AN EXTENSION OF AN OLD PROBLEM OF DIOPHANTUS AND EULER

Andrej Dujella
Dept. of Math., University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
(Submitted January 1998)

Diophantus studied the following problem: Find three (rational) numbers such that the product of any two increased by the sum of those two gives a square. He obtained the solutions $\{4,9,28\}$ and $\left\{\frac{3}{10}, \frac{21}{5}, \frac{7}{10}\right\}$ (see [3]). Euler treated the same problem with four numbers (see [2]). He found the solution $\left\{\frac{65}{224}, \frac{9}{224}, \frac{9}{56}, \frac{5}{2}\right\}$. Indeed, we have

$$
\begin{array}{ll}
\frac{65}{224} \cdot \frac{9}{224}+\frac{65}{224}+\frac{9}{224}=\left(\frac{131}{224}\right)^{2}, & \frac{65}{224} \cdot \frac{9}{56}+\frac{65}{224}+\frac{9}{56}=\left(\frac{79}{112}\right)^{2}, \\
\frac{65}{224} \cdot \frac{5}{2}+\frac{65}{224}+\frac{5}{2}=\left(\frac{15}{8}\right)^{2}, & \frac{9}{224} \cdot \frac{9}{56}+\frac{9}{224}+\frac{9}{56}=\left(\frac{51}{112}\right)^{2}, \\
\frac{9}{224} \cdot \frac{5}{2}+\frac{9}{224}+\frac{5}{2}=\left(\frac{13}{8}\right)^{2}, & \frac{9}{56} \cdot \frac{5}{2}+\frac{9}{56}+\frac{5}{2}=\left(\frac{7}{4}\right)^{2} .
\end{array}
$$

In the present paper we will construct the set of five numbers with the above property.
Let $\left\{x_{1}, \ldots, x_{m}\right\}$ be the set of rational numbers such that $x_{i} x_{j}+x_{i}+x_{j}$ is a perfect square for all $1 \leq i<j \leq m$. Since

$$
x_{i} x_{j}+x_{i}+x_{j}=\left(x_{i}+1\right)\left(x_{j}+1\right)-1,
$$

if we put $x_{i}+1=a_{i}, i=1, \ldots, m$, we obtain the set $\left\{a_{i}, \ldots, a_{m}\right\}$ with the property that the product of its any two distinct elements diminished by 1 is a perfect square. Such a set is called a (rational) Diophantine m-tuple with the property $D(-1)$ (see [4], p. 75). If a_{i} 's are positive integers, such a set is also called $a P_{-1}$-set of size m. The conjecture is that there does not exist a P_{-1}-set of size 4 . Let us mention that in [1], [6], and [7] it was proved that some particular P_{-1}-sets of size 3 cannot be extended to a P_{-1}-set of size 4. In [5], some consequences of the above conjecture were considered.

We will derive a two-parametric formula for Diophantine quintuples and, as a consequence, we will obtain a rational Diophantine quintuple with the property $D(-1)$.

We will consider quintuples of the form $\left\{A, B, C, D, x^{2}\right\}$ with the property $D\left(\alpha x^{2}\right)$, where A, B, C, D, x, and α are integers. Furthermore, we will use the following simple result known already to Euler: If $B C+n=k^{2}$, then the set $\{B, C, B+C \pm 2 k\}$ has the property $D(n)$.

Therefore, if we assume that

$$
B C+\alpha x^{2}=k^{2}, \quad A=B+C-2 k, \quad D=B+C+2 k,
$$

then the set $\left\{A, B, C, D, x^{2}\right\}$ has the property $D\left(\alpha x^{2}\right)$ if and only if $A D+\alpha x^{2}$ is a perfect square. Hence, we reduced the original $\binom{5}{2}=10$ conditions to only two conditions:

$$
\begin{align*}
& \left(b^{2}-\alpha\right)\left(c^{2}-\alpha\right)+\alpha x^{2}=k^{2}, \tag{1}\\
& \left(a^{2}-\alpha\right)\left(d^{2}-\alpha\right)+\alpha x^{2}=y^{2} . \tag{2}
\end{align*}
$$

Our assumptions

$$
\left(b^{2}-\alpha\right)+\left(c^{2}-\alpha\right)-2 k=a^{2}-\alpha, \quad\left(b^{2}-\alpha\right)+\left(c^{2}-\alpha\right)+2 k=d^{2}-\alpha
$$

imply that $4 k=(d+a)(d-a)$. Let $d+a=2 p$ and $d-a=2 r$. This implies that $k=p r$ and

$$
\begin{equation*}
b^{2}+c^{2}-\alpha=\frac{1}{2}\left(a^{2}+d^{2}\right)=p^{2}+r^{2} \tag{3}
\end{equation*}
$$

Let us rewrite condition (2) in the form $(a d-\alpha)^{2}-\alpha(d-a)^{2}=y^{2}-\alpha x^{2}$. Thus, we may take

$$
\begin{equation*}
y=a d-\alpha, \quad x=d-a=2 r . \tag{4}
\end{equation*}
$$

Substituting (3) and (4) into (1), we obtain

$$
\begin{equation*}
p^{2} r^{2}-b^{2} c^{2}=4 \alpha r^{2}-\alpha\left(b^{2}+c^{2}-\alpha\right)=\alpha\left(3 r^{2}-p^{2}\right) \tag{5}
\end{equation*}
$$

At this point we make the further assumption [motivated by (3) and (5)]:

$$
\begin{equation*}
b+c=p+r . \tag{6}
\end{equation*}
$$

Now (3) implies

$$
\begin{equation*}
p r-b c=\frac{\alpha}{2} \tag{7}
\end{equation*}
$$

and (5) implies

$$
\begin{equation*}
p r+b c=2\left(3 r^{2}-p^{2}\right) \tag{8}
\end{equation*}
$$

Adding (7) and (8) yields

$$
\begin{equation*}
\alpha=4 p^{2}+4 p r-12 r^{2} \tag{9}
\end{equation*}
$$

From (6) and (7), we conclude that b and c are the solutions of the quadratic equation

$$
z^{2}-(p+r) z+\left(p r-\frac{\alpha}{2}\right)=0
$$

The discriminant of this equation has to be a perfect square. Thus,

$$
\begin{equation*}
(p-r)^{2}+2 \alpha=q^{2} \tag{10}
\end{equation*}
$$

Substituting (9) into (10) we have, finally,

$$
\begin{equation*}
(3 p+r)^{2}-24 r^{2}=q^{2} \tag{11}
\end{equation*}
$$

Hence, we reduce our problem to the solving of (11). However, the general solution of the equation $u^{2}-24 v^{2}=w^{2}$ with $(u, v, w)=1$ is given by

$$
u=e^{2}+6 f^{2}, \quad v=e f, \quad w=\left|e^{2}-6 f^{2}\right|
$$

or

$$
u=2 e^{2}+3 f^{2}, \quad v=e f, \quad w=\left|2 e^{2}-3 f^{2}\right|
$$

(see [8], p. 225). Thus, we have proved
Theorem 1: If $e \equiv 0(\bmod 3)$ or $e \equiv f(\bmod 3)$, then the set

$$
\begin{align*}
& \left\{\frac{1}{3}\left(e^{2}+6 e f-18 f^{2}\right)\left(2 f^{2}+2 e f-e^{2}\right), \frac{1}{3} e^{2}(e+5 f)(3 f-e)\right. \\
& \left.f^{2}(e-2 f)(5 e+6 f), \frac{1}{3}\left(e^{2}+4 e f-6 f^{2}\right)\left(6 f^{2}+4 e f-e^{2}\right), 4 e^{2} f^{2}\right\} \tag{12}
\end{align*}
$$

has the property $D\left(\frac{16}{9} e^{2} f^{2}\left(e^{2}-e f-3 f^{2}\right)\left(e^{2}+2 e f-12 f^{2}\right)\right)$, and the set

$$
\begin{align*}
& \left\{\frac{1}{3}\left(9 f^{2}+6 e f-2 e^{2}\right)\left(2 e^{2}+2 e f-f^{2}\right), \frac{1}{3} e^{2}(5 f-2 e)(2 e+3 f),\right. \tag{13}\\
& \left.f^{2}(e+f)(5 e-3 f), \frac{1}{3}\left(3 f^{2}+4 e f-2 e^{2}\right)\left(2 e^{2}+4 e f-3 f^{2}\right), 4 e^{2} f^{\prime}\right\}
\end{align*}
$$

has the property $D\left(\frac{16}{9} e^{2} f^{2}\left(e^{2}-e f-3 f^{2}\right)\left(4 e^{2}+2 e f-3 f^{2}\right)\right)$.
Substituting $e=5$ and $f=2$ in (12), we obtain the following two corollaries.
Corollary 1: The set $\left\{\frac{13}{40}, \frac{25}{8}, \frac{37}{10}, 10, \frac{533}{40}\right\}$ is a rational Diophantine quintuple with the property $D(-1)$.

Corollary 2: The five numbers $-\frac{27}{40}, \frac{17}{8}, \frac{27}{10}, 9, \frac{493}{40}$ have the property that the product of any two of them increased by the sum of those two gives a perfect square.

REFERENCES

1. E. Brown. "Sets in Which $x y+k$ Is Always a Square." Math. Comp. 45 (1985):613-20.
2. L. E. Dickson. History of the Theory of Numbers 2:518-19. New York: Chelsea, 1966.
3. Diophantus of Alexandria. Arithmetics and the Book of Polygonal Numbers, pp. 85-86, 21517. Ed. I. G. Bashmakova. Moscow: Nauka, 1974. (In Russian.)
4. A. Dujella. "On Diophantine Quintuples." Acta Arith. 81 (1997):69-79.
5. A. Dujella. "On the Exceptional Set in the Problem of Diophantus and Davenport." In Applications of Fibonacci Numbers 7. Dordrecht: Kluwer, 1998.
6. K. S. Kedlaya. "Solving Constrained Pell Equations." Math. Comp 67 (1998):833-42.
7. S. P. Mohanty \& A. M. S. Ramasamy. "The Simultaneous Diophantine Equations $5 y^{2}-20=$ x^{2} and $2 y^{2}+1=z^{2} . " J$. Number Theory 18 (1984):356-59.
8. T. Nagell. Introduction to Number Theory. Stockholm: Almqvist; New York: Wiley, 1951.

AMS Classification Number: 11D09

