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Diophantus studied the following problem: Find three (rational) numbers such that the 
product of any two increased by the sum of those two gives a square. He obtained the solutions 
{4,9,28} and {jl,,-y, ̂ } (see [3]). Euler treated the same problem with four numbers (see [2]). 
He found the solution {^, ^ , ^ , y}. Indeed, we have 
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In the present paper we will construct the set of five numbers with the above property. 
Let {xh ..., xm) be the set of rational numbers such that xtXj +xi-hxJ is a perfect square for 

all \<i <j<m. Since 
XjXj + Xi + Xj = (Xf +l)(Xj + 1 ) - 1 , 

if we put xtr + 1 = axf, / = 1,..., m, we obtain the set {a/r,..., am} with the property that the product of 
its any two distinct elements diminished by 1 is a perfect square. Such a set is called a (rational) 
Diophantine m-tuple with the property D(-l) (see [4], p. 75). If az's are positive integers, such a 
set is also called a P_x-set of size m. The conjecture is that there does not exist a P^-set of size 4. 
Let us mention that in [1], [6], and [7] it was proved that some particular P_rsets of size 3 cannot 
be extended to a P^-set of size 4. In [5], some consequences of the above conjecture were 
considered. 

We will derive a two-parametric formula for Diophantine quintuples and, as a consequence, 
we will obtain a rational Diophantine quintuple with the property D(-l). 

We will consider quintuples of the form {A, B, C, D, x2} with the property D(ax2), where A, 
B, C, D, x, and a axe integers. Furthermore, we will use the following simple result known 
already to Euler: If BC+n = k2, then the set {B, C, B + C ± 2k} has the property D(n). 

Therefore, if we assume that 

BC + ccx2 = k2, A = B + C-2k, D = B + C + 2k, 

then the set {A, B, C, D, x2} has the property D(ax2) if and only if AD + ax2 is a perfect square. 
Hence, we reduced the original (2) = 10 conditions to only two conditions: 

(b2-a)(c2~a) + ax2 = k2, (1) 

(a2-a)(d2-a) + ax2=y2. (2) 

312 [NOV. 



AN EXTENSION OF AN OLD PROBLEM OF DIOPHANTUS AND EULER 

Our assumptions 
(b2 -a) + (c2 - a)-2k = a2 -a, (b2 - a) + (c2 - a) + 2k = d2 - a 

imply that 4k = (d + a)(d - a). Let d + a = 2p and d - a = 2r. This implies that k-pr and 

b2 +c2-a = | ( a 2 +d2) = p2 +r2. (3) 

Let us rewrite condition (2) in the form (ad - a)2 - aid - a)2 -y2 - ax2. Thus, we may take 
y-ad-a, x-d-a-2r. (4) 

Substituting (3) and (4) into (1), we obtain 

p2r2 - b2c2 - Aar2 - a(b2 + c2 - a) = a(3r2 -p2). (5) 

At this point we make the further assumption [motivated by (3) and (5)]: 
h + c = p+r. (6) 

Now (3) implies 

and (5) implies 

Adding (7) and (8) yields 

pr-hc = f, (7) 

pr + bc = 2(3r2-p2). (8) 

a = 4p2 + 4pr-l2r2. (9) 

From (6) and (7), we conclude that b and c are the solutions of the quadratic equation 

z2-(p+r)z + (pr-^j = 0. 

The discriminant of this equation has to be a perfect square. Thus, 

(p-r)2 + 2a = q2. (10) 

Substituting (9) into (10) we have, finally, 
(3p+r)2-24r2 = q2. (11) 

Hence, we reduce our problem to the solving of (11). However, the general solution of 
the equation u2 - 24v2 = w2 with (u, v,w) = l is given by 

u = e2+6f2, v = ef, w = \e2-6f2\ 

or 

u = 2e2+3f2, v = ef, w = \2e2-3f2\ 

(see [8], p. 225). Thus, we have proved 

Theorem 1: If e = 0 (mod 3) or e = f (mod 3), then the set 

{l(e2 + 6 * / - 1 8 / 2 ) ^ 

f\e-2f)(5e + 6f)^(e2
+4ef-6f2)(6f2

+4ef-e2X4e2/2} 
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has the property D(fe2f2(e2-ef-3f2)(e2+2ef-l2f2)), andtheset 

{±(9f2+6ef-2e2)(2e2
+2ef-f2),±e2(5f-2e)(2e + 3f), 

f2(e+f)(5e - 3/), 1 (3 / 2 + 4ef - 2e2)(2e2 +4ef - 3f2), 4e2f} 

has the property D(fe2f2(e2 -ef- 3/2)(4e2 + 2ef - 3/2)) . 

Substituting e = 5 and / = 2 in (12), we obtain the following two corollaries. 

Corollary 1: The set {^,^-,j^,^,^} ls a rational Diophantine quintuple with the property 
£>(-l). 

Corollary 2: The five numbers —jjj, ^ , ^J, 9, ^ have the property that the product of any two of 
them increased by the sum of those two gives a perfect square. 
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