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0. INTRODUCTION 

The well-known Lucas formula 

connects the Fibonacci numbers with binomial coefficients. Our interest is to find out what kind 
of numbers are obtained by taking every number r in (1) from a fixed residue class modulo m 
(m = 2,3,...). As a result, a new family of sequences is introduced: the partial, or 1/m-Fibonacci 
numbers. We give here a primary description of these numbers and their generating functions. By 
a similar construction, partial Lucas, Pell, and other specialized Fibonacci-type sequences can be 
obtained. Properties of these number systems will be explained in many respects. 

1. THE BASIC RECURSION 

Given a modulo m (m = 1,2,3,...), we define the (m, k)-Fibonacci numbers as follows: 

F^ = t[n
m7+lck) (* = <U...,*-0, (2) 

wheref = L(»--2ifc)/2iifJ;/i = 2*,2* + l,... . For/? = 1, ...,2&, F^k) = 0 (k>0). Irrespective of 
the value of k or even of m, these numbers may be called \im-Fibonacci numbers or partial Fibo-
nacci numbers. For every natural w, according to (1), 

m - l 

!/***> = FB = /2W>. (3) 

For n<2m, there is F^m,k) = (n~l~l) for all k. We usually disregard (except in §4) the all-zero case 
n = 0. 

Theorem 1: For every m, the sequence {F^m,k^} is the difference sequence of {F^m,k+l^} over k in 
cyclic order, i.e., 

F%k) = F&™> - F^+l) (k<m-1), 
(4) 

Proof: As (jjlj) = (jt) - ("*')» for the r* summand in (2) there obviously is 

(n-mr-k\_(n + 2-mr-k-\\_(n + \-mr-k-\\ ,, _ n 
^ mr + k )-{ mr + k + 1 ) { mr + k + 1 ) K"<m l)> 

(n-mr-m + \\(n + 2-m(r + \)\Jn + \-m{r + \f\ ,t_m_u 
{ mr+m-l )-{ m(r + l) ) { /w(r + l) ) KK~m l) 
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In the last case, for r - 0 the right side is 

(n + 2\ (n + \ o f{ o »-°- D 

Thus, all m sequences {F^k)} form a cyclic set with respect to the difference operator A2 
(see [3]).. 

Theorem 2: For every m and k, the recurrence 

F^=±(-iy(mM:£_s (5) 
5=0 V J 

of order 2m holds. 

Proof: From (4), with n instead of « +1, by consecutive forward substitutions 

and with k - 0 instead of k = m for the transition step (addition modulo m\ we have 

rn ~ rn+4 jLrn+3 "*" rn+2 
_ ^(m^+S) _2J7(m,k+3) 1J7(m,k+3) _ t</w,&+3) _ 
_ rn+6 jrn+5 "*" jrn+4 rn+3 ~ ''' ? 

so that (5) follows after tn-l steps. This can be proved easily by induction. • 

2* FIBONACCI CYCLOTOMIC POLYNOMIALS 

From the recurrence (5), we obtain the characteristic polynomial 

t (-i)'W*2"" -1=(x2 - *r -1=pm(*) (6) 
5=0 V / 

of degree 2m. The polynomials (6) can be called Fibonacci cyclotomic polynomials, as the sub-
stitution u = x(x-1) turns them into the classical cyclotomic polynomials (see [4]). Hence, they 
admit the following factorization over C: 

m-1 

#»(*) = II(*2-*-*/)> (?) 
7=0 

where sJ = cos-^- + / sin ^ - are the values of ^T. The factor x2 - x - 1 (for 7 = 0) whose zeros 
are a = y (1 + V5), fi = 1 - a , is present in all pm(x). The quotient polynomial 

? „ ( * ) = - # B ^ = ! > 2 - * y (8) 

has the first wi lower terms ( - f ^ i ^x^ (h = 0,1,..., m-1) and its (pairwise conjugate) zeros are 

^ , ^ = i(i±VT^); 
(9) 

\(l\-f^M o.u...-» 
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Examples: 
ql(x) = l; q2(x) = x2-x + l; q3(x) - x4 -2x3 + 2x2 - x + 1; 

q4(x) = x6- 3x5 + 4x4 - 3x3 + 2x2 - x +1 = g2(x)(x4 -2x 3 + x2 +1); 

q5(x) = x8-4x7 + 7x6-7x5 +5x4-3x3 + 2x2 - x + 1; 

q6(x) = x10 - 5x9 +1 lx8 -14x7 + 12x6 - 8x5 + 5x4 - 3x3 + 2x2 - x +1 

- ^2(X)%(X)(x4 ~ ^X3 + X + 1). 

The final factorization to quadratic trinomials over R is more difficult: 

q3(x) = (x2 - (1 + A)x 4- M)(x2 - (1 - A)x +1 / M), 

q2(x) 
where 

A = J±(Ji3-l)9 M = ±(jL3+ 1 + ^2(^13-1)); 

B = J±(<Jl7+l), # = ! (Vl7+l + V2(Vl7+l)). 

Solutions of the equation gw(x) = 0 for w < 6 involve radicals V3, V5, VB, V n , and V2l. 

3. GENERATING FUNCTIONS 

Theorem 3: The generating function of the sequence {F^m,k^}, 

/""•*>(x) = X f f l x " ^ (1 p , (10) 
n=2k rm\X) 

where 
rm(x) = x2"1pm(l/x) = (\-xr-x2"'. 

Proof: In the case k =m-l, 

/ ( m , m - . ) ( ^ * ( n ) 

i.e., the series H™=0 
F2m+7+i^ w i t h shifted coefficient sequence (with F£™£[ X) = 1 being the first 

one) is the inverse for rw(x): 
_L_f^-i)(xym(x) = h 

as can be seen from the convolution formulas (see [2], [3]) 

pr U A w - 1 J [o (^=i,...,w). 
Further, it follows from (4) that 
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/<«.*)(,) = l_*/(«.k+i)( x ) (k = 0,\,...,m-2). (12) 

From this, we obtain (10). In particular, 

J { ) rm(x) • 

Now we can verify the identity (3) in terms of generating functions. Indeed, 
rm(x) = (l-x-x2)sm(x), 

where 
m-\ 

sm(x) = x""qm(\lx) = X ^ O - x ) - * - 1 

is exactly the sum of numerators in (10) over all k. Hence, 

(13) 

m-l -1 oo 

I / ( f f a ) ( * ) = r - 7 T = I F„+lx" = f{x). 

4. EXPLICIT EXPRESSIONS: m = 2 

In some simplest cases, it is possible to express the numbers F^m,k^ directly as functions of/?, 
thus giving generalizations of the Binet formula 

F„=±(a"-n- (H) 
For m = 2, denote 

r=Q V / 

and 
L(""I)/4VW 9 nr\ 

r=0 V ' 

(the even and odd semi-Fibonacci numbers). Then, from (6) and (7), the characteristic equation 

p2(x) = (x2-x- l)(x2 - x +1) = 0 

is obtained, whose roots are a, J3 - 1 - a, and £, £ = j - (1 ±ij3). As £6 = 1, there is 

e2-g-\ s3 = -l, g4 = -ey g5 = \-s-~e. 

Using the (extended) initial conditions E0 = D0 = Dx = D2 = 0 and Ex = E2 = E3 = D3 = l in the 
general solution 

£„,/)„ = ^a w + 5 ( l - a f + C ^ + D ( l - ^ , 

we obtain for both En and Dw, 

2a-l 1 1 ^ = - 5 = - 10 2(2a- l ) 2V5' 
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and for En and Dn, respectively (instead of C and D), 

C = -D' = —J-— and C" = -D"= l 

2(2*-1) 2(2*-1)" 
Hence, 

and, in accordance to (3), En + Dn = Fn. The first summand in (15) is exactly F„ 12, whereas the 
differences 

Lc»-i)/2j r , \ , 

S„ = E„-D„= X (-!)r(" ^ ^ ^ i ^ - ^ 1 - ^ " ) 

form a periodic sequence (0,1,1,0, - 1 , -1) modulo 6. (See also [1].) 
The generating functions (11) and (13) are 

fV>°\x) = fiEn+lx" = (l-x)/r2(x) = e(x) 

and 

f^\x) = £i)„+1x" = x2 lr2(x) = d(x), 
n=0 

where r2(x) = (1 - x - x2)(l - x + x2). Then 

l-x-xz e(x) + d(x)=i
 x

 2 = / (») , 

e(x)-d(x) = l—^r=Y(x-x2)" = l + x-x3-x4 + x6 + x7----. 
l-x + x2 £0 

5. PARTIAL LUCAS NUMBERS 

Next we apply our approach to the Lucas numbers 

4=F„_1+Fn+1 = i+
L ( | / 2 J((";:71)+(";'')) . (i6) 

Then a definition of the (m, k) -Lucas numbers, parallel to (2), is 

W'--^-Jik%n
m7^\V)) e*=<u-.-o. (.7) 

where I = l(n-2k)/2m],n= 2k,2k+ 1,.... For n = 0,1,..., 2k, ti™-k) = 0 (k >0), and 4"""0) = 2, 
I%'k) = 0 (* > 0). The formula 

m-l 

k=0 
corresponds to (3). 
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The numbers L(™'k) satisfy conditions analogous to (4) and, consequently, also the basic 
recursion (5). The particular solutions differ from the previous Fibonacci case only because of 
another initial conditions. Thus, for m = 2 (the semi-Lucas numbers), we obtain, instead of (15), 

The differences 8'n = I%>0) - L^ form a periodic sequence (2,1, - 1 , - 2, -1,1) modulo 6. The 
generating functions are 

2-3x + x2 

and 

and their sum (18) is 

r2(x) 

2x2-x3 

„=o r2(x) 

2-x 
Ji I4«*" = ̂ ). I X X n=0 

The general formula that corresponds to (10) here is 

^k\x) = X ffi?*' = x 2"( 1~X )Tt1 ( 2"X ) • (20) 
n=2k rm\X) 

6. N U M E R I C A L R E S U L T S 

We give the values of F^m,k) and l(™,k) for m < 4 in Tables 1 and 2 below. For the negative 
subscripts (in Table 1), formulas (4) were used. 

7* S O M E P R O P E R T I E S 

We mention here without proof the following appealing properties of F^m,k) and I$™'k\ 
discovered after short observations: 

1) F%-k) = (-l)n+lFn
(m>ker); (21) 

2) L^k) = (-l)nL^kQr) (n = mq + r>0, r = 0,1,..., w-1), (22) 
where © is subtraction modulo m; 

3) 4m^ = Fn
(™{kel) + F%ik); (23) 

4) li-m'k) = F(m,k) - F^m,k®(m~2^ (24) 
where © is addition modulo m; 

5) YF^-fi^ (k = 0>l> >m-V> (25) 
} hJ k(

+
mi0)-i (*=*-0; 

6) Z4"H 
y=i 

'r(/w,l) o 
^ « + 2 ^ 
r(/W,ik+l) 

f(m,0) 1 

(* = 0); 
(k = l,...,m-
(k = m-l). 

-2) (26) 
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These examples reveal a remarkable variety of repetition patterns, including the "rotation" 
(twisting) phenomenon. The usual Fibonacci-type formulas are obtained by summation over all k. 

TABLE 1. Numbers F^k) 

n 

-10 

-9 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

FH 

-55 

34 

-21 

13 

-8 

5 

-3 

2 

-1 

1 

0 

1 

1 

2 

3 

5 

8 

13 

21 

34 

55 

89 

144 

233 

377 

610 

987 

1597 

m = 

k=0 

-27 

17 

-11 

6 

-4 

3 

-1 

1 

-1 

0 

0 

1 

1 

1 

1 

2 

4 

7 

11 

17 

27 

44 

72 

117 

189 

305 

493 

798 

:2 

1 

-28 

17 

-10 

7 

-4 

2 

-2 

1 

0 

1 

0 

0 

0 

1 

2 

3 

4 

6 

10 

17 

28 

45 

72 

116 

188 

305 

494 

799 

s* 

1 

0 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

-1 

-1 

k = 0 

-13 

11 

-10 

5 

-1 

1 

-2 

1 

0 

0 

0 

1 

1 

1 

1 

1 

1 

2 

5 

11 

21 

36 

57 

86 

128 

194 

305 

497 

m = 3 

1 

-21 

8 

-5 

6 

-4 

1 

0 

1 

-1 

0 

0 

0 

0 

1 

2 

3 

4 

5 

6 

8 

13 

24 

45 

81 

138 

224 

352 

546 

2 

-21 

15 

-6 

2 

-3 

3 

-1 

0 

0 

1 

0 

0 

0 

0 

0 

1 

3 

6 

10 

15 

21 

29 

42 

66 

111 

192 

330 

554 

k = 0 

-21 

7 

-1 

1 

-3 

3 

-1 

0 

0 

0 

0 

2 

6 

16 

36 

71 

127 

211 

331 

497 

m = 

1 

-20 

15 

-6 

1 

0 

1 

-2 

1 

0 

0 

0 

0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

10 

16 

32 

68 

139 

266 

477 

:4 

2 

-6 

10 

-10 

5 

-1 

0 

0 

1 

-1 

0 

0 

0 

0 

0 

0 

1 

3 

6 

10 

15 

21 

28 

36 

46 

62 

94 

162 

301 

3 

-8 

2 

-4 

6 

-4 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

4 

10 

20 

35 

56 

84 

120 

166 

228 

322 
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TABLE 2. Numbers .!<«•*> 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Fn 

2 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

322 

521 

843 

1364 

m-

k = 0 

2~ 

1 

1 

1 

3 

6 

10 

15 

23 

37 

61 

100 

162 

261 

421 

681 

--2 

1 

0 

0 

2 

3 

4 

5 

8 

14 

24 

39 

62 

99 

160 

260 

422 

683 

»n 

2 

-1 

-2 

-1 

2 

-1 

-2 

-1 

2 

-1 

-2 

k = 0 

2 

3 

8 

17 

31 

51 

78 

115 

170 

260 

416 

m- 3 

1 

0 

0 

2 

3 

4 

5 

6 

7 

10 

18 

35 

66 

117 

195 

310 

480 

2 

0 

0 

0 

0 

2 

5 

9 

14 

20 

27 

37 

55 

90 

156 

273 

468 

Je = 0 

2 

3 

10 

26 

56 

106 

183 

295 

451 

m -

1 

0 

0 

2 

3 

4 

5 

6 

7 

8 

9 

12 

22 

48 

104 

210 

393 

= 4 

2 

0 

0 

0 

0 

2 

5 

9 

14 

20 

27 

35 

44 

56 

78 

126 

230 

3 

0 

0 

0 

0 

0 

0 

2 

7 

16 

30 

50 

77 

112 

156 

212 

290 
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