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1. MORGAN-VOYCE NUMBERS 

Consider the recurrence 

Xn+2 = ^ , , + 1 - %n (1-1) 

with 

X0 = a, Xx = b (a, * integers). (1.2) 

Morgan-Voyce numbers Bn, hn, and their related numbers Cn9 cn are then generated accord-
ing to the following scheme in which Fn9 Ln symbolize the rfi Fibonacci and 72th Lucas numbers, 
respectively: 

(1.3) 

Readers are encouraged to determine the first few members of each of these sequences. In 
particular, {BJ = 0,1,3,8,21,55,.... 

The sets of numbers (1.3) are special cases of the corresponding sets of polynomials Bn(x), 
h„(x),Cn(x),cn(x)[2]whenx = L 

2. REPRESENTATIONS BY Bm 

Next, consider the representation of positive integers N by means of Bn: 

# = 2 > / f l (^=0,1,2) . (2.1) 
/=i 

Of special interest is the case as in [3] in which all the at in (2.1) are 1, giving rise to the 
numbers 1, 4, 12, 33,..., i.e., 

! 3 = i W - l . (2-2) 
/=1 

A minimal representation is indicated in the abbreviated table (Table 1) in which an empty 
space signifies 0 (zero). This table has already appeared in [3]. An essential feature of this repre-
sentation proved in [3] is that no two successive terms in the summation have coefficient 2. 
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TABLE 1. Minima! Representation for {BJ: n = 1, 2 ,3 ,4 
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Is this representation unique? 

Write Sk for the set of digits 0, 1, 2 of length £ in the representation. Let 

/jt1"1 = the smallest integer in Sky 

j-m&x _ ^ e i a rge s t integer in 5^, 
I i ^ = the range of integers in Sk, 
\Ik = the number of integers in Sk. 

Then we readily construct the following scheme (Table 2). 

TABLE 2* Bn Representation Summary 

k 
1 
2 
3 
4 

Jfc 

sk 
S, 
s2 
S3 

s4 

sk Fit 

Rt 
U 

3,...,7 
8, ...,20 
21, ...,54 

,...,FM+1-l 
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B 2 - l 
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~ 1 = ^2*+2 _ 1 

'* 
2 = F3 

5 = F5 

13 = F7 

34 = F9 

Flk+\ 

Clearly, Ik = JVp» - # P +1 = ^ - 2 - F2k = F2,+ 1. 
In each block of length k in Table 1, 

(the smallest number is necessarily (0, 0, 0, ..., 1), and 
the largest number is necessarily (0, 0, 0, ..., 2). 

Lemma 1: Bn<N<Bn+l-l. 
E.g., Bs(= 987 )<N = 1000<5^-1(= 2583). 
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Lemma 2: k is uniquely determined by N. 
E.g., N = \000=>k = 5. 

Combining the above information, we deduce that 

Theorem 1: Every positive integer N has a unique representation of the form 

where [3] two successive values ah ai+l cannot both be 2. 
The distinctive pattern fixed in Tables 1 and 2 determines the uniqueness of the repre-

sentation. 
A tabular schedule similar to that in Table 1 (but suppressed here for the sake of brevity) 

ought now to be constructed for maximal representations by B„. The embargo on the appearance 
of two successive coefficients in the summation with the value 2, as in the enunciation of Theorem 
1, naturally does not apply for maximality. A fixed pattern of the coefficients emerges in the tabu-
lation of maximal representations for Bm leading to the conviction that the maximal representation 
is unique. Where this situation differs from that, say, for Pell numbers [1], is that, while (2.2) in 
which all coefficients are 1 is there common to both minimal and maximal representations, other 
summations here are common to both which do not belong to (2.2), e.g., 5 = 2Bl+B2. Also see 
[3] in this context. 

3. OTHER REPRESENTATIONS 

(i) CH (lacunary) 
Coming now to the companion number set {CJ = 2,3,7,18,47,... to {B„}, i.e., (1.3)(C), we 
find that the even tenor of our progress is disrupted. For a start, C0 = 2, Q = 3, so that there 
is no possible representation of 1 (unity). Thus, any representation is necessarily lacunary. It 
is no good appealing to C j as an accommodating adjunct to the set {Cn} since C_t = 3 
(indeed, C_„ = Cn). 
Because of this hiatus, there is also no member in the pattern of the minimal representation 
of, say, 8 though it can be represented maximally as 8 = 2C0 +2Q, in which there occur two 
successive coefficients equal to 2. Except for the lacuna at N = l, the potentially fixed 
minimal pattern is negated in a regular way at Cn = 1, n > 2. The nature of the representation 
is therefore hybrid. 

(ii) K 
Turning now to the Morgan-Voyce numbers {bn}: 1,2,5,13,34,..., we encounter a similar set 
of circumstances to those for {BJ. Arguments paralleling those employed in the previous 
section are likewise applicable to this context. Analogously to Table 1, a minimal 
representation table may be constructed (an entertaining and instructive pastime). As for Bn, 
the proscription of two successive coefficients equal to 2 in a minimal representation applies 
here also. 
For comparison with the Table 2 Summary for JJn,-we here append a Summary (Table 3) for 
hn, in which non-capital symbols correspond to the capital symbols specified in (2.3). 
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TABLE 3* bu Representation Summary 
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Observe that, by (1.3), ik = (^+1 -1) - (^) +1 = bk+l -bk = F2k+l - F^ = F2k. Uniqueness of 
the minimal representation is determined by the fixedness of the pattern. 

(iii) cn 
Some initial comfort is offered here by the fact that 1 = c1? 2 = 2cl. But to represent the num-
ber 3, we need to revert to the subterfuge of including -1 = c_x (c_n = cn in fact) in our set 
{cn}. This implies that a representation exists which is non-lacunary. There is a purpose-
fulness about the coefficients which then suggests minimality and uniqueness. 

4. CONCLUDING OBSERVATIONS 

Write 
n-l 

&„ = ££,. (2.2), b„ = 5> , %, = XC,, c„ = £c,.. 
1=1 J=l j = 0 J=l 

Then we discover the following schedule (cf. (1.3)): 

mn 
K 
^n 

c„ 

Fibonacci Equivalence 
F2n+l~l 

F2n 

^2n+l ~~ 1 
^2w~2 

Recurrence Relation 

^ 2 = 3 ^ 1 - 8 * - 1 
K+2=3K+\-hn 
%H-2 = 3 % i + l " ~ % i _ 1 

Crc+2 = 3C«+1~~CH + 2 

Aspects of 3SW and %n are discussed in [3], while features of bn and cn are analyzed in [4]. 

Peripherally of import to this paper, but also to provide some publicity for the concept, we 
mention Brahmagupta polynomials [5] which relate to Bn(x) and bn(x) [5], and to C„(x) and 
cn(x) Nl- Historical information on Brahmagupta and his mathematics is given in some detail in 
[6]. 
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