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0* INTRODUCTION 

In this paper, we consider fields determined by the /1th roots of the zeros a and fi of the 
polynomial x2 - x - 1 ; a is the positive zero. The tools for studying these fields will include the 
Fibonacci and Lucas polynomials. Generalized versions of Fibonacci and Lucas polynomials have 
been studied in [1], [2], [3], [4], [5], [6], [7], and [12], among others. For the most part, these 
generalizations consist of considering roots of more general quadratic equations that also satisfy 
Binet identities. However, it is just the simplest version of these polynomials that we shall need 
for the results in this paper. (For a far-reaching generalization of all of these generalizations in the 
context of multiplicative arithmetic functions, see [9].) These polynomials determine many of the 
properties of the root fields; e.g., they provide the defining polynomials for those fields; they yield 
a collection of algebraic integers which behave like the Fibonacci numbers and the Lucas numbers 
in the ring of rational integers; they determine the discriminants of these fields; and, they provide a 
means of embedding which gives the lattice structure of the fields. 

In Part 1, we list properties of these polynomials which we shall need later. 
In Part 2, the (odd) m®1 roots of a and ft are discussed; the constant am which is, essentially, 

the sum of two conjugate roots, is introduced. One of two important theorems here is Theorem 
2.1, which tells us that the m^ Lucas polynomial evaluated at am is, up to sign, equal to 1. This 
will enable us to define a new set of polynomials (by adding a constant to the Lucas polynomial) 
which, in Part 4, will turn out to be irreducible over the rationals and, hence, will provide us with 
some useful extension fields (Theorem 4.2). The other important theorem in Part 2 is Theorem 
2.2, which tells us that the w* Lucas polynomial evaluated at amn is an. This theorem will lead to 
an embedding theorem for our fields in Part 4 (Lemma 4.2.2). 

In Part 3, we introduce numbers in our extension fields generalizing the Fibonacci numbers, 
which are algebraic integers in these fields and which turn out to have a peculiar quasi-periodic 
behavior (Theorem 3.4). (In a sequel to [9], this behavior will be seen to be one typically 
associated with arithmetic functions.) 

In Part 4, the lattice structure of this family of fields is investigated (Lemma 4.2.2, Corollary 
4.2.3, Theorem 4.3). Theorem 4.4 tells us that it is the Fibonacci polynomials which provide us 
with the discriminants of our fields. 

The remainder of the paper is occupied with some calculations using a well-known matrix 
representation of the fields, illustrating computations which produce units and primes in these 
fields. 

The author is indebted to the referee for many helpful suggestions for which he is grateful; 
especially, he would like to thank the referee for calling to his' attention the rich theory of 
quadratic fields of' Richaud-Degert type and of R. A. Mollin's book [10]. The fields studied here 
are extensions of a field of this type. 
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1. THE POLYNOMIALS Un(t) AND Vn(t) 

Here we list some of the well-known properties of the Fibonacci and Lucas polynomials, 
U„(t) and Vn(t), that we shall need to use in this paper (see, e.g., [3] and [4]). In [3], [2], and [5], 
these polynomials were defined explicitly by formulas equivalent to 

Um(t) = ±Pk(my»-2k-\ />t(w) = ( w - * - 1 J > * ^ | , (1.1) 

£rQm-2k [2, m even. 

u0(t) = o,ul(t) = i,v0(t) = 2,vl(t) = t. 
Equivalently, we could have defined Un{i) and V„(t) by letting A(t) and B{t) be the roots of 

the polynomial p(x) = x2-tx-l, and setting 

u(t)=A"(t)-B"(t) 
U"K) A(t)-B(t) ' ( } 

Vn(t) = A"(t)+B"(t), (1.4) 

i.e., the well-known Binet formulas (e.g., see [3] or [6]). From these formulas, it is easy to see 
that the recursion relation 

^ , (0 = ^(0+1^(0 (1-5) 
is satisfied by the Fibonacci and Lucas polynomials* [3]. In fact, theses identities provide a 
painless path for finding most of the identities involving the two sequences of polynomials. Such 
an identity, which we shall need below, is 

Vm(Vn(t)) = Vmn(tl ([3], 6.2(i)). (1-6) 

It is, however, equally easy to use the recursion (2.5) to prove that 
dldt{Vn{t)) = nUM (M, (2.4)), (1.7) 

which, in turn, gives a short proof using (2.6) of the fact (well known) that Uk divides Uks, with 
the additional feature of displaying the factors explicitly. To wit: 

d/dt[Vm(Vn(t))] = mnUn{t)Um(Vn(t)) = d I dt[Vmn(t)] = mnUmn(t). 
Thus, the other factor is Um(Vn(t)). 

2. THE NUMBERS ym, 8m, a„ 

Define ym and 8m up to roots of unity by 

* The first six polynomials in these two sequences are: 
U0(t) = 0 U2(t) = t U4(t) = t3 + 2t V2(t) = t2a = 2 V0(t) = 2 V4(t) = t4+4t2+2 
[7,(0 = 1 t/3(0 = f2+l £/5(0=*4+3'2+l V{(t) = t V3(t) = t3 + 3t V5(t) = t5+5t3+5t 
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Since (ymSm)m = a/3 = - 1 , we have that \ymSm - G)m, | where o)m is a primitive 2m-th root of unity. 
When m is odd, then at least one of the ym and Sm is real. Define am by \Ym + Sm

 = a
m

a)li-\ Note 
that ax = l. Clearly, yx - a = A(ax) and SX = J3 = B(a^. It follows that 

and 

So 

A(amm^2) = ®^/2A(amX B(am®^) = a>^B{aml 

Jm+l)/2( 

Sm = mm 

Thus, 

= Vm(am) = rZ + SZ = a + fi = l, 

and so 

Theorem 2.1: (-l)(m+1)/2Fm(aJ-l = 0, m odd. • 

Hence, am is a root of the polynomial DJt) = VJf) - {-\fm^12. 

Proposition 2.1.1: a = ±(l + R(am))Um(am), fi = ±(l-R(am))Um(am), R(t) = (t2 + 4)1'2, 

is implied by the next proposition. 

Proposition 2.1.2: Am(am) = a, Bm(am) = B. 

Proposition 2.1.3: Am(amn) = r„, Bm{amn) = S„. 

Proof: Am"(amn) = a"n = r"n. 

In particular, 

Theorem 2.2: Vm{amn) = an9 up to the roots of unity. 

Proof: Am\amn) + Bmn{amn) = Vm{amn) = yn + Sn=an (up to roots of unity). 

3. GENERALIZED FIBONACCI AND LUCAS NUMBERS 

The algebraic numbers Uk(am) can be thought of as a generalization of the Fibonacci num-
bers. However, we need an unambiguous notation for them, so remembering that m is odd in this 
paper, wre pick a fixed real am for each natural number m (there is a unique choice), and define 

K,k=^m(Uk(am)\ 
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where 

Thus, 
a 

kAk(am)-Bk{am) 
*">'« lm A(am)-B(aJ 

are the generalized Fibonacci numbers (GFN); they are located "between" the number fields 
Q(am,a)m) and Qiy^co^. However, first observe that Alk = Fk, i.e., the Amk are generaliza-
tions of Fibonacci numbers. From (1.5), we see that, for each choice of m, we have a family of 
GFNs which belong to the field Q(am) and which have a functional equation generalizing that in 
Q(ai)= Q> namely, one which generalizes the usual functional equation for the Fibonacci 
numbers. Moreover, we have the following interesting quasi-periodic behavior of these numbers, 
which is manifest only when m>\* 

Theorem3.4: Let Uhj{k) = Umk+J(am),0<j<m,m odd, then 

U^^F^UjiaJ + i-iyF.U^iaJ mod/?„(/), 

Fn9 the /2th Fibonacci number, and Dm is as defined in Theorem 2.1. 

Proof: Assume inductively that the theorem holds for k < n and for j - 1 > I. Assume that 
U^jik-l) satisfies the appropriate relation for y = 0,...,/w-l. We need to compute Um0(k), 
but 

Um9o(k) = Umk(t) = tUrt-iW + Urt-iif) 

=t{Fkum.x+(-ir-1F,_1t/1]+F,^-2+(-ir2/i-A] 
= Fk[tU^ +U^ + FU<rVrltUx +(-ir2C/2] 
= FkUm + Fk_l[tUl-U2] = FkUm9 

since U^t) = 1, Ut(t) = t. But, if the theorem is correct, UmQ(k) = Fk+lU0 + (-l)°FkUm = FkUm. 
Thus, we have shown what is required. Next, we must.show that the result holds for a fixed k and 
j = 1,2,..., iw-1. Notice that the theorem is correct for j = 0,..., m-1, k - 0, and for j = 09k = l. 
Suppose that it holds for k < n andj = 0,..., m -1 and for k = n and j = 0. We want to show that 
it holds for k = n, j = 1,..., m-1. So consider UmJ(k), k = n,l<j<m~l. 

UmJ(k) =tUmJ^(k) + UmJ_2(k) 

= ^+lS>^-l + ̂ y-2] + ( - l y ^ P ^ y + l ~ ^ - ; + 2 ] 
= ̂ ^ / + i - ^ m U ^ - U^j+t] 
= FMUj + ( - l y ^ F J p t ^ ^ - (rf/m„/+1 + U^j)] 
= Fk+]UJH~iyFkUm_r D 

* We should point out that this is a special case of a phenomenon which always occurs in the context of a certain 
class of multiplicative arithmetic functions' (see [9]). 
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The numbers for m = 3 are: 

UX3k = -Fk-i®3(l + ®3y, ^3,3^1 = ̂ - ^ - 1 ^ 3 ; UX3k+2=(Fka3+Fk_l)a)l 

4, THE ALGEBRAIC NUMBER FIELDS Q(yJ, Q{8m\ Q(am) 

We assume that m is odd and note that 

Proposition 4.1: ctp,yp,Sp,mp are units in the ring of integers of Q{ap). 

Proof: t2p - tp -1 is the minimum polynomial of Q(yp). Both yp and Sp satisfy this poly-
nomial Moreover, ap = -mp{yp + SP). Note that a and J3 clearly belong to Q(yp). • 

The most interesting result to come out of the ideas considered in this paper is the way in 
which the polynomials Um and Vm provide the structural framework for the algebraic number 
fields determined by the numbers ym, Sm, am. A first example of this fact is contained in the role 
that the polynomials Dm play. Dm(t) is irreducible over Q for m odd. This can be proved by 
using earlier propositions and Eisenstein's criterion; however, the following proof is instructive. 

Theorem 42: 3% = Q[t] I (Dm(t)) is a field for odd m. 

Proof: Letp be an odd prime. 

Lemma 4.2.1: (a) D (t) is a monic polynomial of degree/? with constant term ±1. 
(b) p divides all interior coefficients of Dp(t). 

Proof of Lemma: (a) follows from (1.5) by induction and definition. For (b), we need to 
know that the "interior" coefficients of D (t) are given by 

^ + D + p t - t ( p - i ) = ( ^ ^ i ) + ( / ' - i - 2 ) 

But this follows easily from (2.1), (2.2), and (2.5). Then it is straightforward to show that 

Since/? is prime, hence is relatively prime to the denominator, p divides Pk(p +1) + Pjc-iiP ~ 1) • D 

Thus, by a standard application of Eisenstein's lemma, Dp(t) is irreducible over Q9 so the 
theorem holds for the case m = p.pa, prime. Thus, 9P is a field. We want to show that 9np is a 
field for any odd prime p and any natural number n. First, we prove a lemma which is of interest 
in its own right. 
Lemma 4.2.2 (The Embedding Lemma): There is a natural embedding of the ring S^-i in the 
ring 3 ^ . 

Proof: It is convenient first to note that the ring 9m can be represented by elements of the 
form E^olw/aL mi G Q>taken m o d Ai(0- N o w w e consider (D k-\ °Vp)(a h). 
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(D^ o ^ X v ) = f>-,(Fp(flflO) + (-l)(pfl ) /2 =Vpkapk + (-l)^+1>/2 = Dpk(apk) = 0. 

Thus, Vp{apk)~ apk_x. Now, Vp{apk) e 9pk. Since apk e 9pk, so does a copy of apk-x. Since this 
element satisfies Dpk and 9y-i consists of elements of the form X/L0

 mia
pk-\, so we have an 

embedding of 9̂ &-i in 9^* determined by the polynomials Vk. So assume inductively that 9̂& is a 
field for * < n9 and let / be maximal ideal in the Noetherian ring 9^*. 9pkll is a field, one which 
contains a copy of S^-i, so the degree of 9y/7 (over Q) is >pP~~l\ Now a * is a unit, so 
a^ £ I; thus, apk +1 G Dpk II and is not trivial. And so the degree of Dpk 11 > pk~l, and thus 
the degree of Dpk 11 = pk. Therefore, the minimum polynomial of 9pkll is a multiple of Dpk, 
hence is equal to Dpk, and so / = 0 , and 3 ^ is a field. • 

Thus, we have proved the theorem for m an odd prime power. This argument applied to 
^mi^p^mpX (m> P) - 1> extends the result to $Fmp, (m, p) = l. Thus, 9^ is a field for all odd n. 

Corollary 4.2.3: Ifm divides n, m and n both odd, then 9m is (Isomorphic to) a subfield of 9^ 
under the embedding determined by (- l) ( w~1 ) / 2^(^(^)) = am, n = tnk. D 

Since Ym = co^,2A(am\ 8m = co^/2B(am), it follows that 9m < Q(am, a>m) < Q{ym9 a>m). 
The last two fields are splitting fields. We thus have the following degree relations. 

Theorem 4.3: [Q(am):Q] = [9m:Q\ = m, [Q(am,a)m):9m]= #m)9 [Q(rm,comyQ(am,(Dm)]= 2, 
where (/> is the Euler totient function. 

The following theorem is another illustration of how the polynomials Um and Vm are involved 
in the structure of the fields 9m. 

Theorem 4.4: A[l, am,..., < _ 1 ] = {-\)m{m-l)l2mmNUm{am\ is the norm of the algebraic number 
Um(am). 

Proof: In any case, since £(ym) = ^{Dm\ 

A[l, amy..., a-"1] = ( - i ) - ( - i ) / ^ ^ y j ( a j ? 

by(1.7), d/dtVm=mUm and N(mUm(aJ) = m™N(Um(am)). D 

Example: It follows from Theorem 4.4 that, when m = 3, A[l, a3, af ] = - 3 3 • 5. This can be com-
puted directly by using the representation of 9S determined by the minimal polynomial. Thus, 

0 
0 
1 

1 0 
0 1 

-3 0 
and so l + a | = 

1 0 
1 -2 
0 1 

NUVW 

from which it follows that 
j i \ 

= N(3F3(a3)) = 33 det(l + A2) = 33.5. 

So A = - 3 3 • 5 as promised by the theorem. We can write A[l • am,..., a%~1] explicitly. 

Theorem4.5: A[ham,...,a£-1] = (-l)^m-l)/2mm'5n, m = 2n + l. 
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Proof: By Theorem 4.4, we need only compute N(Um(am)) = 5n. To do this, let Al9...9An 
be the m distinct conjugates of am with am = Xx. Then 

Nnm(am) = I I — *' v *' 
k=i KVAk) 
m vm __Qm m m cm 

l\ wk) L\rm-8ik)' 
where y^ and <5(jk) are the conjugates of ym and <5m. 

fc=l X(fc) ~~ <?(*) i=i P(Jt) _ ^(*) 

i i 

n<rw-*«)=nr<*)-n<yw^ 
1 S>1 

Now, 

Since Y{k) satisfies xm-a = 0 and 8^ satisfies xm-j3 = 0, Hy^ = a and 118^=0, so 
YIY(V)-T18Q.} = a-0 = sfS. The remaining products are symmetric polynomials involving at 
least two symbols, but not all, so, from the equation satisfied by the y 's and 8% are 0. • 

The significance of the algebraic numbers am is now clear. To understand the fields Q(am) 
and Q(8m) and their normal extensions, it is sufficient to understand the fields 9^ (and their 
normal extensions), for Q(ym), for example, is an easily understood quadratic extension of ?Fm . 
The role that the polynomial sequences Um and Vm play in determining the structure in these fields 
is also clear, and surprising. The GFNs are integers in these fields, since am and a>m are. So we 
are left with the standard questions: the class numbers, the maximal orders, units, primes, etc., of 
these fields (see, e.g., [11]). It is tempting to believe that, linked as these nonquadratic extensions 
are to a "base" field which is of the Richaud-Degert (R-D) type, some adaptation of the elegant 
methods used for R-D type fields might be found. Of course, the periodic nature of continued 
fraction expansions of quadratic irrationalities is an intriguing obstacle in the cases of degree 
greater than 2. 

Some direct computations for small m are possible. We illustrate for m = 3. (When m = 1, 
the field is, of course, just Q(-J5)). Therefore, we should start at m = 3. (The theory for m even 
has much in common with the case of m odd, but also some significant differences that occur 
because the minimal polynomials need not have real roots. Moreover, the sequences {Um} and 
{Vm} are markedly different for m even and for m odd. We postpone this discussion.) 

A Computation for m = 3i Using the faithful representation p for a3 as in the illustration of 
Theorem 4.4, 

|0 1 0| 
P(a3) = 

0 
0 
1 

1 0 
0 1 

-3 0 
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kQ k2 

1 0 2 
k2 k± 

K 
K2 jfCi 

k0 — 3k2 

and letting 

p(k0 + k{a3 + k2a\) = &07 + kxM + &2M = 

Then, 

ILkfts G Z(am) is an algebraic integer iff M(£0, kl9 k2) is an integer matrix; 
TLkfts G Z(am) is a unit iff M(&0, &l3 k2) = #(Z*f-o£) = ±1. 
Z Va G ^(am) i s a P r i m e i f det M(k0, kl9 k2) is a rational prime (e.g., 1 -a is a prime in §F3 ). 

We know that either a prime ideal in Z is a prime ideal in SF3 or factors into two prime ideals. We 
can determine this for each prime ideal (p) by checking to see if t3 +1 +1 is irreducible mod p. 
For example, 2 is a prime in SF3 , while 3 and 5 factor, 7 is prime. Since A3(S£3) = - 3 3 5, 3 and 5 
ramify; 3 ramifies totally, <3> = (I-a)3. The ramification index is 3, and the relative degree is 1. 
For 5, (5) = (4 + a2)( l+a2) with ramification numbers el-l and e2-2 and relative degrees 
fi = l and f2 = l' Using Minkowski's theorem, we can compute 

4 3!1 A / r 7 r x ! l / 2 ^ 3 ) - ^ ^ | A ( ^ 3 ) | 1 / 2 < 2 , 

and so the class number of 3^ is 1. 
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