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1. INTRODUCTION 

In this note we shall study two classes of polynomials, {P^ix)} and {Q^m(x)}, where r is 
integer. For m = ly these polynomials are the known polynomials P^r\x) (see [1]) and Q^r\x) 
(see [4]). Particularly, P^r\x) and Q^r\x) are the well-known classical Morgan-Voyce polyno-
mials bn(x) and Bn(x) (see [1], [2], [3], [4]). In Section 2 we shall study the class of polynomials 
P^lfix). The polynomials Q%\{x) are given in Section 3. The main results in this paper relate to 
the determination of coefficients of the polynomials P£„(x) and Q^m(x). Also, we give some 
interesting relations between the polynomials P^ix) and Q^m(x). 

2. POLYNOMIALS P%l(x) 

We shall introduce the polynomials P^l(x) by 

with 
tf%(x) = l + nrforn = 0,l9...9m-l9 P%>m(x) = l+mr + x. (2.2) 

So, by (2.1) and (2.2), we find the first (m-f 2)-members of the sequence {P%l(x)}\ 

P0^m(x) = l, /?2(x) = l + r,...,/jf>l(x) = l + iiir + x, 

From (2.3), by induction on n, we see that there exists a sequence {bfy} (n>0 and k > 0) of 
numbers such that 

[n/m] 

k=0 

with b%>k = 0 for k>[n/m]. 
By (2.4), we get 

#£ = #J(0).-- (2-5) 
Let us take x =0 in (2.1). Now, using (2.5), we obtain the following difference equation: 

^ = 2 ^ , 0 - ^ 2 , 0 , n*2,m*l, (2.6) 

with initial values bfy = 1 and ti(\ = 1 + r. 
Solving (2.6), we get 

i $ = l + w, «>0. (2.7) 
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From (2.1), we obtain the following recurrence relation: 

a^eu-eu+eu-i, n>m,k>\. 
Next, we can write the sequence {b^\} into the form of the general triangle: 

TABLE 1 

(2.8) 

nlk 

m 
m + \ 
m + 2 

0 2 3 

1 
1 + r 

\ + {m-\)r 
l + mr 1 

\ + {m + l)r 3 + r 
l + (m + 2)r 6 + 4r 

Remark 1: For m-\ r = 0 and r = 1, Table 1 is exactly the DFF and the DFFX triangle, respec-
tively (see [2], [3]). 

Theorem 2.1: The coefficients bn
r\ satisfy the relation 

n-m 
(2.9) 

s=0 

Proof: We shall use induction on n. By direct computation, we see that (2.9) holds for 
every n = 0,1,..., JW-1 . If we suppose that (2.9) is true for n (n>m), then, from (2.8) for n + \ 
we have 

/, (r) _ 9 / , (r) _ t (r) , r (r) 
"w+1, it _ Z £ 7 « , k °n-l, k + °n+l-m, k-\ 

n-m 
= K,k+ K-l, k+ JL,°S,k-1 + ^n+\-m,k-l ~ K-l,k 

s=Q 

n+l-m 

= *&+ I *?U 
Thus, statement (2.9) follows from the last equalities. D 

One of the main results is given by the following theorem. 

Theorem 2.2: For any n > 0 and any k > 0 such that 0 < k < [n/m], we get 

b{r) _fn-(m-2)k) (n-(m-2)k) 
D»>k-{ 2k yr{ 2k+i y 

(2.10) 

where (f) = 0 for s> p. 
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Proof: We use induction on n. First, from (2.7), we see that (2.10) is true for k = 0. Also, 
if n = 0,1,..., m -1, then k = 0, so (2.10) is true. Assume that (2.10) holds for n -1 (n > m). 
Then, by (2.8) for n, we get 

" w , it _ Z £ V l , k °n-2, k + "/t-w, k-\ ~xn,k+ D^n, k, 

where 

_0fn-l-(m-2)k^ (n-2-(rn-2)k\Jn-m-{m-2){k-l) 
x ^ - \ 2k )-{ 2k ) + { 2k-2 

and 

nfn-l-(m-2)ks\ (n 
y^=2{ 2L1 )-{ 

-2-(m-2)k) (n-m-(m-2)(k-l) 
2k + l + 2k-1 

Next, from the well-known relation 

fMVM;:.1 

we find that 

*".*-(^ 2£ J a n d -^.*-^ 2k+ 1 J' U 

Particular Cases 
For m - 1 and r = 0, and for m = 1 and r = 1, by (2.10), we get 

These are the coefficients of the classical Morgan-Voyce polynomials bn(x) and Bn(x), respec-
tively (see [3], [4]). Namely, we have 

fc=(A / fc=(A / 

We shall now prove the following lemma. 

Lemma 2.1: 

e-e,*=e+e)u, n>i. (2.n) 
Proof: From (2.10), for /• = 1, we get 

j.m urn _(n-(m-2)k\ (n-{m-2)k\ (n-2-(m-2)k) (n-2-(m-2)ks 

*Vt-*Ut-[ 2k )+{ 2k + l )-{ 2k )-{ 2k + l 

^ » - ( ^ - 2 ) ^ + ^ - l - 2 ( r 2 ) ^ = ^ + e ) f c 

From the last equalities, we get (2.11). D 
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Remark 2: For m = 1, from (2.11), we obtain (see [5]) 

BM - Bn_2(x) = bn(x) + bn_x{x\ 

where Bn(x) and bn(x) are the classical Morgan-Voyce polynomials. 

3. POLYNOMIALS Qi%(x) 

First, we are going to define the polynomials <2^(x), which are the generalization of the 
polynomials Q%\x) (see [4]). The polynomials Qi%(x) are given by 

Q£Ux) = 2QPUx)-Q£2,m(x) + xQPm,m(x)> n>m, (3.1) 

with the initial values 

Q£i(x) = 2+nrforn = 0,l,...,m-l, Q%m(x) = 2 + mr + x. (3.2) 

From (3.2) and (3.1), by induction on n, we see that there exists a sequence {d%\} (n>0 and 
k > 0) of integers such that 

[nlm] 

Qft(*)=E<fc**, (3-3) 
k=0 

where 

From (3.3), we get 

Thus, by (3.1) and (3.2), we have 

, v ,1 , n > 1, 

<H. . (3-4) 2, « = 0, 

#J,(o) = <£. 

<l = 24-{o-4\o (n>2), (3.5) 

with 

4 ^ = 2 and d$=2 + r. (3.6) 

Solving (3.5), by (3.6), we obtain 

d£l=2+nr9 n>0. (3.7) 

Furthermore, from (3.1), we get 

< i = ^ l * - # U + # U - i (n>m,m>l,k>iy (3.8) 

In Table 2, we write the coefficients d%\. Thus, from Tables 1 and 2, we see that 

< i = * & + 6 2 U " = 0,l,. . . ,m-l. 
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nlk 

m-l 
m 

m+\ 

TABLE 2 

0 1 
2 

2 + r 
2 + r 

2 + (/w-l)r 
2 + mr 1 

2 + (m + l)r 4 + r 

Now we shall prove the following theorem. 

Theorem 3.1: For n > 1, the following equalities hold: 

_(n~(m-2)k\Jn-\-{m-2)k\^ (n-(rn-2)k\ 
-y 2k y{ 2k yr{ 2&+1 J-

(3.9) 

Proof: In the proof, we use induction on n. For n = 1, by direct computation, we conclude 
that (3.9) is true. We assume that (3.9) is true for n (n > 1). Then, for n +1, we get 

=2(«sa+*s?l*)-(^u+^»)+^w+^w 
= 2 < > k - d W u + ^ U * - i = ̂ U [by (3.8)]. 

Now, from (2.10), we obtain (3.9). This completes the proof. • 

Corollary 1: 
,(r) _n-(m-\)k(n-\-{m-2)k'\ , (n-(m-2)P 
"•k~ jfc ^ 2A-1 J + , \ 2A + 1 

Hence, for m = 1 and A: > 0, we get (see [4]) 

*** -J{2k-l )+r{2k + \, 

Corollary 2: 
&\(l) = L2n+rF2„ (see [4]). 

Corollary 3: 
Q%rl\l) = 2P$ (see [4]). 
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Proof: 

Theorem 3.2: The polynomials P%m{x) and Qn%(x) satisfy the relation 

e ^ ) - ^ W + ̂ (-°UW? n>! (3.10) 
Proof: Multiply both sides of (3.9) by xk and sum. Immediately, from (2.4) and (3.3), we 

obtain (3.10). D 

Remark 3: For m = l, (3.10) becomes (see [4]) 

&'>(*) = #>(*) +/£}(*), n>\. 
Theorem 3.3: 

^U*) = #i(*)-#U*)-
[n/m] 

QM,(x) = S 4 V [by (3.3)] 
[n/m] 

= 10&+«£?u)** [by (3.9)] 
Ar=0 

= ! « + * & . * ) * * [by (2. ll)] 

= # i ( * ) - # U * ) [by(2.4)]. D 

Corollary 4: For /# = 1, we get (see [4]) 

Q?\x) = PPM - P&W = 3*i(*) - 4-i(x). 
Thus, we obtain 
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