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1. INTRODUCTION 

While undergoing the study of Square Triangular Numbers (STN), it was observed that there 
are certain triangular numbers (TN) which, although not squares, are "very close" to squares. If 
we restrict this closeness to just unity, we obtain what we shall call "Almost Square Triangular 
Numbers" (ASTN). More precisely, an ASTN is a TN that differs from a perfect square exactly 
by unity. 

The very description of ASTN leads to their two types: first, those TN that exceed a perfect 
square by one; second, those that fall short of a perfect square by one. 

The purpose of this paper is to account for all the ASTN of both types by linking them with 
STN. 

2. SOME PRELIMINARIES 

2.1 (Def.) a-ASTN 

A TN x will be called an ASTN of the type a (a-ASTN) iff x -1 is a perfect square. 
The first ten a-ASTN are: 

10, 325, 11026, 374545, 12723490, 432224101, 14682895930, 
498786237505, 16944049179226, and 575598885856165. 

2.2 (Def.) jff-ASTN 

A T N j will be called an ASTN of the type (5 (/?-ASTN) iff y +1 is a perfect square. 
The first ten jfl-ASTN are: 

3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726276, and 20720703. 

We will need the following notations: 

an = the n* a-ASTN, fin = the nxh /?-ASTN, tn = the «th STN, 

Un = JTn* an = {an~\f\ bn = <Jin + \f2. 
We will also need the results (in addition to the well-known fact that x is a triangular number 

iff 8x +1 is a perfect square) from our earlier works: 

Un^6Un_x-Un_2 (from[l]); (2.1) 

U^Un+l + l = U2
n (from [2]). (2.2) 

3. THE a-ASTN 

Our first result paves the way for constructing an a-ASTN using a given STN, thus guaran-
teeing the infinitude of the set of all a-ASTN. 
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Lemma 3.1: If x is an STN, then 9x +1 Is an a-ASTN. 

Proof: Note that 8(9x + l) + l = (3V8x + l)2. Since x is a TN, 8x + l must be a perfect 
square, thus making 9x + l a TN. Moreover, x itself is a perfect square, say z2, so 9x + l = 
(3z)2 +1, which means that 9x +1 is an a-ASTN. D 

That this construction indeed exhausts all the a-ASTN is confirmed by the following result. 

Lemma 3.2: If x is an a-ASTN, then (x -1) / 9 must be an STN. 

Proof: In order that the lemma may make any sense, we must ensure that x - 1 is indeed a 
multiple of 9. For this, we note that whenever x is an a-ASTN, x - 1 is a perfect square. As a 
result, 8x = 8, 7,4,1 (mod 9). On the other hand, whenever x is a TN, 8x +1 is a perfect square. 
Thus, 8x = 8,0, 3, 6 (mod 9). Therefore, x = 1 (mod 9). Let (x -1) / 9 = z. Clearly, z is a perfect 
square. Also, 8z +1 = (8x +1) / 9 is a perfect square. This means that z is a TN and, hence, an 
STN. D 

Our next result establishes a direct link between an and tn. In what follows, n will always 
denote an arbitrary natural number. 

Theorem 3.1: an = 9tn + l. 

Proof: First, note that a1 = 10=9f1 + l. Assume the assertion is true for n = k, so that 
ak = 9tk+l. If possible, let ak+l * 9tk+l +1. But (ak+l -1) / 9 is an STN (by Lemma 3.2), so let 
(ak+i ~ 1) I ̂  - tm for some m. We have ak+l > an so that tm>tk. This means m>k. But m can-
not be equal to k +1 (by our assumption), so m > k +1. Also, 9tk+l +1 is an a-ASTN (by Lemma 
3.1), so let 9tk+l + \-ap for some p. We have tk < tk+l < tm. This leads to ak<ap< ak+l, an 
absurdity. Hence, by mathematical induction, an-9tn + \. • 

4. THE ^-ASTN 

As in the case of the a-ASTN, our first attempt would be toward constructing a /7-ASTN 
from STN. But here, unlike the case of a-ASTN, we need two consecutive STN. First, we will 
need the following auxiliary results. 

Lemma 4.1: 4UnUn+1 +1 = (Un+l - Unf. 

Proof: We have 
U2

n=U„^U„+l + l [by (2.2)] 

= 6U„Un+l-U2
n+l + l [by (2.1)]. 

Hence, 4UnUn+l + l = (U„+l-U„)2. 0 

Lemma 4.2: W„U„+1 +1 = (Un+1 + U„)2. 

Proof: Proceed as in Lemma 4.1. • 

Lemma 4.3: Un+l = 1Un + ftU2
n+\. 
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Proof: While proving Lemma 4.1, we found that U2 - 6Un+1Un - U2
+l +1. This yields 

(Un+l-3Un)2=W2„+l. ButU^SU^Ut-U^O. Hence, 

Un+l-3Un = ^U2 + h D 

Theorem 4.1: (Un+l-2Un)2-1 is a ^-ASTN. 

/*w/ - Let 
x = (C/w+1 - 2Unf -1 = {Un + V8C/w2 + l f - 1 (by Lemma 4.3). 

Thus, 8x + l = {8{/w + y8£/2 + lJ , a perfect square. As a result, x is a TN and, consequently, 
(C/w + 1-2C/J2-lisa^-ASTN. • 

Theorem 4.1 guarantees the infinitude of the set of all /?-ASTN, but it does not guarantee 
that this construction accounts for all the /7-ASTN. In fact, it cannot do so because there do exist 
/?-ASTN that cannot be obtained by the application of this theorem, e.g., the very first /?-ASTN 
viz. 3 cannot be expressed as (Un+l -2Un)2 - 1 for any n. 

In fact, there are infinitely many such exceptions viz. 3, 120, 4095, ... (i.e., all the odd-
indexed /?-ASTN). Of course, all the even-indexed /7-ASTN are taken care of by the above 
theorem. 

Theorem 42: (Un+l -4Un)2 -1 is a /?-ASTN. 

Proof: Let 
y - (Un+l ~AUnf - 1 = yW2

n+l -Unf -1 (by Lemma 4.3). 

Hence, 8y + l = [mn ~^U2 + l}2, so that y is a TN. This means that (C/w+1-4f/w)2-1 is a 
/?-ASTN. D 

It appears that Theorems 4.1 and 4.2 jointly account for all the /7-ASTN. The same is con-
firmed by the following theorem. 

Theorem 43: h2n = Un+l-2U„ and hln_x = Un+l-4Un. 

Before attacking the proof of Theorem 4.3 (our main theorem), we must prove the following 
three lemmas. 

Lemma 44: lfb2-l is a ^-ASTN, then either {(i? + £)/7}2 or {(R-h)/7}2 must be an STN, 
where i? = (8£2-7)1/2. 

Proofs For this lemma to make any sense, we have to ensure that either (R + b)ll or 
{R-h)ll must be an integer. To this end, we argue that whenever h2 -1 is a /?-ASTN, b2 -1 is 
a TN, so %(b2 -1) +1 = R2 must be a perfect square. Thus, R is an integer. Also (R - b)(R + b) = 
l{b2 -1). This ensures that (R-b) 11 or (R + b)/1 is an integer. 

Case 1. Let (R + b)/I be an integer, say x. Then 8x2 +1 = {(8A + R)17}2, a perfect square. 
Hence, x2 must be a TN. This means that {{R + b) 11}2 is an STN. 
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Case 2. Let (R - ft) 17 be an integer, say y. Then Sy2 +1 = {(8ft - R) 17}2, a perfect square. 
Hence, y2 must be a TN. This means that {(R-b)/7}2 is an STN. Now, we claim that 
(R + b)/7 and (R-b)/7 cannot both be integers at the same time. For, if the contrary is true, 
then {(R + b)/7}{(R-h)/7} = (h2-l)/l, which means that b2-\ is a multiple of 7. Also, 
{(R + b) 17} - {(R - b) 17} = 2b 17, which would mean b is a multiple of 7. This leads to a con-
tradiction. • 

Lemma 4.5: If b2 -1 is a /7-ASTN and i? - b is a multiple of 7, then 6 = Um+l -2Um for some wi. 

Proof: By Lemma 4.4, {(R-b)/ 7}2 is an STN. Hence, (R-b)/7 = Um for some m, so that 
(b-Um)2 = 8t/2 +1. We claim that ft >Um, otherwise b will become £/m - (8t/2 +1)1/2 which is 
negative, an absurdity. Thus, ft - £/w = (8£/2 +1)1/2, i.e., b = Um+1 -2Um (by Lemma 4.3). • 

Lemma 4.6: If b2 -1 is a /?-ASTN and i? + 6 is a multiple of 7, then ft = Uk+l -4Uk for some &. 

Proof: As before, (R + b)l7 = Uk for some *, so that b = -Uk+ (8C/| +1)1/2. D 

Proof of Theorem 4.3: Define the sequences (xr) and (yr), respectively, by xr = Ur+l-4Ur 

and yr = Ur+l - 2Ur. Clearly, for each r, xr < yr. Also, 

xr+1 - Ur+2-4Ur+l = 2C/r+1 -C/r - j r + (Ur+l + J7r) > yr. 

Thus, xr < j r < xr+1 < yr+l. Hence, the sequence (zr), defined by z2r_x = xr and z2r - yr, is mono-
tonically increasing. We claim that the sequence <ft„) is a subsequence of the sequence 
{zn) because, for any n, either (Rf7+b)/7 or (Rn-b)/7 is equal to Uk for some k [where 
Rn = (Sb2- 7)1/2]. Thus, h„ = Uk+l-2Uk or bn = Uk+l-4Uk. Also, by Theorems 4.1 and 4.2, for 
each r, j r = bm and xr = bk for some /w and k. Hence, (zn) and <ftw) are identical. D 

We conclude by rewriting the statement of Theorem 4.3 in a more useful form, as follows. 

Corollary: p2n = {Un+l-2Un)2-I and P2n^(Un+l-4Un)2-I. 
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