi+i = 0-

Definition 23: Let /? be the golden ratio (l + V5)/2. For any n GM, the /^-expansion of n is 
the unique expression of n as a finite sum of integral powers of /? with no consecutive powers 
occurring. That is, n = SJL_00̂ ySf with ef. e{0,1}, ^- /̂+1 = 0, and with at most finitely many et 

equal to one. 

For this value of /?, the /^-expansion was first defined by Bergman in 1957 in [1]. For gen-
eralizations using other values of/?, see, for example, [2], [6], [14], and [15]. 

Definition 2.4: For k eN, the lower width of k, £(k) [resp. the upper width of k, u(k)] is 
defined to be the absolute value of the smallest (resp. largest) exponent that appears in the /?-
expansion of k. 

For example, the ^-expansion of 12 is /T6 +/T3 +^_ 1 +p\ so £(12) = 6 and i#(12) = 5. 
The following is a restatement of Lemma 1 and Theorem 1 in [9] for the special case of 

Fibonacci numbers. See also Theorem 1 in [8]. 

Theorem 2.5 (Grabner et at [8]): For k sN and for n>£(k) + 2, if the /?-expansion of k is 
^l^{k)eiP\ t h e n t h e Zeckendorf decomposition of kFn is E f i ^ } ^ + W . For k GN, we have 
that £{k) is the even number defined by L^^ <k< L^k)+l. If2<k<L£(k), then u{k) = £{k)-1. 
If it > Lm, then w(£) = £{k). We also have that i*(l) = 0 and II(2) = 1. 

For example, the /^-expansion of 10 is /T4 +/T2 +/?2 + /?4, as can be determined quickly by 
the algorithm of Section 5 (see 5.7), and the Zeckendorf decomposition of 10i^000 is F4996 + 
4̂998 + 5̂002 + ̂ 5004 • The power of Theorem 2.10 in [8] is clear here. Using the greedy algorithm, 

we would have needed to calculate the value of 10i^000, which is daunting. 
As usual, a sum of Fibonacci numbers will be represented by a vector of zeros and ones. A 

one occurs in coordinate s if Fs appears in the sum. We allow negative indices. 

Definition 2.6: We define V\o be the infinite dimensional vector space over Z given by 
V:= {(..., v_l9 v0, vh v2, v3, ...):v/ eZV,., with at most finitely many v,- nonzero}. 
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For convenience, we underline the second coordinate. We define V+ to be the subset of Fthat 
consists of all vectors of V with all entries nonnegative. 

All vectors in V are infinite dimensional, but we will abuse notation and omit the entries 
before the first possibly nonzero entry and after the last possibly nonzero entry. If the entries are 
all single digits, we may omit commas and parentheses. 

Definition 2.7: Let n GN. Let z(ri) be the vector in V+ corresponding to the Zeckendorf de-
composition of n that has 0 in the first coordinate. 

In Definition 2.7, we must require that the vector have zero in the first coordinate in order to 
have z well defined. For example, the Zeckendorf decomposition of 4 is 1 + 3, which can be rep-
resented by either Ft+F4 or F2+F4. Whenever 1 occurs in the Zeckendorf decomposition, we 
always represent it as F2 in the image of z . Thus, z(4) = (0,1,0,1). 

Definition 2.8: We define the function fi:N -» V+ so that fl(ri) is the vector in V+ with v; = et_2 

when the /^-expansion of n is SJ_oo e$l • Thus, the coefficient of ff is underlined. 

For example, /?(12) is represented by 100101000001. Here the exponents of /? increase from 
left to right, which does not match the usual notation for a /?-expansion. We must choose be-
tween the usual notation for z(ri) and for p(n). Because this paper concerns Zeckendorf 
decompositions, we have chosen the former. 

The ^-expansion of k is as follows for 1 < k < 20, with the exponents of /? increasing from 
left to right. 

k_\ 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 ! 
14 
15 
1 6 

17 
1 8 

19 
1 20 

1 

1 
1 

1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 1 
1 0 1 
1 0 1 

1 0 0 1 0 
1 0 0 1 0 
1 0 0 1 0 
1 0 0 1 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 

1 1 0 0 0 1 

0(k) 
1 

0 0 1 
0 0 0 
0 1 0 
1 0 0 
0 0 1 
0 0 0 
0 1 0 
0 0 1 
0 0 0 
0 1 0 
1 0 0 
0 0 1 
0 0 0 
0 1 0 
1 0 0 
0 0 1 
0 0 0 
0 1 0 
0 0 1 

1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 

1 
1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
1 0 1 
1 0 1 
0 0 0 1 
0 0 0 1 
0 0 0 1 

It is possible to generate the &* row in this list by applying the algorithm developed in Sec-
tion 5 to the vector (0, k, 0) (see 5.5). We will see in Remark 5.9 that we may instead move from 
one row to the next by adding one to the underlined entry and applying si to the result. This 
second method is much more efficient. 
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Definition 2.9: We define a linear transformation that shifts the entries of a vector. For t e Z, let 
st :V -> V be given by the following. l£v GV has coordinates vf for i eZ, then st(y) is the vector 
with coordinates wf: = vt_t. 

Nexl;3 we restate part of Theorem 2.5 using the notation of this section. 

Theorem, 110 (Grabner et al [8]): For k eN and for n eZ, kFn is represented by the vector 
sn-i0ik))' For w £ *(*) + 2, this vector is z(iFJ. 

3. PATTERNS IN/^-EXPANSIONS 

Most of the identities in [5] can be found using lists of /^-expansions. For example, (2.4) of 
[5] gives the Zeckendorf decomposition for 4FkFn+k whenever k,n>3. This could be deter-
mined by adding the formulas given in [5] for FkFn+k and for 3FkFn+k and reducing the result so 
that no two consecutive Fibonacci numbers occur. On the other hand, we are able to determine 
the pattern for the /^-expansions of 4Fk from scratch very quickly by considering the list below. 
We then arrive at the Zeckendorf decomposition of 4FkFn+k by simply shifting the vector (3{4Fk) 
to the right by n + k - 2 spaces. 

The following list provides the ^-expansion for 4Fk as k increases from 3 to 10. Note that 
we can add two consecutive rows in this list and then apply the algorithm from Section 5 to the 
sum. The result will be the next row in the list. This is easy to do by hand. The diagonal lines of 
ones appear in a predictable pattern that will continue, as can be proven by induction. 

^ = 3 

k = b 
k = 6 
k = 7 
k = 8 

Ar = 10 

ll 0 0X1 
jl 0 0 0 

1 0 0X1 0 1 

For n > 3 and h > 3 we have, as in (2.4) of [5], 

[iV2 +Fn+l + Fn+3 +F2k+n+l + Z%-l
4)n F4J+n+4 (k even), 

k - i + /W3 + ̂ W i + Sf=I3)/2 F4J+n+2 (k odd). 
4FkFn+k = • 

Note that a similar method can be used for finding the /^-expansion of mLk and hence for finding 
the Zeckendorf decomposition of products of the form mLkFn+k. 

4. NEW RESULTS 

We summarize here the new results we have found using the /^-expansion. Proofs are pro-
vided in Section 6. We begin with a technical definition and then state precisely in 4.2 the useful 
fact that, if two Zeckendorf decompositions have indices that do not overlap significantly, then 
the two Zeckendorf decompositions can meld into the Zeckendorf decomposition of the sum. 
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Definition 4.1: For x eZ, we say that a v eV+ is reduced to index x if every entry with index 
(i.e., coordinate) > x is either zero or one and v has at most finitely many ones with index > x 
and v has no consecutive ones with indices > x. If v is reduced for all x eZ , then v is totally 
reduced. 

Note that, for all n eN, the vectors z(n) and fi(ri) are totally reduced. 

Fact 4.2: If n,msM and if z(ri) + z(m) is totally reduced, then z(n + rri) = z(n) + z(m). The 
same is true for /^-expansions by 2.10. One way to determine whether z(ri) + z{m) is totally 
reduced is to consider the following two sets. Let In = {i eZ:Ff is in the Zeckendorf decomposi-
tion of n}, and let Im be the corresponding set for m. Let d = mm{\i- j\\i eln,j zlm}- Then 
z (n) + z (m) is totally reduced if d > 2. 

Let Q(ri) - nFn, and note that we will find it useful to use exponents in vectors. For example, 
the ^-expansion of L% is given by 10000000000000001, which we may write as 1070071. Simi-
larly, the ^-expansion of L> is 10101010101010101, which we may write as (10)41(01)4. 

Proposition 43: For k>2, we have 0(2^) = 1100102*-2002M1001. Thus, the Zeckendorf 
decomposition of Q(2Ltk) = F2k+l+2Lik + F2k_2+2Lik +F_2k_2+2Lzk +F_2k+U2Lik. 

The preceding proposition is proven in detail in Section 6, but to give an idea of the flavor of 
such proofs, we provide a sketch here. We have j5{I^k) = lQ2k~lQ02k~ll (see (1.5) of [4] and 
apply 2.10). We think of IL^ as 202*~1002*~12 and we prove that M2Lik) i s 8 i v e n bY 

iooio2^-2oo2/:-3iooi 

where the braces mark the vectors s_2k(fi(7)) and %(/?(2)). Because the two braces do not 
touch, the entire vector is totally reduced. 

In the following propositions, let f[n] denote the number of addends in the Zeckendorf 
decomposition of n as in [5]. Note that f[Q(m)] is equal to the number of ones in the vector 
J3(m) by 2.10. The next two propositions are generalizations of (3.3) and (3.4) in [5]. 

Proposition 4.4: If k>2, and if l ^ m ^ Z ^ , then f[Q(L2k+m)] = 2+f[Q(m)]<2k + l. 
Moreover, ? (g (4* + m)) = ^ ( 4 ^ + J + % ^ „ + J -

Proposition 4.5: If k > 2, and if 1 < m < I^^, then f[Q{2Llk + m)] = 4 +/[g(/w)]. Moreover, 
z(Q(2I^k +m)) = z(2I^kF2L2k+m) + z(mF2L2k+ml 

In [5] a positive integer n is said to have Property 2? if Fn occurs in the Zeckendorf decom-
position of nFn. This is equivalent to stating that a one occurs in the underlined coordinate of 
fi(n). We prove Conjecture 3 of [5] in the following proposition. 

Proposition 4.6: 1fm9keN with 1 < k and 1 <m < Z^^ , then mLlh does not have Property 3P, 
and mLto +1 does have Property 9\ 

Proposition 4.7: For k >2, we have MhM + hk-i) = 100100(1 O ^ K O l ^ O O l . Thus, we see 
that Q(L2k+l + L ^ ) has Property 9. 

See Section 6 for proofs of the propositions in this section. 
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5. THE ALGORITHM 

The algorithm begins with a positive integer n expressed as n = Z ^ ^ - P - , with Xt any non-
negative integer for i G Z , and with M,MGZ. It ends with an expression for n as a sum of 
Fibonacci numbers with nonconsecutive (possibly negative) indices. This sum is the Zeckendorf 
decomposition for n under certain conditions. There are other algorithms that produce Zecken-
dorf decompositions (normal forms) in this setting (see [7]). The advantage of the algorithm 
given here is that it allows us to find the /^-expansion of k GN by applying the algorithm to 
(0,&,0)(see5.5). 

Definition 5.1: Let v eV be a vector with coordinates vi for / eZ. Let a:V -» Z be the func-
tion given by a(v): = Z^ .^V? • Note that a is a linear function and that it is not injective. 

Verbose .Description of the Algorithm: We begin with n represented by the vector v : = (..., A0, 
XhX2, X3,...), where Xi = 0 for i > M and for i <m as above. Thus, the initial values for the 
entries in v are vt = Xt for / G Z . First, we search for the smallest integer x for which the vector v 
is reduced to index x. If there is no such integer, then we are done. Details of the search are 
below in the second description of the algorithm. We assign t:=x-l if vx = 0 and t:-x if 
vx = l. Note that this implies that vt+l = 0 and vt > 1. 

Case 1. vt_x * 0. We have (...,vt_l9 vt, 0,...). We replace vt_l9 vt, 0 with vt_x-1, vt -1, 1. 
This does not change the value of <y(v), because Ft +i^_i = Ft+v ^ e return to the beginning of 
the algorithm and search for a new value of x. 

Case 2. We have (...,vt_2,0, vt, 0,...), and, because the vector is not reduced to index t-l, 
vt>\. We replace vf_2,0, vt, 0 with vt_2 +1,0, vt -2,1. This does not change the value of a(v). 
To see this, consider two smaller steps. We can replace vt_2,0, vt, 0 with vt_2 +1,1, vt -1,0 be-
cause Ft = î _x + i^_2. Now we have two consecutive nonzero entries, so we can do as in the first 
case. This results in vt_2 +1,0, vt - 2,1. Note that the sum of all the entries in the vector v has 
not changed. We return to the beginning of the algorithm. 

As stated above, the algorithm terminates when there is no minimal value x. 

Definition 5.2: Let $l\V+ -^V+ be the function that assigns to a vector v GV+ the result of 
applying this algorithm to v. 

Precise Description of the Algorithm: As above, n = Hffm XtFf. 
max:= M, min: = w; 
t:= max; 
while (t > min) do { 

if (v, =0) then t:=t-I; 
else if (v,_! = 0 and vt = 1) then t:=t-2; 
else if (vr_! ^ 0) then { 

vt+v=1', v , :=vf- l ; v ^ ^ v ^ - 1 ; 
if (vr+2 = 0) then t:=t + l; 
else t:=t + 2; 

} 
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else { 
vt+l:=l;vt: = vt~2;vt_2:=vt_2+l; 
if (f-2<min).thenmin:=*--2;.. 
if (vf+2 = 0) then t:=f + l; 
elser:=r + 2; 

} 
} • 

Remark 5.3: The algorithm si is designed so that, for all v eV+, a(v) = a($l(v)), and $t($l(v)) 
= s&(st(v)) for all t GZ. The second equality follows from the fact that the algorithm is inde-
pendent of the numbering of the coordinates of the vector .v. . 

Proofs of the results from this section are postponed until Section 6. 

Proposition 5.4: The algorithm terminates in a finite number of steps for any vector v GV+. The 
result s&(v) is totally reduced. 

Proposition 5.5: For all k eN, fi(k) = d(0,k, 0). 

Remark 5.6: If v eV+, and if sl(v) has no nonzero entries for all coordinates with index less 
than 2, then d(v) = z(a(v)). For k GN and n>l(k) + 2, we have z{kFn) = $„_2(J3(k)) as in 
Theorem 2.10. 

Example 5.7: We apply the algorithm to lOi^ to find the /^-expansion of 10. 

0 
0 
0 

1 
1 
2 
2 
3 
3 
3 
4 
2 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

1Q 
8 
7 
5 
5 
3 
2 
2 
Q 
Q 
l 
o 

1 
0 
1 
0 
1 
0 
0 
1 
1 
1 
0 

1 
1 
0 
0 
1 
0 
0 
0 
0 
1 

1 
1 
1 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 = #10) 

Note that in the 9th row we have in coordinates 2 through 6 the Zeckendorf decomposition of 
10, with a 4 in the 0th coordinate. A similar pattern occurs whenever this method is used to find 
the ^-expansion of any positive integer. 

Having determined the /^-expansion of 10, we can apply Theorem 2.10 and see that 
z(10i^000) = 54998(101000101). This is much easier than calculating the value of 10i^000 and 
applying the greedy algorithm. 

Theorem 5.8: For V , W G F + and for k EN 5 we have sS($l(v)+w) = $&(?+w) and $l(kv) = 
$l(k$l(v)). In addition, for all n^m^N, we have fi(nm) = st{nfi(m)) and fi(n + m) = M(j3(n) + 
Mm)). 
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Remark 5.9: The list of/^-expansions In Section 2 above can be generated by applying the algo-
rithm to (0, k, 0) for each k (see 5.5). Theorem 5.8 provides a more efficient method, for deriving 
the list. Once we have found that fi(2) = 1001, we note that 

fi(3) - d (0 , 3, 0) = ,^(^(0 3 2,0) + (0,1 0)) = d((fi(2)) + (0,1, 0)). 

To move from the '/^expansion of k - 1 to that of k, we need only add one to the underlined entry 
(which corresponds to 0°) and then apply the algorithm. 

• •• • ' 6.'PROOFS 

Lemma'6.1:- If a vector V eV+ is reduced to Index 5 + 1, and if v, = 1,-then, when the algorithm is 
applied, none of the entries with index less than, s will be changed until after the algorithm has 
changed v into a vector that is reduced to index s. 

Proof of 6.1: We induct upon n using the following induction hypothesis: 
If v is reduced to index t + \ for some t with exactly n nonzero entries (ones) with index 

greater than t, and if vt = 1, then none of the entries with index less than t will be changed until 
after the algorithm has changed v into a vector that is reduced to index t. 

Suppose n - 1. Then either vs = 1 and vs+l = 0, which means that v is already reduced to 
index 5, or vs = 1 = v,+1 and vs+i = 0 for i > 2, which means that the algorithm will change the 
vector so that v̂  = 0 = vs+l and vs+2 = 1 without changing any other entries. The new vector is 
reduced to index s. Thus, the statement is true for n - 1. 

Now induct on n. Consider the triple 1, vs+h vs+2. If this triple is 1,0,0 or 1,0,1, then v is 
already reduced to index s. If the triple is 1,1,0, the algorithm first replaces the triple with 0,0,1, 
and we can use the inductive hypothesis. We now have a vector that is reduced to index 5 + 3 
that has vs+2 = 1. The number of ones with index greater than 5 + 2 is one smaller than the num-
ber of ones we had originally with index greater than s. Thus, the algorithm does not change the 
values of entries with index less than 5 + 2 until the vector has been changed to a new vector that 
is reduced to index 5 + 2. This means that we will have the triple 0,0,1 either unchanged or 
replaced with 0,0,0. In either case, the resulting vector is reduced to index s. 

Proof of 5.4: If v GV+ is reduced to index s for all 5, then the algorithm" does not ever 
change the vector. We have si(v) = V, and the proposition is proven for that case. 

Otherwise, there is a unique x(v) e Z with, v reduced to index x(v) and with v not reduced 
to index x(y) -1. In this case, we define r(y) to be the sum of all entries of v with Index less 
than x(v). We will see that r(v) will reach zero in a finite number of steps. This means that the 
algorithm stops in a finite number of steps and that the vector <s4(i>) Is in the desired form. 

We refer now to the cases given in the Verbose Description of the Algorithm in Section 5. 
The algorithm first assigns t: = x(v) - 1 If vx = 0 and assigns t: = x(v) if vx = 1. 

In Case 1, the triple (v,_1? vt, 0) Is replaced by (yt_Y -1, vt -1,1) and the new vector is reduced 
to Index i + 2 with vt+l = 1. By Lemma 6.1, we know that the algorithm will next change the vec-
tor so that it is reduced to index t + \ without changing the values of entries with index less than 
t + \. At this stage, the new vector v has a new x(v) -value that is less than or equal to t + l. 
Thus, the new value of r(v) is at most 2 less than the old value of r(v). 
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In Case 2, we see that (yt_2,0, vt, 0) is replaced by (vt_2 +1,0, v, - 2,1) and the new vector is 
reduced to index t + 2 with vr+1 = 1. By Lemma 6.1, we know that the algorithm will next change 
the vector so that it is reduced to index t + \ without changing the values of entries with index less 
than t +1. At this stage, the new vector v has a new x(v) -value that is less than or equal to t +1. 
Thus, the new value of r(v) is at most 1 less than the old value of r(v). 

In both cases, the value of r(y) decreases. Thus, the algorithm terminates in a finite number 
of steps. The vector that results will be reduced to index s for all s e Z. 

Proof of5.5: This result follows from the work of Grabner et al., but a direct proof is as 
follows. Because 0 +f?+l=f?+2 for all i eZ, we can replace each Ft in the description of the 
algorithm with f?~2 and replace each a with a ' , where a'(v) = £*_,„ v,./?'-2. Because kF2 = kfi°, 
for the vector (0, k_, 0) the algorithm will produce the same result either way. Thus, s&(0, &, 0) is 

to-
Proof of 5.8: Let x = $&(v)+w, and let y = v+w. We first prove that, for all / eZ, we 

have a(st(x)) = a(st(y)). We have, using Remark 5.3 and the fact that st and a are linear, 
a(st(x)) = a(sts&(v)) + a(st(w)) = a(std(v)) + a(st(w)) = cr(st(v)) + ofc(* )) = <<$(?)) • 

Next we prove that, for all t eZ and for all k GN, we have a(st(kv)) = o-(^(fe£v)). We 
have a(st(kv)) = ka(st(v)) = M > % ( v ) ) ) = ka(st(dv)) = a(st(Mv)). 

Theorem 2.10 implies the following. There exist tl912, t3, t4 GN such that, for all / > 0, we 
have d(shH(x)) = z(a(sh+i(x)))y si(st2+i(y)) = z(a(st2+i(j))), d(sh+i(kv)) = z(a(sh+i(kv))), and 
* 4 + / W ) = I ( ( T ( V / ( M V ) ) ) . Let t = maxft, /2, r3, ?4}. 

Using 5.3 again, we see that s^^ikv)) = d(s^kv)) = z(a(sXks&v))), and z(a($t(kslv)y) = 
d($t(MV)) = st(d(Mv)). But st is one-to-one. Thus, d(kv) = d(kd(v)). 

Similarly, $t(M.(x)) = d(st(x)) = z(a(st(x))) = z(a(st(y))) = d(st(y)) = ${(d(y)). Again be-
cause st is one-to-one, s&(x) = st(?). Thus, $i(d(v)+w) = M(v +w). 

Next, let m,neN. We have that ~/3(mn) = d(0,mn, 0) = sl(/f(0, w, 0)) = sl(nd(0, m, 0)) = 
d(nfi(m)\ and also, /?(/f/?f) = d(0, n+m. 0) = rf((0, n, 0) + (0, JH, 0)) = ̂ ( ^ (0 , & 0) + sS{09 m, 0))= 
^ ( / % ) + fi(m))• Thus, Theorem 5.8 is proven. 

Proof of 43: We have, for all k eN, that /?(Z^) = lO^OO2*"1! (see Proposition 10 of [5] 
and apply 2.10). Thus, using Theorem 5.8, we have /?(2Z^) = ̂ (2/?(Z^)) = ^(202^1002^12) 
= ^(s„2,(0,2,0) + s ^ = 
^(s_2J?(2) + % t o 100102*"2002*-3100L Finally, we apply 
2.10 to complete the proof. 

Proof of 4.4: We have that ^(hk) = lO^OO2*"1!, as in the proof of Theorem 4.3. Because 
m£L2k_l9 we have by 2.5 that £(m),u(m)<2k-2. Thus, using 4.2, we see that ji(L2k+in) = 
M^2k) + Mm)- Thus, flQULft +m)] is the number of ones in fii^) plus the number of ones in 
fKm), and f[Q(L2k+m)] = 2+f[Q(m)]. Because i(Z2ik) = i/(Z2ik) = 2£, there can be at most 
2^ + 1 addends in Q(m). This proves the last inequality. 
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Proof 'of'4.5: Using 4.3, we have that ~P{2hk) = 100102*-2002^31001. Because m < Z^_3, 
we have by 2.5 that £(m), u(m) < Ik - 4. Using 4.2, we see that fi(2L2k +m) = P(2L2k) + Mm) • 
Thus, f[Q{2Llk + m)] is the number of ones in ^(2^) plus the number of ones in $(m), and 
f[Q(2L2k+m)] = 4-tf[Q(m)l 

Proof'of4.6: We have ~P{Lik) = lO^OO2*"1!, as in the proof of 4.3. Let v = s_2k(m), and 
let %(010). Then ^(I2A:) = v+w, and so by Theorem 5.8 we have fi(mL2k) = $i(mv+mw) = 
d(d(mv) + <&(mw)) = d(d(s_2k(0,m, 0)) + sl(s2k(Q,m, 0))) = M(s_2k(d(0, m, 0)) + s2k(sl(0,m, 0))) 
= d(s_2kQ(m)) + s2kQ(m))). By Fact 4.2 and Theorem 25, s_2k0(m)) + s2k(J3(m)) is totally 
reduced whenever m ^.L^^. Thus, fiijriL^ - s_2k(ft(m)) + s2k(j3(m)) for 1 < m < Z ^ ^ . When-
ever m < L2k__l, the two shifted ^-expansions of m will not overlap, and in fact there will be zeros 
in the coordinates corresponding to /T1,/?0, and fi1. Thus, mLlk does not have Property 9\ 
When a one is inserted in the coordinate corresponding to flP, the resulting vector is totally 
reduced and equals 'fi(mLlk +1) (see 5.9). Thus, mL^ +1 does have Property 8P. 

Proof of 4.7: We have, for all k eN, that fii^ik+i) = (10)^1(01)^ (see (3.1) of [5]). Thus, 
using 5.8, we have fi(L5 + 1^) = ^(L^ + ftLj) = ̂ (102020201) = 100100101001, so, the result 
holds for k = 2. We induct on *. We assume that M^k-i + ̂ - 3 ) = 100100(1 Of"31(01)^2 001. 
Fact 4.2 implies that fiihk + ̂ - 2 ) = 10102M00U-3101. Therefore, fi(Lit+i + hk-i) = Khk-i + 
4 . + ^ - 3 + 4.-2) = ^ ( ^ - 1 + ^ - 3 ) + Khk+Lik-i)) = ^(201100(10/-31(01/-20111)-
st(201100(10)*-3l(01)*-201001). Note that this last vector is reduced to index -2& + 5. The 
algorithm will not change any of the entries except that the 20110 that occurs on the left changes 
to 1001001. Thus, M^2k+i + 4*-i) = 10010010(10)*-31(01)*~201001, and the induction is com-
pleted. 
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NEW PROBLEM WEB SITE 

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems 
can now be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 
Over 23,000 problems from 42 journals and 22 contests are references by the site, which 

was developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site 
was generously provided by the Department of Mathematics and Statistics at the University 
of Mssouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose 
solutions were published), and other relevant bibliographic information. Difficulty and 
subject matter vary widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or 
their time is encouraged to do so. For further information, write to 

Mr. Mark Brown 
Director of Operations, MathPro Press 
1220 East West Highway #1010A 
Silver Spring, MD 20910 
(301) 587-0618 (Voice mail) 
bowron@compuserve.com (e-mail) 
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