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1. INTRODUCTION 

In [8], Lin Introduced a well-known result (i.e., Theorem 3.1) from discrete dynamical 
systems theory (which he called "iterated maps") concerning the number of period-/? points. As 
applications, Lin computed the number N(n) of period-w points of the maps B(ju, x) for some 
suitably chosen /i and obtained some interesting dividing formulas n\N(n) (i.e., formulas (4.23) 
in [8]) which had already been obtained in [6, Theorem 3] from different maps. As mentioned in 
[8], each iterated map contributes an N(n) and, hence, in principle, infinitely many N(n) can be 
obtained. However, in practice, to actually compute N(n) is not so easy as was demonstrated in 
[8]. Lin did not mention how to compute explicit formulas for N(n) other than the one for the 
special maps B(ju, x), where the method he used does not seem to apply to other maps easily. In 
this note, we want to point out that a simple systematic way of constructing functions Q(n) such 
that n\Q(n) has already been introduced in [2]-[7] (see also [9]) for a large class of continuous 
maps from a compact interval into itself and examples of various Q(ri) can also be found in [4]-
[7]. Furthermore, we want to present a few methods (Theorems 1-3) from discrete dynamical 
systems theory of obtaining new functions Q(n) from the known ones so that many more Q(n) 
can be constructed (see, e.g., Theorem 4). Finally, in [8], Lin only considered the numbers of 
period-/! points for iterated maps. He did not mention the numbers of symmetric period-(2«) 
points. Therefore, we also include such examples in Theorem 5. 

2. SOME DEFINITIONS 

Since our main results are taken from discrete dynamical systems theory, we shall use the 
notations commonly used there (see also [4]-[7]). For completeness, we include the definitions of 
<E>.(̂ ,«), i - 1,2, below. Let (j>(n) be an integer-valued function defined on the set of all positive 
integers. If n = p\xp% -~Prr, where the p.'s are distinct prime numbers, r and the £.'s are posi-
tive integers, we let O ^ , 1) = ^(1) and let 

/=1 Vr/ J /j</2 \FhFh J /,</2</3 \FhFhFhJ 

+ ...+(-iy>[—n-—I 

where the summation 2/, </2 <...</. is taken over all integers ix, i2,..., i. with 1 < ix < i2 < - • • < i. < r. 
If n = 2k°Pilp2

2 -'Prr, where the ^/s are distinct odd prime numbers and k0 > 0,r > 1, and the 
kt

 f s > 1 are integers, we let 
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*M,n)=m-tA$VY,*{irA- I 
Pi PuPu 

n 
,Pi,PhPh 

(PlPl-Pr) 

Ifn = 2k, where k > 0 is an integer, we let ®2(^, ri) = (j>(ri) -1. 

3. MAIN RESULTS 

Let S be a nonempty set and let / b e a function from S into itself. In the sequel, for every 
positive integer n, we let QAri) denote the number (if finite) of distinct solutions of the equation 
fn{x) = x in S9 where fn denotes the rP iterate of / : fx = / and / " = / ofn~l for w > 1. By 
standard inclusion-exclusion arguments, it is easy to see that, for each positive integer n9 

O^^p/ i ) is the number of periodic points off with least period n. On the other hand, if S 
contains the origin and g is an odd function from S into itself, we let ¥g(ri) denote the number (if 
finite) of distinct solutions of the equation gn(x) = -x. In this case, if gn{y) = -y, then gkn(y) = 
(gn)k(y) = -y for every odd integer k>\ and gmn(y) = (g")m(y) = y for every even integer 
m> 1. So, it is again easy to see, by the same inclusion-exclusion arguments, that ^>2{y/g, n) is 
the number of symmetric periodic points (i.e., periodic points whose orbits are symmetric with 
respect to the origin) of g with least period 2n. Consequently, we have ^ ( ^ n) = 0 (mod n) 
and ®2{y/g,ri) = 0 (mod 2ri) for all positive integers n. Therefore, by letting Q{n) = ^ ( ^ p n) or 
Q(n) = ®2(y/

g>n)> w e obtain that n\Q(n) for all positive integers n. In the following, we shall 
present a few methods (Theorems 1-3) from discrete dynamical systems theory of obtaining new 
functions Q(n) from the known ones so that many more Q(n) can be constructed. 

Since ^ ( ^ T I ) is linear in (/> [note that $>2(y/,ri) is not linear in y/ because of its definition 
on n = 2k\ we easily obtain the following result. 

Theorem 1: Let <pn i = l, 2, be integer-valued functions defined on the set of all positive 
integers. If, for all positive integers n, OxQpl9 n) = 0 (mod n) and ^ ( ^ n) = 0 (mod ri), then, 
for any fixed integers k and m, ^l{k(pl^m<p2,n)=k^l{q)l,n) + m^l{(p2,n) = 0 (mod ri) for all 
positive integers n. 

Let/and ft, 1 < i < j , be functions from S into itself and let (]l/=i ^ )(ri) = U{=1 $/t (ri) for all 
positive integers n. If h is a function from S into itself defined by h(x) = fk(x), then, since 
hn(y) = y if and only if fkn(y) = y, we obtain that (/>h(ri) = $f(kri). On the other hand, if if is 
a function from the Cartesian product set SJ into itself defined by H(xl9x29...9Xj) = (fl(xl), 

f2(x2),..;fj(*j)), then> s i n c e (yuy2,...,yj) = F{yl9y29...9yj)^ 
if and only lfyi = /fty) for all 1 < i < j9 we obtain that #H(ri) = (Il/=1 $/()(ri). If 5 contains the 
origin and all/and fi9 \<i<j9 are also odd functions, then so are h (when k is odd) and H. 
Arguments similar to the above also show that ytH(ri) = (n/=1 Wf()(n) = n/=1 ^/, (w). Therefore, 
we obtain the following results. 
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Theorem 2: Let/and fi9 1 < i < j , be functions from S into itself. Then the following hold: 
(a) For any fixed positive integer k9 let <pk(ri) = $f(kri). Then $ j ( ^ , « ) = 0 (mod it) for all 

positive integers n. 
(b) Ol(Xljssl <f>f., #) = 0 (mod /i) for all positive integers n. 

Theorem 3: Assume that the set S contains the origin and let g and gi9 1 < i < j , be odd functions 
from S into itself. Then the following hold: 
(a) For any fixed odd integer k > 0, let y/k(n) = y/g(kri). Then <S>2(y/k,n) = 0 (mod 2ri) for all 

positive integers n. 
(h) <J>2 (n/=1 y/g., w) s 0 (mod 2fi) for all positive integers n. 

Remark: Note that in Theorem 1 we only require <pf to satisfy <bx(<pi9ri) = 0 (mod ri)y while in 
Theorems 2 and 3 we require them to be the numbers of (symmetric, respectively) periodic points 
of all periods for some (odd, respectively) maps. It would be interesting to know if these stronger 
requirements in Theorems 2 and 3 can be loosened. 

4. SOME EXAMPLES 

In [6] we show that, for any fixed integer j>2, if q>j{n) = 2n - 1 for \<n<j and <Pj(n)-
S,4i<Pj(n-i) for j < n, then <pj satisfies the congruence identities &i(<pj9 n) = Q (mod n) for all 
positive integers n. Since the constant functions also satisfy the same congruence identities, 
it follows from Theorem 1 that, for any fixed integers j , k9 and m with j > 2 , if </>j^m(n)=-
m(pj{n) + k for all positive integers n, then ®i(^ysit,i»>w)s0 (moc* n) ^or a^ positive integers n. 
Since it is easy to see that ^ - ^ m also satisfies the recursive formula <j>jki m(n) = rn(T -1) + k for 
1 < n < j and ^y kt m(n) = (Z/=1 ̂ y K m(n - i)) - (j'- l)k for j < n, we have the following result. 

Theorem 4: For any fixed integers j , k9 and wi with j > 2, let 

tj,k,m(ti = ' 
Jm(2n-!) + £, forl<n<j9 

l(i:/=i^.,>-o)-0"-i)^ feu<* 
Then <&i( f̂ *t „ , , w ) 5 " (mod w) for all positive integers n. 

The following is an example of #2(^, n) = 0 (mod 2w). For other examples see [5] and [7]. 
By Theorem 3 above, many more examples can be generated easily from these known ones. 

Theorem 5: Let j > 2 be a fixed integer and let gj(x) be the continuous map from [-j, j] onto 
itself defined by 

fx + 1, for -j<x<-29 
\j9 forx = - l , 

gj(*) = \-j> fOYX = l9 

\x - 1 , for 2 < x < j9 
[linear, on each of the intervals [-2, -1], [-1,1], [1,2]. 

We let $j(ri) be defined by 
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#/<") = 

y/j(n) = 

3\ 

3w-2, forl<n<j, 
3n-2-4n-3"-J-\ forj + l<n<2j-l, 

[Z/=1(2i - T#j(n - 0 + 1 ^ ( 4 / - 2/ -1)0j(n -i), for 2/ < *. 

We also let y/j{n) be defined by 

f o r l < w < j - l , 
forn = j , 
forj + l<n<2j-l, 

Then, for any integer j > 2, the following hold: 
faj For any positive integer n, (f>j{n) is the number of distinct solutions of the equation g"(x) = x 

in [-j, j]. Consequently, O^p-n) = 0 (mod n) for all positive integers n. 
(b) For any positive integer «, y/j(ri) is the number of distinct solutions of the equation g"j{x) = 

—x in [- j , y]. Consequently ^(^j*«) s 0 (mod 2ra) for all positive integers w. 

Remark: Numerical computations suggest that the functions y/j{n) in Theorem 5 also satisfy 
*&\{y/j, ri) = 0 (mod n) for all positive integers n. However, we are unable to verify this. 

5. OUTLINE OF THE PROOF OF THEOREM 5 

The proof of Theorem 5 is based on the method of symbolic representations which is simple 
and easy to use. For a description of this method, we refer the reader to, say, Section 2 of [6], 
Here we only give an outline of the proof. We shall also use the terminology introduced there. In 
the following, we shall assume that j > 2. The case j - 2 can be proved similarly. 

Lemma 6: Under gj9 we have: 

(-7)1 -> (-0 ' - l)X-(7 - 2)) • • • (-3)(-2)(-l)X-7), 
K-j) -+ i-j)j(- 1X-2X-3) •••(-(/- 2)X-0' -9 ) , 

(/ -1)/ -> /'(/ +1) and i(i -1) -»(/" +1)/, for - (/ - 2) < /" < -2, 
(-2)(-l)->(-l)7 and (-l)(-2)->./(-1), 

(rjV -> i-U ~ !))(-(/• - 2)) • • • (-3)(-2)(-l)X-7)l 23 • • • (j - 2)0' -1), 
JH) -> 0 - 1 ) 0 - 2 ) - 321(-y)X-l)(-2)(-3) - ( - 0 - 2 ) ) ( - 0 - 1 ) ) , 

12 ->( - / ) low/21->K- / ) , 
;(;' +1)->(/'-1)/ and (/ +1)/->/'(/'-1) for 2<i<j-2, 
y(-l)->C/-lX/-2)-321(-yU 
H)y->X-/)i23-(/-2X/-i). 

In the following, when we say the representation for y = g"j (x), we mean the representation 
obtained, following the procedure as described in Section 2 of [6], by applying Lemma 6 to the 
representation ( - ( / - l ) ) ( -0 ' -2) ) - ( -3) ( -2X- l )7( -y)123--0 ' -2)0 ' - l ) for y = gj(x) succes-
sively until we get to the one for y = g^(x). 

220 [JUNE-JULY 



OBTAINING NEW DIVIDING FORMULAS n \ Q(fl) FROM THE KNOWN ONES 

For every positive integer n and all integers k, i with -(J -1) < k < j -1 and -(j -1) < i < 
j -1, let a„9k,ij denote the number of wv's and vi/s in the representation for y = g"(x) whose cor-
responding x-coordinates are in the interval [»%, tk], where 

[k-l,k], 
[-1,1], 
[ M + l ] , 

for - 0 - 1 ) ^ * ^ - 1 , 
forA: = 0, 
forl<k <j-l, 

[SkSkY-

We also define cnj and dnJ by letting 
-i y-i 

f(-j)l, for/ = - a - l ) , 
(i-l)i, for-( j ' -2)<?<-l3 

and uv = < (-j)j, for i - 0, 
I(I + 1), forl<i<j-2, 

[/(-I), fori = y - l . 

/ - I y-l ; -2 
'«,/ = z L an,k,k,J +Zl?(aw,-it,0,y + aw,fc,0,/) + iL( a w, -&, - ( / - l ) , / + an,k,J-l,j) 

k=-(j-l) k=l k=Q 

J-2 

fc=o 
and 

j-l j-l j-2 

dnj ~ La an,k,-k,j + Zu (an,-k,0,j + an,k,0,j) + 2 ^ (a«,fc,-(/-l),/ + an,-k,j-l,j)' 
k=-(j-l) k=l k=0 

It is easy to see that, for every positive integer /i, cWjy is the number of distinct solutions of 
the equation gJJ(x) = x and dnj is the number of distinct solutions of the equation g*(x) = -x . 

Now, from Lemma 6 above, we find that these sequences (a„tktij) can be computed recur-
sively. 

Lemma 7: For every positive integer n and all integers k with -{j -1) < k < j -1, we have 

a«+l,Jfc,-(/-l),/ ~ an,k,Q,j + Qn,kXj + Cin,k,j-l,j> 
an+l,k,-(J-2)J ~ an,k,0,j + aw,fc,-(/-l),/> 
an+l,k,i,j - an,k,i-lJ +an,k,0J+an,k,-(J-l)>J> 

a n+l,k,0,j : an,k,-{j-l),j +an,k,0,j + an,k,j-l,j> 
an+l,k,i,j ~ an,k,Q,j + an,k,i+l,j + an,k,j-l,j> 

- ( / - 3 ) < / < - l , 

l < / < 7 - 3 , 
an+\,kJ-2,j 

lan+l,k,j-l,j '' 

zan,k,0,j+an,k,j-l,j> 
z an,k,-(j-l)J +an,k,-hj+an,k,0,j' 

The initial values ofa^kJJ can be found easily as follows: 

" ai,k,k+ij = l f o r - ( / - l ) < £ < - 2 , 

a, 

a l , - l , / - l , / ~~ ^? 

= 1, 
= 1, 

a l , 0 , 0 , / ~~ 1? 

l,l,-(/-l),7 

a U*-W = 1> for2<k<j-\ 

XKUj • 0, elsewhere. 

Since the initial values of the @ntk,t,/s a r e known, it follows from Lemma 7, by direct but 
somewhat tedious computations for n ranging from 1 to 2/, that we can find explicit expressions 
(omitted) for the sequences {ankjj\ ~(j -l)<k<j-l, -(J -1) < 1 < j -1, 1 < n < 2j, and from 
there we obtain the following two results: 
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(a) cmJ = <t>j(m) and dmJ = y/j(m) for 1 < m < 2j -1. 
(b) <hj,k,i,j = £Ll(2w " ty*2j-m,kj,j + £m=~Al(4./ - 2t» ~ ty*2j-m,k,i,j 

forz\\-(J-\)<h<j-\, -{j-\)<i<j-l 

Since, for fixed integers k and / with -(J -\)<k<j-l, -(J -1) < / < j -1, a ^ , ^ is a linear 
combination of a„_lk mj, -(J -l)<m<j-l,\t follows from part (b) above that 

J 2>-l 
a»,k,i,j = Z (2Ttl ~ ̂ Pn-mXUi + X W - 2/M - 1K-«.t./.y for a11 n * 2 J • 

m=l m=J+l 

Since both cnj and dnJ are linear combinations of the anXiJ§, we obtain that 

C«,; = Z (2m - l)Cn-mJ + E (4J ~ 2 m ~ l)Cn-mJ > 
m=l m=j+l 

J 2J-1 

and dnJ = £ (2w -IK-.,,- + £ (4/ - 2m - 1 ) ^ y 
m=l m=j+l 

for all n>2j. This completes the proof of Theorem 5. 
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