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1. INTRODUCTION 

A remarkable theorem of E. Lucas [10] provides a simple way to compute the binomial coef-
ficient (^ modulo a prime p in terms of the binomial coefficients of the base-/? digits of N and m: 
If N = ZNjPJ and m = JlmjpJ\ where 0<Nj, Mj < p, then 

ffl-n (mod/?). 

^ » ) = ( ™ r ) -
This paper will generalize the following alternative version of Lucas's theorem: Let 

(jfg + 7l)!. 
m\n\ ? 

then 
B(m, ri) = B(m + p,n + p)B(m mod p, n mod /?) (mod p), 

where JW-J-/? is the integer quotient of m byp, and /w mod/? is the remainder. It follows that if 
m = Ytfttj-pJ and n = TnjpJ\ where 0 < /»,., wy- < /?, then 

B(m, ri) = J^^/iiy, rij) (mod /?). 

As a corollary, p \ B{m, ri) if and only if Mj +nj>p for some j . 
This theorem also implies that the residues of Pascal's triangle modulo p have a self-similar 

structure; see, e.g., [12], [2], [4], [5], [9], [17], and [1]. For example, if p = 3, then [B(m,n) 
mod/?] for 0 < iw, n< 9 is given as follows: 

1 1 1 1 1 1 1 1 f 
12 0 1 2 0 1 2 0 
10 0 1 0 0 1 0 0 
1 1 1 2 2 2 0 0 01 [IB IB IB 
1 2 0 2 1 0 0 0 0 = IB 2B 0B | (mod/?), 
10 0 2 0 0 0 0 01 I IB 0B 0B 
1 1 1 0 0 0 0 0 0 
1 2 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 

where 

B = 
1 1 1 
1 2 3 
1 3 6 

= 
1 1 ll 
1 2 0| 
1 0 Oj 

(mod/?), 

so this matrix is the tensor (or Kronecker) product B®B mod/?. Generally, as noted in [11], 
modulo/? we have that [B(m,ri)mod/?] for 0<m9 n <pk will be B®k, the Mold tensor product 
of B = [BQ, j) mod /?], where 0 < i, j < p. Note that matrix indices start at index pair (0,0). 
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Generalized binomial coefficients are defined corresponding to a given sequence {un) by 
replacing n\ by the product of ux through un. This paper uses recurrence-relation techniques 
to deduce generalizations of Lucas's theorem for generalized binomial coefficients based on a 
sequence generated by a second-order recurrence relation (see Theorems 1 and 3). One resulting 
generalization is equivalent to the theorem (Theorem 4 below) obtained by Wells [13] by an intri-
cate analysis. The new approach to the proof clarifies and explains the complexities of Wells's 
formula. 

2. THE UNDERLYING SEQUENCE (un) 

Definition 1: Let a, b G Z . Let/? be a prime. Define the sequence (un) recursively as follows: 
u0 = 0; ux = 1; un = aun_x + bun_2 for n = 2,3,4,... 

(or ux = 1; U2 = a; un = aun_x +bun_2 for n = 3,4,5,...). 
For example, when a = 2 and b = - 1 , then un = n; when a = 1 + q and b - -q, then un -1 + 

q + q2 + • • • + qn~l; and when a = 1 and b = l, then un = Fn, the 71th Fibonacci number. 

Definition 2: Let r denote the rank of apparition of/?; thus, r = rmn{n eN:un = 0 (mod/?)}. 
Let t denote the (least) period of (un mod /?>, if it exists. Let s = t Ir. 

From now on, consider the prime /? and the integers a and A fixed, and assume a and b are 
not both zero. We shall usually assume that p\b. If p\b, then ww =aw_1 (mod/?), and so either 
/?|a and un = 0 (mod/?) for w > 2 while 14 = 1 so that t is undefined, or p\a and r = 00. In any 
case, the recurrence relation ww = aun_l+bun_2 (mod/?) defines a transformation 

frM? o l d <m°d'> 
mapping {0,...,/?-1}2 to itself. If pl[b, then the transformation is invertible, and consequently it 
must be periodic with period t<p2, and, since u0 = 0 and 0 repeats, r < t. 

The following basic addition formula, which appears, e.g., in [7], may be proved by induction. 

Lemma 1 (ExtendedRecurrence): For m>\ and n>0, wm+w = wmw„+1 +bum_lun. 

Many basic properties of the sequence (un) follow immediately from this lemma. 

Corollary 0: Let z-min{w eN:un = 0}. Then z > l , and if z<oo, then {n eN:un = 0} = 
{z,2z,3z,...}. 

Proof: If z < 00, Lemma 1 implies that wfe+w - %w„+1 +hukz_lun, from which the conclusion 
easily follows by induction if b * 0. If b = 0, then i/w = a""1 for n > 0, where a * 0 (by the assump-
tion above), so z = 00. • 
Corollary 1: If /?|d, then {n eN:un=0 (mod/?)} = {r,2r,3r,...}. 

Corollary 2: If pfb, then 5 (defined as * Ir) is an integer. 

Corollary 3: If r < 00, then, for & = 1,2,3,..., hukr_x = %+1 = w +̂1 (mod /?). 

Corollary 4: If /?|A, then 14 = 1, wr+1, w2r+1,..., #(5_1)r+1—or, equivalently, u*+l for 0 < & < 5—are 
all distinct modulo /?. 
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Corollary 5: Ifpjb, then the sequence <î +1 modp)^0 has period s: u"+l = u"™ods (mod/?). 

Corollary 6: If p\b9 then s\p-\. 

Definition 3: The rank of apparition o(k9 denoted r(k)9 is the least index n for which k divides 
un: r(k) = min{n e N: k \un). (If ^ does not divide any un9 then r(k) = oo.) Note that r = r(p). 

Definition 4: The sequence (f#w> is regularly divisible by p if, for every positive integer i, 
{/iGN:/?'K} = {*r(/y):* eN}. 

Corollary 7 (Wells): If p\b9 then the sequence (i^> is regularly divisible hyp. 

3» GENERALIZED BINOMIAL COEFFICIENTS 

Definition 5: Given (un)9 define the generalized, or bracket, factorial [n]\ for n - 0,1,2,... by 

[H]! = fl«y 
;=1 

For m > 0 and w > 0, define the generalized binomial coefficient C(m9 n) by 

C(#l,#l): [iw + w]! 

If some factors are zero, then it is to be understood that zeros in the numerator and denominator 
are to be canceled in pairs. By Corollary 0, if there are some zero factors uj9 their indices j are 
multiples of some z>\. so the number of zero factors in the numerator will either equal the 
number in the denominator or exceed it by 1. 

When a = 2 and b = - 1 , then un~n and the generalized binomial coefficients become the 
ordinary binomial coefficients: C(m9 n) = B(m9 n). When a = l + q and b = -q9 then un = 1 + q + 
q2 + "' + qn~l and the generalized binomial coefficients are the Gauss ^-binomial coefficients. 
When a = 1 and b -1, then u„ - Fn and the generalized binomial coefficients become the Fibono-
mial coefficients. 

Obviously, the generalized binomial coefficients are symmetric: C(m9n) = C(n9m). Also, 
they satisfy the following boundary conditions: 

C(m,0) = l and C(0,/i) = l for m>09 n>0. 

Lemma 2 (Basic Recurrence): For m>\9 n>\9 C(m9 n) = um+lC(m, n-1) + bu^CQn-l9n). 

Proof: 
um+ic(m> * -1) + H - A w - !>w) 

= nllri.1[iit + yi^l]li^ n ^ . J i f f - 1 + n ] ! 
[m]![n- l]!n„ ttjjif-l]![ii]! 

_ [m + n - l]l(um+lun + buji^) _ 

because l y ^ i + bu^^ = nw+WJ, by Lemma 1. D 

Corollary: If a and 6 are integers, then the generalized binomial coefficients are all integers. 
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4. GENERALIZED BINOMIAL COEFFICIENTS MODULO p 

When p\b, the generalized binomial coefficients modulo p are very simple. If p\h, then 
un s an~l (mod /?), and by Lemma 2, C(#?, /?) = um+lC(m,n~l) (mod /?). Also, C(w, 0) = 1 for 
#* > 0. Therefore, for m9 n > 0, 

if p 16, then C(m, n) = a7™ (mod/?). 
Here0° = l. 

When p\b, the pattern of the residues is more complex. There may be a self-similar pattern, 
as in the case of binomial coefficients presented above. But the pattern may be more complicated. 
For example, see Table 1 for the layout of Fibonomial coefficients modulo 3. 

When p\b, a formula for the mod-/? residues of C(m,n) may be derived in three steps: (1) 
Show that C(m, ri) = 0 (mod p) when m mod r + n mod r > r; (2) find a recurrence for C'(m, n), 
defined as C(rnr,nr), and solve it; and (3) complete the solution by using the basic recurrence 
relation in Lemma 2. This procedure parallels and extends that given in [6], which may be con-
sulted for further details. 

Notation: If r < oo, then, for each nonnegative integer n, let 
nQ = n mod r, 
n*-n^-r9 

rf -n mod ty 

n" = n* + r = n' mods. 

Lemma 3: If p\b, then C(m, ri) = 0 (mod/?) when n% +n$ > r. 

Proof: This result is a consequence of Knuth and Wilf s generalization of Kummer's theorem: 
According to [8], C(m, n) will be divisible by/? if there is a carry across the radix point when mlr 
and n I r are added in base /?; this happens when m^ + % > r. D 

Lemma 4 (r-Step Recurrence): If p\b9 then, for every m > 1 and n > 1, 

C(mr, nr) = u™xC(mr, (n - l)r) + <^C((w - l)r, /tr) (mod /?). 

Proof: For /i = 1,2,..., r -1, we have, by Lemma 2, 
C(flir,(#i-l)r+A) 
s umr+lC(mr9 (w- l)r + A-1) +^(w_1)r^.1C((w- l)r+r - 1 , (w- l)r + A) 
s ^ * C ( » i r , ( / i - l ) r + A--l) (mod/?), 

because C((m- t)r+r - 1 , (w- l)r +A) = 0, by Lemma 3. Together with Corollary 3, this implies 
that 

C(mr,(n-l)r + r - 1 ) s ^ l ) C ( m r 9 ( n - l ) r ) (mod/?). (1) 

Similarly, 

C((?*f-l)r +r-1,wr) su%-l)C({m-l)r,nr) (mod/?). (2) 

Again by Lemma 2, C(mr, w) = umr+lC(mr, nr -1)+bunr_xC{mr -1, w) (mod /?). Equations (1) 
and (2) and Corollary 3 transform this result into the desired conclusion. D 
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TABLE 1. The Fibonomial Coefficients Modulo 3 

1111 m i i m n i l m i m i n i l m i i i i i 
1120 2210 1120 2210 1120 2210 1120 2210 1120 
1200 1200 120 0 1200 1200 1200 1200 1200 1200 
1000 2000 1000 2000 1000 2000 1000 2000 1000 

1212 2121 0000 1212 2121 0000 1212 2121 0000 
1220 1220 0000 2110 2110 0000 1220 1220 0000 
1100 2200 0000 1100 2200 0000 1100 2200 0000 
1000 1000 0000 2000 20-00 0000 1000 1000 0000 

1111 0000 0000 1111 0000 0000 1111 0000 0000 
1120 0000 0000 2210 0000 0000 1120 0000 0000 
1200 0000 0000 1200 0000 0000 1200 0000 0000 
1000 0000 0000 2000 0000 0000 1000 0000 0000 

1212 1212 1212 2121 2121 2121 0000 0000 0000 
1220 2110 1220 122 0 2110 1220 0000 0000 0000 
1100 1100 1100 2200 2200 2200 0000 0000 0000 
1000 2000 1 0 0 0 1 0 0 0 2000 1000 0000 0000 0000 

1111 2222 0000 2222 1111 0 0 00 0000 0000 0000 
1120 1120 0000 1120 1120 0000 0000 0000 0000 
1200 2100 0000 2100 1200 0 00 0 0000 0000 0000 
1000 1000 0000 1000 1000 0000 0000 0000 0000 

1212 0 0 00 0000 2121 0000 0000 0000 0000 0000 
1220 0000 000 0 1220 0000 0000 0000 0000 0000 
1100 0000 0000 2200 0000 0000 0000 0000 0000 
1000 0000 0000 1000 0000 0000 0000 000 0 0000 

1111 1111 1111 0000 0000 0000 0000 0000 0000 
112 0 2210 1120 0000 0000 0000 0000 0000 0000 
1200 1200 1200 0000 0000 0000 0000 0000 0000 
1000 2000 1000 0000 0000 0000 0000 000 0 0000 

1212 2121 0000 0000 0000 00 0 0 0000 0000 0000 
1220 1220 0000 0000 0000 0000 0000 0000 0000 
110 0 2200 0000 0 0 0 0 0 0 0 0 0000 0000 0000 0000 
1000 1000 0000 0000 0000 0000 0000 0000 0000 

1111 0000 0000 0000 0000 0000 0000 0000 0000 
1120 0000 0000 0000 0000 0000 0000 0000 0000 
1200 0000 0000 0000 0000 0000 0000 00 0 0 0000 
1000 0000 0000 0000 0000 0 0 00 0000 0000 0000 

Introduce C'(m9 n) = C(mr, nr). By Lemma 4, 

C(m, n) s uZC(m - 1 ? n) + i&C"0» - \ n) (mod p). (3) 

Also 
C(m,0) = l and 0(0,n) = 1 (mod p) form,n>0. (4) 

One may check that the unique solution of congruence (3) satisfying the boundary conditions (4) 
is given by the following formula. This step involves the Pascal triangle rule, 

B(m, n) = B(m,n-X) + B(m-\ n). 

Lemma 5: If p\b, then, for every m > 0 and n > 0, C(mr, nr) = B(m9 n)u™i (mod p). 
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Definition 6: For /', j > 0 and for 0 < k9 l<r9 let AitJ(k91) denote the solution of the modulo-/? 
recurrence relation 

4 t j(k, I) = *W+i4,#> I-tt + btijr+^jik - 1 , /) 
for 0<k9l<r together with the boundary conditions Af9j(k9 -1) = 0 (mod/?) for 1 < k <r and 
4 J 7 ( - 1 , /) = 0 (mod/?) for 1 < / < r and 4 y (0 ? 0) = 1 (mod/?). 

If Q,j) = (m'9n') and (k9l) = (mQ9nQ)9 and if the final boundary condition in this definition 
were A,,,, n,(09Q) = C(m'r9n'r)9 then these would be the congruences satisfied by C(#?'r+/% 
«'r+%) for 0 < / % n^<r. Because um,r+mQ+l = nmf,r+mQ+l (mod/?) where m"-mf mod s9 and 
similarly for un,r+n _1? these congruences imply that 

4*,Amo> %) = 4*.A»b>*%) (mod/?). (5) 

and so C(m9 n) mod/? is given as follows. 

Lemma 6: If p\h9 then, for m>0 and n>09 C(m,ri) = Cim'r.n'r)^,,,„»(*%%) (mod/?). 

Definition 7: If r < oo, then, for i, j > 0 and 0 < k, I < r, define i ^ y(Jfc, /) = t/XiA9 j(k> 0 • BY 
Corollary 5 and equation (5), Hm,^(m^9 r^) = Hm,^„(/%/%) (mod/?). 

5. THE PATTERN OF THE RESIDUES 

Recall that n^ = n mod r, n' = n + r, n* =n mod ?, and n" - n' mod 5, where r is the rank of 
apparition of the prime/? in {un)9 t is the period of (un mod/?), and s = t Ir. Lemmas 5 and 6 
yield the following formula. 

Theorem 1: If p\b9 then, for m,n>0, C(m9n) = B{m\n')Hm„n,,{ti%91\) (mod/?). 

This result simplifies nicely when 5 = 1. Then m" = n" = Q, and Ho,o(^>rb) = ^(mo^no) 
(mod/?) for 0 < / % i%<r. Thus, in this case, as in the Pascal "triangle" case, the pattern of 
residues exhibits self-similarity upon scaling by/?. 
Corollary: If p\b and 5=1, then, for m9n> 0, C(m,n) = B(m'9n')C(m09n$) (mod/?) or, letting 
B denote the matrix [B(i, j)] with 0<i, j</?, and Ck = [C(m9ri)] with 0<m9n<rpk

9 we have 
C^B®*®C0(mod/?). 

Example 1: q-Binomial Coefficients. Take w„ = Z^o #* to obtain the g-binomial coefficients. If 
p\q9 then un = 1 for7?>l, so C(m9n) = l (mod/?) for m9n>0. So assume /?/[#. Then !+# + ••• 
+ ^r_1 = #r = 0 (mod /?), so qr - 1 = #wr - wr = 0 (mod /?), whence i/r+i = ur+qr = 0 + 1 = 1 (mod 
/?). Thus, (wr, wr+1) = (u09 UX)9 and so the period, t9 equals r, and so s = 1. Therefore, the corollary 
covers the case of ^-binomial coefficients when p\q9 yielding a result given originally by Fray [3]. 

For a numerical example, take q = 2 and /? = 5. Then ^ = 1, ^ = 3, 2*3 = 7, #4 = 15, w5 = .31, 
..., whence r = 4 and 

C0 = 

1 1 1 r 
1 3 7 15 
1 7 35 155 
1 15 155 1395 

" 1 1 1 1 " 
1 3 2 0 
1 2 0 01 
1 0 0 Oj 

(mod5), 
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SO 

Q s B ® q , s . 

1C0 1C0 1C0 1G0 1C0 
1C0 2 C 0 3 C 0 4 C 0 0 C 0 
1 C _ ^ Q 3 C Q I C Q OC/Q OCQ 
1C0 4 C 0 0 C 0 0 C 0 0 C 0 

_iq, oc0 oc0 oc0 oc0 

(mod5). 

Individual residues may be calculated easily by the Corollary to Theorem 1. For example, 

C(222, 161) s B(55,40)C(2,1) - B(2,1)5(1, 3)5(0,0)C(2,1) s 3 • 4 • 1 • 2 s 4 (mod 5). 

Example 2: Fibonomial Coefficients Modulo p. Let a = b = 1 so that un=Fn and, for illustra-
tion, let p = 3. Then r = 4, t = 8, and 5 = 2. The initial part of the table of Fibonomial coeffi-
cients modulo 3 were given in Table 1 above. Submatrices of the Fibonomial coefficients modulo 
3 are shown in Table 2. 

TABLE 2. Submatrices of t ie Fibonomial Coefficients Modulo 3 

ByDefi 

lH^o 
1H1 J 0 

1H 0 J 0 

1H1?0 

1H 0 J 0 

1H1 J 0 

1Ho,o 
mh0 
1H 0 J 0 

IHOLI 
2H W 

0H0jl 

1HU 

2 H 0 , 1 
0 H U 

1H0,, 
2 H U 

OH*,,! 

inition 7, 

!H0,o 
0H,,0 

OHo,o 
^ 1 , 0 
OHao 

0H1>0 

1 H 0 ,0 

0H,,0 

0H0)0 

Mo,! 
tf*U 
1HO,I 
2 H U 

2 H 0 , 1 
2 H U 

0H04 

0 H U 

0H0,, 

1 H 0 ,0 

2Hi,o 
0H0>0 

2 H 1 , 0 

IHo.o 
0H,,0 

0H0,0 

OH,,o 
0H0,0 

IHo,! 
0 H U 

0H0,i 
2 H U 

0H0,, 
0 H U 

0H0sl 

0 H U 

0H0,! 

HIo.o 
1HI J 0 

1Ho,0 
0Hlj0 

OH0,0 

0H,,0 

0H0,0 

0H,,0 

OH0,o 

1H0,, 
2 H U 

0H0>1 

0 H U 

OHo,, 
0 H U 

0H0jl 

0 H U 

0H0;1 

iHo.o 
0H,,0 

OH0,o 
0H1>0 

OH0,o 
0H1>0 

0H 0 0 

0H,,0 

OH0,o 

H, 0,0 

"i i i r 
1 1 2 0 
1 2 0 0 
1 0 0 0 

; H 0 I = 
1 1 1 1 
2 2 1 0 
1 2 0 0 
2 0 0 0 

> H1>0 = 

" 1 2 1 2 
1 2 2 0 
1 1 0 0 
1 0 0 0 

; H i , i -

1 2 1 2 
2 1 1 0 
1 1 0 0 
2 0 0 0 

Wells [16] also gives a formula for these residues, one that is a special case of her Theorem 
4, given below, and she provides a detailed description of the pattern of these sub-matrices from a 
"triangular" perspective. 

Modulo p = 29 the Fibonacci sequence has r = t = 3, so $ = l and, in accordance with the 
corollary, the Fibonomial coefficients modulo 2 exhibit a pattern similar to that of the binomial 
coefficients, but with a different C0. Wells [15] presents the equivalent of this result in an inter-
esting context. The pattern of Fibonomial coefficients modulo any prime is treated in [6]. 

Theorem 1 and the Examples show that the infinite matrix [C(i, j) mod p] may be partitioned 
into rxr submatrices which form basic, natural "tiling units.11 The pattern of the residues is 
obtained by superimposing the self-similar array of binomial coefficients modulo p upon the 
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doubly periodic "tiling" of the plane by "hidden" rxrM matrices. The binomial structure is self-
similar upon scaling by the factor/?. The r x r tiling structure has period s both horizontally and 
vertically, and so the period is t at the element level. 

When s = 1, there are p - 1 different nonzero r x r sub matrices, one for each nonzero residue 
value of B(mf

9nf) modp times C0. In the general case, by Corollary 4, there are also s-s differ-
ent Hm„n,t-matrices. This suggests that there may be (p-tys2 different nonzero "tiles." In the 
case of the Fibonomial coefficients modulo 3, the exhibited matrix shows these seven submatrices: 

1H0 J 0, 1H0J1, 1H1J0, 1HU, 2H01, 2Hlj0, 2HU. 

The missing case, 2H0 0, must be sought farther out. The places of the missing 2H0?0 are (5,11), 
(11,5), (5, 13), (13,5)... in Table 2. 

Theorem 2: Assume p\b. The number of different nonzero rxr submatrices of the infinite 
matrix [C(i, j) mod p] is (p - l)^2 . 

Proof: The proof is trivial for s = 1, so assume $>l. First, we verify that the tiles pB.MfV are 
distinct for different (p, p, v)'s with 1 < p < p and 0 < p, v<s. By Definition 6 and Corollary 3, 
A

M, v(°> °) = h A
M, v(°> 0 s u

Mr+\ = u&i> md An, vft °) s buvr-i = < u (mod P), s o bY Definition 7, 
# * v ( 0 , 0 ) S | # r , ^ , , ( 0 5 l ) - < ^ 5 and HMJl,0)^uZ+v (mod p). Note that p\urU. If 
pWMV s pB.pv (mod p), where 1 < p , p < p , and 0 < p, v, p, v < $, or B.^v = p^%v (mod p), 
where A - p ^ p , then iffi^ptffi, C S A ^ ^nd < r ^ A < ^ (mod p), so 
if^i = uf+l and w^ = i /^ (modp), whence, by Corollary 4, p = p and v = v, and therefore going 
back one finds px = 1, i.e., p = p. This proves that the mapping (p, p, v) H-» p H ^ is one to one. 

It remains to show that, given (p, p, v) with 1 < p < p and 0 < p, y<s9 one can find (m, n) 
such that 2?(wi', w') = p (mod p) and mt! = p and w" = v. Let iw = r(1 + ip) and n = r(p - 1 + jp2), 
choosing i and j so that i = p - 1 (mod 5), 7 = v - (p-1) (mod s)9 and 0 < i, j < p . Since p = 1 
and p 2 = 1 (mod 5), by Corollary 6, we have 

/u" = (m + r) mod s = (1 +ip) mod .s = (1 + /) mod s = p , 

«" = ( p - l + jp2)modss, = ( p - l + j)mod5= v, 

and, by Lucas's theorem, 

B(m\n<) = 5(0, j)B(i, 0)5(1,p-1) 3 p (modp). 

(Modification of this construction can yield infinitely many occurrences of each possible tile.). D 

6, GENERALIZATION OF LUCAS'S THEOREM 

Using Theorem 1, one may express Hm,,fn„ (7% /%) in terms of C(m9ri) for small values of 
(m9n). The tricky part is to work around the cases when B(m\nf) = 0 (mod p). Here is one 
approach. 

Given (m9 ri), let p = rn* and v = n* + At, where X will be chosen later. By Theorem 1, 

C(M, V) - B(M>, vyH^Ob, "0) (modp). (6) 
Now, 
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JUQ = nf mod r = (mmod t) mod r = m mod r = m0, 

u" = li mod s = /w" mod s = mf\ 
(7) vQ = (rf + Ai)modr = jfmodr = nQ9 

V = (n* + M) + r = (nmodt) + r + As = n" + As9 and 
'v" = ((«* + 2f)modt) + r = n* (modt) + r = n*+r = n". 

Thus, equation (6) becomes C(/w*, «* + At) = 5(w", w" + As)Hm,%n„ (#%, /%) (mod /?). Now, if 2 Is 
chosen so that p\B(m'\ nff + As), then 

F ^ i % / % ) = ̂ ^ {modp). (8) 

Theorem 3: Assume /?|i . Let 2 = max{0, mff + n" -{p-T)}. Then 

C(m,«) s 5(m', rf)B(m"9 n" + As)-lC(pf9 n* + At) (mod p). 

Proof: By Corollary 6, 5|/?-l. If j < j p - l , then actually s < ( p - l ) / 2 , so mff+ nft <p-l9 

whence 2 = 0 and p\B(nf\n" + As). If s = p-l and m" + wf' </?, then again we have 2 = 0 and 
p\B(m"9 m*f + As). Assume that s = p-1 and m" + n">p. Now n" + As = «f' + 2(p-1) = Ap + 
(w" - 2) and 0 < n" - 2 < p - 1 . By Lucas's theorem, 5(iw", w" + 2s) = 5(0, A)B(m", rf' - A) (mod 
I?), and this is not congruent to 0 as long as m" + n" - A < p - 1 . Therefore, A = m" + n"-(p-1) 
is actually the minimum value that works. Now, in every case, equation (8) and Theorem 1 imply 
the desired conclusion. • 

Thus, except when s = p-l and mff + nff>p9 the residue C{m9n) mod p Is given by this 
simple, symmetric expression: 

C(m9 n) = B{nf9 n')B(m"9 n"ylC(m*9 rf) (mod p). 

Example 3: Consider the FIbonomial coefficient C(6,29) mod 3. It appears in the 7th row and 
30th column of Table 1. Since un = Fn and p = 3, then r = 4, t = 8, and s = 2. Let m = 6 and 
n = 29. Then raj, = 2, m' = 1, w* = 6, and nf' = 1, while ^ = 1, rf = 7, w* = 5, and «" = 1. Here 
m"+«"-( />- l ) = l + l - 2 = 0, so2 = 0. Now 

B{m\ nl) = 5(1,7) = 5(1,2x3 + 1) = 5(0,2)5(1,1) = 2 (mod 3), 
5(m", n" + As) = 5(1,1) = 2 and 2"1 = 2 (mod 3), 

and 
C{m\ rf + 20 = C(6,5) = 2 (mod 3) 

so 
Q>f, w) = 5(n/, #t')2?(m", n")"lC(nf9 n*) = 2-2-2 = 2 (mod 3). 

Theorem 3 may also be used to go back and extend Lemma 4 to a Ml r-step recurrence 
formula. The result is stated in the following tidy formula. 

Corollary: If p\ b, then for m, n > r, 

C(m, w) s u™+lC(m9 n~r) + u?+lC(m - r, w) (mod p). 
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In terms of the rxrmatrices GitJ :=[C(ir+h,jr + k)], where 0</?, k <r, and i,j>0, and 
the diagonal matrix D = diag{u^+h ul

r+h..., ur
r~l), the conclusion of the corollary may be rewritten 

as 
G,y s ^ D G , ^ + u?+lGi_ljB (mod/?). 

For binomial coefficients, ur+1 = /? + ! = ! (modp) and O = fl, so Gz j = G7 ̂  + G M j (mod /?), the 
pxp generalization of the Pascal triangle rule noted by Long [9]. For Fibonomial coefficients 
modulo 2, ur+l = F4 = l (mod 2) and again 0 = 0, so GitJ = G,-^ + 6 ^ ^ (mod 2), as noted by 
Wells [15]. For Fibonomial coefficients modulo 3, which were considered in Example 2, ur+l = 
F5 = 2 (mod 3) and 0= diag{l,2,l,2}, so that G ^ s D G ^ + G ^ B . (mod 3), which the 
reader may see illustrated in Table 2. [Note first that DH U = HiJ±l and H,-JD> = H / ± u (mod 3).] 

7. WELLS'S THEOREM 

By means of a bit of translation, Theorem 3 may be transformed into Wells's theorem. Let 
N = m+n and, correspondingly, N0 = N mod r, N' = N + r, and N" = N9 mod 5. Then, 

and 

Let JV' = lLj>\NjPj l and #i' = Zy>! ft*,/?-7 ! be the base-/? representations of N' and #?'. By the 
original Lucas theorem, 

(mod/?). ( « 

The result of Wells [14] is as follows. 

Theorem 4 (Wells): If p\b, then, for N" > m", 

and, for N"<m", 

where N0 = N mod r, JV' = N+r, and iV" = JV' mod s. 

Proof: Let n = N-m. First, assume that #% + /^ >r . Then [^] = C(m, n) = 0 (mod/?), by 
Lemma3. Also, N0 = mQ+nQ-r, so, for Kr = N"r, t + N"r, or (N" + l)t + N"r, we have 

C(/w"r +/% (^~ 1 ~w)r+*%) s 0 (mod/?), 
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again by Lemma 3, and so all congruences in the theorem's conclusion reduce to 0 = 0 when 
WQ +/% > r. Next, assume WQ +J% < r. Theorem 3 and the theorem of Lucas imply that 

-1 'N, \N~\ = (mT +ri> + ti)ri\NJ 
[m\-{ mr ) n[mj 

m* + n* + lt 
m* 

(mod/?), 

where 1 - max{0, m" +ntf -{p-1)}. Refer to the mixed-radix addition 
m = m'"t+m"r+mQ 

+ n = n'"t + n"r + «b 
N = N"'t+Nffr + N0 

where 0 < # % % N0<r9 0<nf'9n"9 N"<s, and Q<nf"9n'"9 N"'<<x>. Since ^ ) H-^ ) <r , 
there is no carry out of the rightmost column. If N" > mf\ then m" +nff - N!f < s < p-1, so 
1 = 0 and m"+nn + ls = N" and m*+n"" + lt = mffr + mQ+nffr + nd = N,er + N09 so the first for-
mula is correct. Now assume N" < m". Then there is a carry out of the second column, so 
N" = mff+ntf-s. If s<p-l9 then nf'+n" <2s<p-l, so 1 = 0 and /w"+/i" + As = 5 + 7V" + 0 
and iif* + #i*+/ii = #f"r + #ii)+«"r+^ = (s+Nef)r + (m0+n0) = t + Nffr + N0, and the formula for 
this case follows. Finally, if s = p-l9 then l = m"+n"-(p-l) = N" and m" + n" + ls = 
s + N" + N"s = s + Nff(i + s) = p-l + Nffp9 whence 

and 

mff + mtf + ls\(p-l\(Nff\( s \ 
m?f )-{m" ){0 )-{rn") 

nf+n* + At = N"r + NQ + it + N"t9 

and the final case follows. D 
Example 4: Let us find the value of the Fibonomial coefficient [36

5] modulo 3. This is equivalent 
to Example 3. Here p = 3, r = 4, f = 8, and s = 2. Corresponding to m = 69 we have n% = 2, 
nf = 1, and mT = 1. Similarly, for N = 35, we have NQ = 39 Nf = 8, and JV" = 0. Also, ml = 1, 
m2=09 Nt = 29 and # 2 = 2. Here JV" < m" and 5 = p-1, so 

-1 

m, m"r+mQ 

-rat "(0 + 1)8 + 0-4 + 3" 
1-4 + 2 

= 2-2-l-2 = 2 (mod3). 

This result is consistent, of course, with the calculation based on Theorem 3. 
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