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The identity 

1. INTRODUCTION 

!=io,(B+£"1). CD 
k=\ V 

where the C™'s are Eulerian Numbers, was known by Worpitsky [16]. Eulerian numbers satisfy 
the recursive relation 

qr=(i»+i-*)cn1+«ri o 
for 2 < k < m-1 and Cf* = C% = 1. This can be proved by induction, see Stanley [13], and is also 
proved by Carlitz [4], [5] and by Krishnapriyan [11] in different ways. 

nm can also be expressed as a linear combination of binomial coefficients in the form 

»m=XAm(£), (3) 
k=\ 

where the DJ? coefficients satisfy the recursive relation 

D? = k(D£ + Drl) (4) 

for 2 < k < m-1; also Df = 1 and D% = m\, which is not difficult to check using induction. The 
uniqueness of the C and D in formulas (1) and (3) is also easily proved. 

The C numbers form the following triangular array: 
1 

1 1 
1 4 1 

1 11 11 1 
1 26 66 26 1 

where the Pascal-like formation rule is given by formula (2). The D numbers form the array: 
1 
1 2 
1 6 6 
1 14 36 24 
1 30 150 240 120 

where the formation rule for this table is given by formula (4). The D numbers are related to the 
Stirling Numbers of the Second Kind S" by the expression D™ = k\S™, which is easy to prove by 
considering the recursive relation 
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Thus, we can deduce 

which is studied in several combinatorics textbooks, (see, e.g., Aigner [1] or Stanley [13]). 
We can use expressions (1) and (3) to obtain formulas for the sum of powers Sm(ri) = \m + 

2m + • • • + nm. Adding terms, and using the identity 

we deduce 

* » = Z<7fc*i) (5) 
and 

where the C and D coefficients are defined by (2) and (4). Many papers have been written con-
cerning formulas for Sm(n). Perhaps the best known formulas express this sum as a polynomial in 
n of degree m + l with coefficients involving Bernoulli numbers. See, for example, the papers by 
Christiano [6] and by de Bruyn and de Villiers [7]. Burrows and Talbot [2] treat this sum as a 
polynomial in (n + l/2), and Edwards [8] expresses the sums Sm{n) as polynomials in X& and 
Z £ 2 . Formulas (5) and (6) express this sum as linear combinations of binomial coefficients. For-
mula (5) is also discussed by Graham et al. [9]; Shanks [12] deduces (5) by considering sums of 
powers of binomial coefficients. Hsu [10] obtains formula (6) by studying sums of the form 
T!l=0F(n, k)kp for different functions F(n9 k) and expresses these sums as linear combinations of 
the D™ coefficients. 

The combinatorial significance of Eulerian numbers is known. In Section 2 we discuss a 
combinatorial meaning of Dj£ and deduce some nonrecursive formulas for both C and D numbers 
by combinatorial means. 

In Section 3 we show that the C and D numbers satisfy the inversion formulas 

/=oV 
and 

cr=X(-iy(m~f+/W 
We then use these to obtain a number-theoretical result analogous to the well-known fact that 

whenever/? is a prime and l<k <p-l. 
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2. COMBINATORIAL MEANING 

The combinatorial significance of the Eulerian numbers is known. Cp is the number of per-
mutations PiP2---Pm of {1,2,...,/w} that have k-1 ascents [9, pp. 253-58], that is, k-l places 
where Pj<pj+V 

A combinatorial meaning of the D numbers is given by the following proposition. 

Proposition 2.1: Dk is the number of surjective functions from the set {1,2,..., m) onto the set 
{1,2,..., k). 

Proof: Consider the number of w-tuples {a^a2,...,am), where l<az <n, i = 1,2,...,wi. We 
have a total of nm different w-tuples. 

Now, the total number of different w-tuples is equal to the number of /^-tuples whose ele-
ments are equal plus the number of w-tuples whose elements are two different numbers, and so 
on. 

Since the number of subsets of k elements of a set of n elements is given by (£), the number 
of w-tuples whose elements are k different numbers is Ek(n

k), where Ef is the number of 
w-tuples with k different numbers, which is equal to the number of surjective functions from 
{1,2,..., m] onto {1,2, . . . , * } . Hence, 

By unicity of the Dp, we conclude that Dp = Ep. 

We shall now deduce a formula for Dp. 

Proposition 2.2: The number Dp is given by 

Dp = Z-T
Jf r, (7) 

where the sum is taken over all the positive integer solutions of the equation 
xl+x2 + '- + xk =tn. (8) 

Proof: By Proposition 2.1, Dp is the number of surjective functions from {1,2, ...,m} onto 
{1,2,..., &}, so we count the w-tuples formed "using" all the numbers 1,2,..., k. 

To form an w-tuple with the numbers 1,2,..., k, we use the number 1 xx times, the number 2 
x2 times, and so on up to the number k xk times, so that xx + x2 + —h xk = m and xt > 1 for 
i = 1, 2,..., k. For each solution to this equation, we have 

ml 
xx\x2\...xk\ 

ways of ordering the numbers 1,2,..., k in the w-tuple. Therefore, 

DP = Z- ml 
' xx\x2\...xkV 

where the sum is taken over all positive integer solutions of equation (8). 
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Note that the expression 
ml 

is equal to the multinomial coefficient 

( m \ 

which is the coefficient of a^a^2 ...a£k in the expansion of (ax + a2 + —hak)m. For a discussion 
of multinomial expansions, see Tomescu [14, p. 17]. Thus, we have the expression 

4F=EUX,:...: 
Other formulas for both D% and Q1 can be obtained. The expression 

fr-i 
^=i(-iy(J)(*-yr 

can also be obtained by counting functions from {1,2,...,m} onto {1,2,..., k}, see [14, pp. 41-48]. 
The expression 

c?=i(-iy(w,t1)(*-yr 
for the Eulerian numbers appears in papers by Carlitz [4], [5], and by Velleman and Call [15]. 

We are particularly interested in formula (7) because, from it, we can easily deduce that if/? is 
a prime, then 

[1 (mod/?) if* = l, 
JO (mod/?) if 2 <k<p. D£ = L ) , ' •^,1\ (9) 

We will use this result in Section 4. 

3. INVERSION FORMULAS 

In this section we discuss inversion formulas between the C and D numbers discussed above. 
For the purposes of this section, let us extend the definition of the C and D numbers by 

Um+i-kyczf+kcr1 \n<k<m, (l0) 
[0 otherwise, 

and 
j^\KD^l+Drl) \f\<k<m, ( n ) 

[0 otherwise, 

with C\ = D\ = 1. Clearly, these formulas are extensions of (2) and (4) above. For the proof of 
the next theorem, we will use the following identities: 

(m + l)(w + 1 7 * + l"W (12) 
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/• , ^(m + l-k + i^) , (m + l-k+i\ , j , ^(m + l-k + i\ r,^ 
0 + 1)( ,-a.i 1+ i \ = (m-k + 2)\ . ]; (13) j ' + l 

7=0 z<-»CT 1 if* = 0, 
0 if ! < & < « . 

(14) 

Expressions (12) and (13) are easy to verify using the definition of the binomial coefficient, while 
expression (14) is proven by induction (see [14, p. 20, prob. 2.15]). 

Now we state the following theorem. 

Theorem 3.1: The numbers Cf and Z)f are related by the inversion formulas 
k-i 

Am = Z m-k+i C'tn 
k-i 

and 
/=o 

k-l if m-k + i 

i=0 
'k-i • 

(15) 

(16) 

Proof: We first prove (15). This will be done by induction on m. It is easy to verify that 
formula (15) is true for m = 1, so assume it is true for some m. We need to show that 

k-\, y fm + l-k+i i^w+i _ nm+i 
7=0 V 

C'/w+i _ pin 
k-i ~ Uk 

In order to simplify the notation, let 

<€ = l f W + 1r* + l ] c n 1 . Q = C?w, and C ^ C ^ . 
7=0 V / 

By (10), properties of sums, and Pascal's identity, 
k-i 

7 = 0 

k-l 

^ = W « + 1 A : + / j [ ( * - / ) q , + ( i » + 2 - A + / ) Q ] 

7=0 

A r — 1 

ifc-2 

= Z(*-or+17*+, ']q, + Z('»+2-*+oh+17*+,'|Q 

=K*-o 7=0 

fc-1 

7=0 

* - l 

' 7=0 

m-k+i\ (m-k + i 
i r / - i 

Jt-2 

I 
7=0 

Q + ^ ( / I I + 2 - A H - / ) 
m + l - £ + / Q 

m-k+i k-i 

Q-Ii .(m-k + i 
7=1 

7 = 1 

A r - l 

m-k + i 

i 

k-2 

Co 

+ Z(*-0r7_Y' q, + I(w+2-A+o 
7=0 

m + l-k+i Q 

k-2 

7 = 0 ^ ' 7=0 ^ 
Jfc-2 

+ £(*-/-l) 
7=0 

W - & + / + 1 
i 

I 

k-2 

cl+Y,(m+2~k+0 
7=0 

/W + 1-A+/ Q 
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k-l 

Using identity (12), 

rn-k+i k-2 

Co + S 
;=0 

(m + l)\m + l:k + i)-(i + l)(m+}-* + i Q. 

/=o v ) 7=0 a 
Finally, by our induction hypothesis and (11), 

Similar inductive reasoning, using identity (13), proves formula (16). Another way to prove 
(16) is by expressing relations (15) and (16) in matrix form, Cc = d and Dd = c, where 

c = 

fCm\ 
r*m l_2 

. C , V~mJ 

d = 

fDm\ 

D" 

yDmJ 

c= 

(V) ° 
r1) (V) 

#w-l] (m-2 
m-lj [m-2 

0 

0 

and 
f fm-\ 

0 
m-

3 = r1) 
0 

m-2 
0 

m-2['m-2 
m-2 

and verifying that CD = Im, where Im is the mxrn identity matrix. 
The 1,7* term of C is given by 

iJ v-jf 
while the /',7th term of D is given by 

Hence, the 1,7 th term of CD is given by 

If we substitute r for k - 7 , the right-hand side becomes 

0 

0 
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m 

iH>{tr;xv) <i7) 
Now, if r < 0, then (w~y) = 0, and if r > i-j, then ((™Ijfi) = 0. Hence, expression (17) becomes 

!(-<-j?:;)(v> 
which, by (14), is equal to 0 for j +1 < / < m, and equal to 1 if i = j . It is understood that this 
sum is 0 in the case j>i. Therefore, CD =• Im. 

4. CONGRUENCES MODULO A PRIME 

Now let us go back to our result (9), which stated that, ifp is a prime, then 

fl (modz?) if* = l, 
k (0 (mod/?) if2<k<p. v } 

For instance, the fifth row of the table formed by the D numbers is 1, 30, 150, 240, 120, and we 
see that all these numbers, except for the first one, which is equal to 1, are multiples of 5. This is 
analogous to the well-known fact that, ifp is a prime number, then 

p \ \ l (modp) if k = 0 ork = p, 
* J [ 0 (modp) ifl<k<p-l { ) 

We will prove that statement (18) is equivalent to the statement 

C£ s i (mod/0 (20) 

whenever p is a prime and 1 < k < p. For instance, in the fifth row of the table formed by the 
Eulerian numbers, 1, 26, 66, 26, 1, all the numbers are congruent to 1 modulo 5. 

For the proof of the equivalence of these two statements, we will use the following identity, 

gC-f+')-(*-.) 
which is not difficult to verify by induction on n, together with the statement, 

(-1)k_I(fZ1
1)sl (m°d/0, (22) 

which is easy to show using (19) and Pascal's identity (see [3, p. 96. prob. 12]). 
Now we prove the equivalence of statements (18) and (20), which we state as a theorem. 

Theorem 4.1: Ifp is a prime, then statements (18) and (20) are equivalent. 

Proof: Assume that (20) is true. For k = l9 D[ = 1 = 1 (modp). By Theorem 3.1, we have 

*-%{"-!*')<*<• 
Then, using (20) and identity (21), for 2 < k < p, 
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A ' - | ( " - f + ' ) = (/„I).o(modP>. 

Conversely, assume statement (18) is true. By Theorem 3.1 and (22), 

^= | 1 ( - iy ( / ' " l * + ' ) ^*H) t - i ( f : 1
1 ) - i (mod^. 

Theorem 4.1 and the validity of (18) imply the validity of (20). We see that this theorem, 
together with Theorem 3.1, shows a strong relationship between the two sets of numbers C™ and 
D%. We expect this relationship to have a combinatorial significance as well. 
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