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1. BACKGROUND 

Properties of representation number sequences {2S„}, {%,} associated with the Morgan-
Voyce polynomials Bn(x) and the related polynomials Cn(x) were recently investigated in [1]. 
Hopefully, the notation and references in [1] will be accessible to the reader. 

Complementary properties of the number sequences {bn}, {cn} associated with the Morgan-
Voyce polynomials hn(x) and the related polynomials cn{x) are now explored. 

With x = 1 in these just-mentioned polynomials, we define the resulting numbers by 

K^K-x-K-i, h = \,bx = \, (i.i) 
and 

c « = 3 ^ r V 2 » % = -\ <i = l. (1-2) 
Accordingly, these numbers are 

H = 0 1 2 3 4 5 6 7 8 . . . , 
bn = 1 1 1 5 13 34 89 233 610 ..., (1.3) 
cn = -1 1 4 11 29 76 199 521 1364 .... 

Consider now the unit coefficient representation sums for bn, cn analogous to those for Bn, 
Cn [1]. Irrespective of the uniqueness or otherwise of the representations (and of questions of 
minimality or maximality), we may assert that, for the representation number sequences {fo„}, 

K = tJK=F2n = FnLn (1.4) 
7 = 1 

and 

/=i 

^ XyM n uuu, 
i, = Z ^ = ^ . - 2 = i " (1-5) 

in terms of the Fibonacci and Lucas numbers F„, Ln. 
Elements of {b„}, {c„} are thus 

1 3 4 5 6 7 8 ..., 
(1.6) 

Why, we may ask, are these numbers worthy of our consideration? Firstly, as mathematical 
constructs they have an inherent interest to the inquiring mind ("because they are there"!). 
Secondly, as the theory—necessarily compact—unfolds, they add a little, however modest, to our 
knowledge of number relationships. Moreover, they complete the theme initiated in [1]. 

n = 0 
b„ = 0 
c„ = 0 

1 2 
1 3 
1 5 

3 4 
8 21 
16 45 

5 
55 
121 

6 7 
144 377 
320 841 

8 
987 
2205 
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2. PROPERTIES OF h , cn 
W ? ft 

One may readily establish the fundamental infrastructure of these two number systems, details 
of which are herewith reported (in pairs, for comparison). 
Recurrences: 

K=3K-i-^n-2, (2.1 
cn = 3c^1-c l_2+2. (2.2 

Binet forms: 

Generating functions: 

Simson formulas: 

Summations: 

In _ oln 
K= a_P

p {ap = \ap=-l\ (2.3 

cn = a2n+j32n-2. (2.4 

J^b^-^ll-iSx-x2)]-1, (2.5 

f ] c^7"1 = (1 + x)[l - (4x - 4x2 + X3)]"1. (2.6; 
7 = 1 

b ^ i b ^ - b ^ - 1 , (2.7; 

c„+ic„-i-c^ = l-2c„. (2.8 

I b ( = F M - l , (2.9; 
7 = 1 

I c , = Z2„+1-(2« + l), (2.10; 
7=1 

i b 2 , = | ( i | „ + 1 - 5 ) , (2.11 
7=1 

I c 2 / = F4n+2-(2« + l), (2.12; 
7 = 1 

2 X - i = ^ , (2.13 
7 = 1 

Zc2,_1 = F4„-2», (2.14; 
7 = 1 

i(-tf+%=jv-(-iri*»iL (2.i5 
7 = 1 

I(- l) / + 1c ,=(-l)"[ l-F2„+ 1] . (2.16; 
7 = 1 
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Other simple properties: 
(2.17) 
(2.18) 

(2.19) 
(2.20) 

(2.21) 
(2.22) 

(2.23) 
(2.24) 

^ - ^ 1 = ^4-2 = ^ 2 - 1 ^ 1 - (2-25) 

K 
c„ 

C-„ = 

-K-i 
- c - i 

b«+b«+l = 

«n + c - i = 

K 
<v 

b - 2 

~ C - 2 

«»» 

= F2n-
= L2„-

: ^ 2 w - l 

5^2n-l 

= ^ „ -
= 5F2„. 

-1? 

1> 

also, 

" 4 , 

-2? 

-2? 

3. THE REPRESENTATION GRIDS 

Next, we introduce the concepts 
b n = b » + l + b - l 

= 3b„ = 3F2„ = wn-®>„_l, 
and 

(3.1) 

(3.2) 

on invoking [1]. 
Repeating the summation process developed in [1], i.e., bj,' = hf

n+l +bf
rl_l, we eventually arrive 

at the more general notations 

b<"> = b£>1+b<3 (b f=b„ ) , (3.3) 
and 

ciffl) = « + cW (<f = c„). (3.4) 

As in [1], these data can be organized in (representation) grids for b ^ and c^\ where m 
denotes columns and n rows. 

Various approaches allow us to validate the properties recorded below, some of which are 
readily obtainable from the patterns in the rectangular grids, which the reader should construct for 
visual emphasis and clarification of the theory. 
Zero subscripts: 

bW = 0 = S8(
0
0), (3.5) 

c(m) = 2(3W -2™) = 288(
0
7w) = -2%^ by [1]. (3.6) 

Negative subscripts: 
b ^ = -b lm ) , (3.7) 
c£? = c£»>. (3.8) 
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Recurrences: 

(columns) 

(rows) \ 

fbS">=3bS3-b&, 
{cW = 3cW-cW+2'"+1, 

b™ = 3»'bn = 3'»F2„ <=1h<T\ 
cim) = 3mc„ + clm). 

Binetforms: 

Generating functions: 

b{^ = y{a2n-p2n)l{a-P), 

c(™) = 3m(a2"+J32")-2m+l. 

£ bf "V - 1 = 3m[l - (3x - x2)]-1, 
;=1 

£ CWJC'-I = 3»(3 _ 2JC)[1 - (3x - x2)]"1 - 2m+1. 
;=1 

Simson formulas: 

Summations: 

bl:),b(-),-(b(„w))2=-32m
) 

c & a - l c ^ ) 2 = 3m{3m-5-2^L2n). 

Ib<")=3»(F2 B r t - l ) , 
1=1 

Xc,(m) = 3m(Z2„+1-l)-2'"+1». 

O f̂ter simple properties: 
1=1 

b ^ + b ^ - Z ^ also, 
c « + c«=3m-5F2„_1-2(3'" + 2'"), 

c W_ b (m) = 2 aW. 

4. FOREGROUND 

1. Augmented Sequence 
Let us now recall, as in [1], the augmented sequence {2S* (a, 6, k) = 2S*} defined by 

2T„+2 (a, 6, A) = 3SC+1 (a, *, *) - % (a, *,*) + *. (4.1) 
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Initially, assume 

®*(a,b,k) = a, ®*2(a,b,k) = b. (4.2) 

Hence, 

2C+1(l,3,0) = b„, (4.3) 
and 

8S;+1(l,5,2) = c„, (4.4) 
while 

®>*n+l(l,2,0) = bn, (4.5) 

and 

a;+1(l,4,0) = c„. (4.6) 

2. Brahmagupta Polynomials 
Very recently, Suryanarayan showed in [4] and [5] how, by means of the Brahmagupta 

matrix, to generate polynomials xn and yn (Brahmagupta polynomials) which include inter alia 
Fibonacci, Pell, and Pell-Lucas polynomials, as well as the Morgan-Voyce polynomials Bn(x) - xn 

and bn(x) - yn described in [1] and [2]. 
Suppose we express the vital difference equations [4, eqn. (8)], [5, eqn. (9)] in a slightly 

varied notation as 
xn+i = Px„ - Q v i , yn+i = Pyn - Qyn-i • (4.7) 

Selecting P = x + 2, Q = 1, xx -2, x2 = P, and yx = - 1 , y2 -\ (so y3 = x + 3) in (4.7), we readily 
come to the polynomials Cn(x) = xn and cn(x) = yn, which [1], [2] are adjunct to Bn(x) and bn(x). 

3. Further Developments 
These might profitably include, for instance, 
a) properties of b_m c_n (n > 0), 
b) extension of the theory to polynomials b„(x), c„(x) (and also ^„(x), ^^(x) [1]), 
c) construction of a representation table of sufficient scope to afford numerical enhance-

ment of the patterns contained therein, 
d) uniqueness or otherwise of the representation, and 
e) any additional Brahmagupta properties. 

4. Associated Legendre Polynomials 
The author has become aware that the Morgan-Voyce polynomials bn(x) defined in (1.1) are 

essentially the associated Legendre polynomials pn(x) described by Riordan [3, p. 85]. In fact, 
K+i(x)~Pn(x)'-> e8> b3(x) = p2(x) = l + 3x + x2. Properties of pn(x) listed in [3] may then be 
cast in the bn(x) notation. Essential links for the equality of pn(x) and bn+l(x) are the closed 
forms and Chebyshev polynomials results in [3, p. 85] and [2, (2.21) and (4.14)]. 
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