POLYNOMIALS RELATED TO MORGAN-VOYCE POLYNOMIALS

Gospava B. Dordević

University of Niš, Faculty of Technology, 16000 Leskovac, Yugoslavia
(Submitted April 1997-Final Revision March 1998)

1. INTRODUCTION

In this note we shall study two classes of polynomials, $\left\{P_{n, m}^{(r)}(x)\right\}$ and $\left\{Q_{n, m}^{(r)}(x)\right\}$, where r is integer. For $m=1$, these polynomials are the known polynomials $P_{n}^{(r)}(x)$ (see [1]) and $Q_{n}^{(r)}(x)$ (see [4]). Particularly, $P_{n}^{(r)}(x)$ and $Q_{n}^{(r)}(x)$ are the well-known classical Morgan-Voyce polynomials $b_{n}(x)$ and $B_{n}(x)$ (see [1], [2], [3], [4]). In Section 2 we shall study the class of polynomials $P_{n, m}^{(r)}(x)$. The polynomials $Q_{n, m}^{(r)}(x)$ are given in Section 3. The main results in this paper relate to the determination of coefficients of the polynomials $P_{n, m}^{(r)}(x)$ and $Q_{n, m}^{(r)}(x)$. Also, we give some interesting relations between the polynomials $P_{n, m}^{(r)}(x)$ and $Q_{n, m}^{(r)}(x)$.

2. POLYNOMIALS $\boldsymbol{P}_{n, m}^{(r)}(x)$

We shall introduce the polynomials $P_{n, m}^{(r)}(x)$ by

$$
\begin{equation*}
P_{n, m}^{(r)}(x)=2 P_{n-1, m}^{(r)}(x)-P_{n-2, m}^{(r)}(x)+x P_{n-m, m}^{(r)}(x), n>m \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{n, m}^{(r)}(x)=1+n r \text { for } n=0,1, \ldots, m-1, \quad P_{m, m}^{(r)}(x)=1+m r+x \tag{2.2}
\end{equation*}
$$

So, by (2.1) and (2.2), we find the first $(m+2)$-members of the sequence $\left\{P_{n, m}^{(r)}(x)\right\}$:

$$
\begin{align*}
& P_{0, m}^{(r)}(x)=1, \quad P_{1, m}^{(r)}(x)=1+r, \ldots, P_{m, m}^{(r)}(x)=1+m r+x, \\
& P_{m+1, m}^{(r)}(x)=1+(m+1) r+(3+r) x . \tag{2.3}
\end{align*}
$$

From (2.3), by induction on n, we see that there exists a sequence $\left\{b_{n, k}^{(r)}\right\}(n \geq 0$ and $k \geq 0)$ of numbers such that

$$
\begin{equation*}
P_{n, m}^{(r)}(x)=\sum_{k=0}^{[n / m]} b_{n, k}^{(r)} x^{k}, \tag{2.4}
\end{equation*}
$$

with $b_{n, k}^{(r)}=0$ for $k>[n / m]$.
By (2.4), we get

$$
\begin{equation*}
b_{n, 0}^{(r)}=P_{n, m}^{(r)}(0) \tag{2.5}
\end{equation*}
$$

Let us take $x=0$ in (2.1). Now, using (2.5), we obtain the following difference equation:

$$
\begin{equation*}
b_{n, 0}^{(r)}=2 b_{n-1,0}^{(r)}-b_{n-2,0}^{(r)}, \quad n \geq 2, m \geq 1, \tag{2.6}
\end{equation*}
$$

with initial values $b_{0,0}^{(r)}=1$ and $b_{1,0}^{(r)}=1+r$.
Solving (2.6), we get

$$
\begin{equation*}
b_{n, 0}^{(r)}=1+n r, n \geq 0 . \tag{2.7}
\end{equation*}
$$

From (2.1), we obtain the following recurrence relation:

$$
\begin{equation*}
b_{n, k}^{(r)}=2 b_{n-1, k}^{(r)}-b_{n-2, k}^{(r)}+b_{n-m, k-1}^{(r)}, n \geq m, k \geq 1 . \tag{2.8}
\end{equation*}
$$

Next, we can write the sequence $\left\{b_{n, k}^{(r)}\right\}$ into the form of the general triangle:
TABLE 1

n / k	0	1	2	3	\ldots
1	1	\ldots	\ldots	\ldots	\ldots
2	$1+r$	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$m-1$	$1+(m-1) r$	\ldots	\ldots	\ldots	\ldots
m	$1+m r$	1	\ldots	\ldots	\ldots
$m+1$	$1+(m+1) r$	$3+r$	\ldots	\ldots	\ldots
$m+2$	$1+(m+2) r$	$6+4 r$	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

Remark 1: For $m=1, r=0$ and $r=1$, Table 1 is exactly the $D F F$ and the $D F F_{x}$ triangle, respectively (see [2], [3]).

Theorem 2.1: The coefficients $b_{n, k}^{(r)}$ satisfy the relation

$$
\begin{equation*}
b_{n, k}^{(r)}=b_{n-1, k}^{(r)}+\sum_{s=0}^{n-m} b_{s, k-1}^{(r)}, n \geq m, k \geq 1 . \tag{2.9}
\end{equation*}
$$

Proof: We shall use induction on n. By direct computation, we see that (2.9) holds for every $n=0,1, \ldots, m-1$. If we suppose that (2.9) is true for $n(n \geq m)$, then, from (2.8) for $n+1$, we have

$$
\begin{aligned}
b_{n+1, k}^{(r)} & =2 b_{n, k}^{(r)}-b_{n-1, k}^{(r)}+b_{n+1-m, k-1}^{(r)} \\
& =b_{n, k}^{(r)}+b_{n-1, k}^{(r)}+\sum_{s=0}^{n-m} b_{s, k-1}^{(r)}+b_{n+1-m, k-1}^{(r)}-b_{n-1, k}^{(r)} \\
& =b_{n, k}^{(r)}+\sum_{s=0}^{n+1-m} b_{s, k-1}^{(r)} .
\end{aligned}
$$

Thus, statement (2.9) follows from the last equalities.
One of the main results is given by the following theorem.
Theorem 2.2: For any $n \geq 0$ and any $k \geq 0$ such that $0 \leq k \leq[n / m]$, we get

$$
\begin{equation*}
b_{n, k}^{(r)}=\binom{n-(m-2) k}{2 k}+r\binom{n-(m-2) k}{2 k+1}, \tag{2.10}
\end{equation*}
$$

where $\binom{p}{s}=0$ for $s>p$.

Proof: We use induction on n. First, from (2.7), we see that (2.10) is true for $k=0$. Also, if $n=0,1, \ldots, m-1$, then $k=0$, so (2.10) is true. Assume that (2.10) holds for $n-1(n>m)$. Then, by (2.8) for n, we get

$$
b_{n, k}^{(r)}=2 b_{n-1, k}^{(r)}-b_{n-2, k}^{(r)}+b_{n-m, k-1}^{(r)}=x_{n, k}+r y_{n, k},
$$

where

$$
x_{n, k}=2\binom{n-1-(m-2) k}{2 k}-\binom{n-2-(m-2) k}{2 k}+\binom{n-m-(m-2)(k-1)}{2 k-2}
$$

and

$$
y_{n, k}=2\binom{n-1-(m-2) k}{2 k+1}-\binom{n-2-(m-2) k}{2 k+1}+\binom{n-m-(m-2)(k-1)}{2 k-1} .
$$

Next, from the well-known relation

$$
\binom{p}{s}=\binom{p-1}{s}+\binom{p-1}{s-1}
$$

we find that

$$
x_{n, k}=\binom{n-(m-2) k}{2 k} \text { and } y_{n, k}=\binom{n-(m-2) k}{2 k+1} .
$$

Particular Cases

For $m=1$ and $r=0$, and for $m=1$ and $r=1$, by (2.10), we get

$$
b_{n, k}^{(0)}=\binom{n+k}{2 k} \text { and } b_{n, k}^{(1)}=\binom{n+k}{2 k}+\binom{n+k}{2 k+1}=\binom{n+1+k}{2 k+1} .
$$

These are the coefficients of the classical Morgan-Voyce polynomials $b_{n}(x)$ and $B_{n}(x)$, respectively (see [3], [4]). Namely, we have

$$
b_{n+1}(x)=\sum_{k=0}^{n}\binom{n+k}{2 k} x^{k} \quad \text { and } \quad B_{n+1}(x)=\sum_{k=0}^{n}\binom{n+1+k}{2 k+1} x^{k} .
$$

We shall now prove the following lemma.

Lemma 2.1:

$$
\begin{equation*}
b_{n, k}^{(1)}-b_{n-2, k}^{(1)}=b_{n, k}^{(0)}+b_{n-1, k}^{(0)}, \quad n \geq 2 . \tag{2.11}
\end{equation*}
$$

Proof: From (2.10), for $r=1$, we get

$$
\begin{aligned}
b_{n, k}^{(1)}-b_{n-2, k}^{(1)} & =\binom{n-(m-2) k}{2 k}+\binom{n-(m-2) k}{2 k+1}-\binom{n-2-(m-2) k}{2 k}-\binom{n-2-(m-2) k}{2 k+1} \\
& =\binom{n-(m-2) k}{2 k}+\binom{n-1-(m-2) k}{2 k}=b_{n, k}^{(0)}+b_{n-1, k}^{(0)} .
\end{aligned}
$$

From the last equalities, we get (2.11).

Remark 2: For $m=1$, from (2.11), we obtain (see [5])

$$
B_{n}(x)-B_{n-2}(x)=b_{n}(x)+b_{n-1}(x),
$$

where $B_{n}(x)$ and $b_{n}(x)$ are the classical Morgan-Voyce polynomials.

3. POLYNOMIALS $\boldsymbol{Q}_{n, m}^{(r)}(\boldsymbol{x})$

First, we are going to define the polynomials $Q_{n, m}^{(r)}(x)$, which are the generalization of the polynomials $Q_{n}^{(r)}(x)$ (see [4]). The polynomials $Q_{n, m}^{(r)}(x)$ are given by

$$
\begin{equation*}
Q_{n, m}^{(r)}(x)=2 Q_{n-1, m}^{(r)}(x)-Q_{n-2, m}^{(r)}(x)+x Q_{n-m, m}^{(r)}(x), n \geq m, \tag{3.1}
\end{equation*}
$$

with the initial values

$$
\begin{equation*}
Q_{n, m}^{(r)}(x)=2+n r \text { for } n=0,1, \ldots, m-1, \quad Q_{m, m}^{(r)}(x)=2+m r+x . \tag{3.2}
\end{equation*}
$$

From (3.2) and (3.1), by induction on n, we see that there exists a sequence $\left\{d_{n, k}^{(r)}\right\}$ ($n \geq 0$ and $k \geq 0$) of integers such that

$$
\begin{equation*}
Q_{n, m}^{(r)}(x)=\sum_{k=0}^{[n / m]} d_{n, k}^{(r)} x^{k}, \tag{3.3}
\end{equation*}
$$

where

$$
d_{n, n}^{(r)}= \begin{cases}1, & n \geq 1, \tag{3.4}\\ 2, & n=0 .\end{cases}
$$

From (3.3), we get

$$
Q_{n, m}^{(r)}(0)=d_{n, 0}^{(r)} .
$$

Thus, by (3.1) and (3.2), we have

$$
\begin{equation*}
d_{n, 0}^{(r)}=2 d_{n-1,0}^{(r)}-d_{n-2,0}^{(r)} \quad(n \geq 2), \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
d_{0,0}^{(r)}=2 \text { and } d_{1,0}^{(r)}=2+r . \tag{3.6}
\end{equation*}
$$

Solving (3.5), by (3.6), we obtain

$$
\begin{equation*}
d_{n, 0}^{(r)}=2+n r, n \geq 0 . \tag{3.7}
\end{equation*}
$$

Furthermore, from (3.1), we get

$$
\begin{equation*}
d_{n, k}^{(r)}=2 d_{n-1, k}^{(r)}-d_{n-2, k}^{(r)}+d_{n-m, k-1}^{(r)} \quad(n \geq m, m \geq 1, k \geq 1) . \tag{3.8}
\end{equation*}
$$

In Table 2, we write the coefficients $d_{n, k}^{(r)}$. Thus, from Tables 1 and 2, we see that

$$
d_{n, k}^{(r)}=b_{n, k}^{(r)}+b_{n-1, k}^{(0)}, \quad n=0,1, \ldots, m-1 .
$$

TABLE 2

n / k	0	1	2	\ldots
0	2	\ldots	\ldots	\ldots
1	$2+r$	\ldots	\ldots	\ldots
2	$2+r$	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots
$m-1$	$2+(m-1) r$	\ldots	\ldots	\ldots
m	$2+m r$	1	\ldots	\ldots
$m+1$	$2+(m+1) r$	$4+r$	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots

Now we shall prove the following theorem.
Theorem 3.1: For $n \geq 1$, the following equalities hold:

$$
\begin{align*}
d_{n, k}^{(r)} & =b_{n, k}^{(r)}+b_{n-1, k}^{(0)} \\
& =\binom{n-(m-2) k}{2 k}+\binom{n-1-(m-2) k}{2 k}+r\binom{n-(m-2) k}{2 k+1} . \tag{3.9}
\end{align*}
$$

Proof: In the proof, we use induction on n. For $n=1$, by direct computation, we conclude that (3.9) is true. We assume that (3.9) is true for $n(n \geq 1)$. Then, for $n+1$, we get

$$
\begin{array}{rlrl}
b_{n+1, k}^{(r)}+b_{n, k}^{(0)} & =2 b_{n, k}^{(r)}-b_{n-1, k}^{(r)}+b_{n+1-m, k-1}^{(r)}+2 b_{n-1, k}^{(0)}-b_{n-2, k}^{(0)}+b_{n-m, k-1}^{(0)} \quad[\text { by }(2.8)] \\
& =2\left(b_{n, k}^{(r)}+b_{n-1, k}^{(0)}\right)-\left(b_{n-1, k}^{(r)}+b_{n-2, k}^{(0)}\right)+b_{n+1-m, k-1}^{(r)}+b_{n-m, k-1}^{(0)} \\
& =2 d_{n, k}^{(r)}-d_{n-1, k}^{(r)}+d_{n+1-m, k-1}^{(r)}=d_{n+1, k}^{(r)} & {[\text { by (3.8)]. } .} \tag{3.8}
\end{array}
$$

Now, from (2.10), we obtain (3.9). This completes the proof.
Corollary 1:

$$
d_{n, k}^{(r)}=\frac{n-(m-1) k}{k}\binom{n-1-(m-2) k}{2 k-1}+r\binom{n-(m-2) k}{2 k+1} .
$$

Hence, for $m=1$ and $k>0$, we get (see [4])

$$
d_{n, k}^{(r)}=\frac{n}{k}\binom{n-1+k}{2 k-1}+r\binom{n+k}{2 k+1} .
$$

Corollary 2:

$$
Q_{n, 1}^{(r)}(1)=L_{2 n}+r F_{2 n} \quad(\text { see [4] }) .
$$

Corollary 3:

$$
Q_{n, 1}^{(2 u+1)}(1)=2 P_{n, 1}^{(u)} \quad(\text { see }[4]) .
$$

Theorem 3.2: The polynomials $P_{n, m}^{(r)}(x)$ and $Q_{n, m}^{(r)}(x)$ satisfy the relation

$$
\begin{equation*}
Q_{n, m}^{(r)}(x)=P_{n, m}^{(r)}(x)+P_{n-1, m}^{(0)}(x), \quad n \geq 1 \tag{3.10}
\end{equation*}
$$

Proof: Multiply both sides of (3.9) by x^{k} and sum. Immediately, from (2.4) and (3.3), we obtain (3.10).

Remark 3: For $m=1$, (3.10) becomes (see [4])

$$
Q_{n}^{(r)}(x)=P_{n}^{(r)}(x)+P_{n-1}^{(0)}(x), \quad n \geq 1
$$

Theorem 3.3:

$$
Q_{n, m}^{(0)}(x)=P_{n, m}^{(1)}(x)-P_{n-2, m}^{(1)}(x)
$$

Proof:

$$
\begin{aligned}
& Q_{n, m}^{(0)}(x)=\sum_{k=0}^{[n / m]} d_{n, k}^{(0)} x^{k} \quad[\text { by (3.3)] } \\
& =\sum_{k=0}^{[n / m]}\left(b_{n, k}^{(0)}+b_{n-1, k}^{(0)}\right) x^{k} \quad[\mathrm{by}(3.9)] \\
& =\sum_{k=0}^{[n / m]}\left(b_{n, k}^{(1)}+b_{n-2, k}^{(1)}\right) x^{k} \quad[\mathrm{by}(2.11)] \\
& =P_{n, m}^{(1)}(x)-P_{n-2, m}^{(1)}(x) \quad[\operatorname{by}(2.4)] \text {. }
\end{aligned}
$$

Corollary 4: For $m=1$, we get (see [4])

$$
Q_{n}^{(0)}(x)=P_{n}^{(1)}(x)-P_{n-2}^{(1)}(x)=B_{n+1}(x)-B_{n-1}(x)
$$

Thus, we obtain

$$
Q_{n}^{(0)}(x)=\sum_{k=1}^{n} \frac{n}{k}\binom{n-1+k}{2 k-1} x^{k}+2
$$

REFERENCES

1. R. André-Jeannin. "A Generalization of Morgan-Voyce Polynomials." The Fibonacci Quarterly 32.3 (1994):228-31.
2. R. André-Jeannin. "A Note on a General Class of Polynomials, Part II." The Fibonacci Quarterly 33.4 (1995):341-51.
3. J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electrical Line Theory." In Fibonacci Numbers and Their Applications 1:141146. Ed. G. E. Bergum, A. N. Philippou, \& A. F. Horadam. Dordrecht: Kluwer, 1986.
4. A. F. Horadam. "Polynomials Associated with Generalized Morgan-Voyce Polynomials." The Fibonacci Quarterly 34.4 (1996):342-49.
5. M. N. S. Swamy. "Properties of the Polynomials Defined by Morgan-Voyce." The Fibonacci Quarterly 4.1 (1996):73-81.

AMS Classification Numbers: 11B39, 26A24, 11B83

