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1. INTRODUCTION 

The Fibonacci and Lucas numbers are defined for all integers n as 

lFr,+l = F
n+Fn-l> ^ 1 = ^ 2 = 1, 

[AH-I - Ai + A?-i> A = i> ̂ 2 = 3-

Their Binet forms are F„ = ~if- and Z,„ = a"+J3n, where a and /? are the roots of x2 - x -1 = 0. 
Inspired by the well-known sum 

t ^ = FnFn+l, (1.1) 

Clary and Hemenway [2] obtained factored closed-form expressions for all sums of the form 
2^=i Fmk> where m is an integer. For example, they discovered 

A ^3 fi^24+iAi-i4+2 if w is even, 
2^2* =1 j _2|72 . . . (1.2) 
*-l U LnFnULn-lFn+2 l f » « odd, 

and 
« 1 

Y,F4k = -ZF2nF2n+2(L4n+2 + 6 ) - O 3 ) 

Motivated by the results of Clary and Hemenway, we turned to fourth powers to see if similar 
factorizations could be obtained. In the case of nonalternating sums, we could find nothing to 
compare with the beautiful formulas of Clary and Hemenway. However, by experimenting with 
many numerical examples, we found the most interesting results when we considered alternating 
sums. We present these results in Section 3, and indicate our method of proof in Section 4. As 
noted in [2], once such identities are discovered, it is usually a comparatively routine matter to 
prove them. However, to assist us in the proofs, we have discovered a number of striking sums 
that involve the Lucas numbers, and we present these in Section 2. 

2. PRELIMINARY RESULTS 

We require the following results. 
Fn+k + Fn-k = FnLk> k ^en, (2.1) 

Fn+k+Fn_k = LnFk, £odd, (2.2) 
Fn+k-Fn_k=FnLk, kodd, (2.3) 
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un+k 'n-k -^n^k? 

A?+ifc ~ A?-£ = ^n^k? 

J _ 7 - J2 

L2m + 2 = LmJ 

L2m + (-i)m+12 = 5Fl 

k even, 
k even, 
k odd, 
A: odd, 
k even, 
m odd, 
m even, 

(2.4) 
(2.5) 
(2.6) 
(2.7) 
(2.8) 
(2.9) 

(2.10) 
(2.11) 

Identities (2. l)-(2.8) appear as (5)-(12) in Bergum and Hoggatt [1], while (2.9)-(2.11) can be 
proved with the aid of the Binet forms for Fn and Ln. 

Throughout this paper m * 0 is an integer. To assist in our proofs, we also make use of four 
sums which involve Lucas numbers with even subscripts. If m is odd, we have 

2 ^ ^2mk -
k=\ 

jrmnrm(n+\) 

Aw»A»(>i+l) 

and 

2^^-mk -
k=0 

(L I 

^^mn^m(n+\) 

n even, 

wodd, 

n even, 

n odd. 

(2.12) 

(2.13) 

On the right sides of (2.12) and (2.13), the even and odd cases are reversed. Equally surprising, 
we have found that for m even 

K-i)%m*= 
k=l 

e r r J7 
jrmnrm{n+\) 

and 

2H)t^,*=i 
k=0 

^mn^mjn+l) 

^mn^m(n+l) 

n even, 

fiodd, 

n even, 

(2.14) 

(2.15) 

Lm 
^ - , yiodd.-

The proofs of (2.12)-(2.15) are similar. We illustrate the method by proving (2.13). 

Proof'of'(2.13): Expressing L2mk in Binet form and summing the resulting geometric pro-
gressions, we obtain 
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2^^1mk ~ 
fy2mn+2m _ i n2mn+2m _ i 

a2m-\ + p2m-\ 
_ ±J2mn+2m J^2mn ^ JU2m 

— (2mn+m)+m ~ *\2mn+m)-m ~*~ ^m ri •« Q\-J 

Aw 

=
 L2mn+mLm + Lm [by (2.7)] 

An 

Since m is odd, (2.13) follows from (2.5) and (2.6). D 

3. THE MAIN RESULTS 

We now present our main results. If m is even, then 

\(-X\kF* - FmnF^n+l)[LmLmnLm(n+l) - 4L2m] 
k=\ ~>LmL2m 

£(-i)*C = 5^A(n+i)[ymA(n+i)+44J; weven; (32) 
k=\ LmL2m 

X(-1)*C = -5F™F™W[Lfm
r"LnKn+l) +4Llm], "odd. (3.3) 

W e mention that (3.2) and (3.3) can be combined in a single sum as 

k=\ LmL2m 

On the other hand, if m is odd, then 

V (-l)kF4 = ^mn^m{n+\){^m^mn^m{n-^\)+^\^) ^2m\ • - ^ 

k=i *LmL2m 

I ( - l ) % = ̂ ^ ^ L Lm(n+l) + 4L2m]^ w e v e ^ ( 3 5 ) 
k=i LmL2m 

Zi-ifil, = - 5 ^ 4 ^ V D ~4L2*\ „odd (36) 
k=0 Aw^2m 

As before, (3 ,5) and (3.6) can be expressed as a single sum, but w e choose to wri te them 
separately in order t o present the right sides in factored form. This is the reason for the appear-
ance o f the zero lower limit. 
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4. THE METHOD OF PROOF 

To illustrate the method, we prove (3.4). First, let n be even. In what follows, we note that 
since m is odd and a/3 = - 1 , then {ap)mk = (-1)*. Now 

J f c = l Z D k=l 

= ̂ Z(- 1 ) t (^-4( - l )^ 2 f f l t + 6) 
25 t=l 

1 x-= ^ E ( ( - l ) ^ 4 M * - 4 Z 2 ^ + 6 ( - l ) * ) 
25 <t=i 

1 " = ^? Z ((- 0* Umk ~ ̂ Limk), since " is even. 
ZD k=l 

With the use of (2.12) and (2.14), this becomes 

J_ 
25 

^2mn^2m(n+l) ^^mn^m(n+l) 

**, ^2m Aw 

5LmL2m 

Ifn is odd, then we have 

! ( - ! ) * / & = Z ( - l ) * ^ (since ^ = 0) 
k=l k=0 

1 V = ̂ S(H)*^*-4Zt a f c + 6(-l)*) 
25 Jk=0 

25 

With the aid of (2.13) and (2.15), this sum becomes 

1 
K Z ( H ) * 4 m * - 44m*)> since «is odd. 
•->k=0 

25 
*F2mnF2m(n+\) 2 0 / ^ n / ^ l ( n + 1 ) 

-"2m 

^W^W(W+1)LAIIAII»AII(W+1) + ^ 2 m J 

^Aw^2m 
and this completes the proof. D 

We remark that the proof of (3.1) is similar since the parities of n must be considered separ-
ately, but the proofs of the other results in Section 3 are more straightforward. 

S. CONCLUSION 

During the course of our investigation we discovered two further pairs of sums similar in 
character to (2.12)-(2.15) which we include here. If m is odd, then 
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and 

If m is even, then 

n (-1YF T 

k=\ rm 

n (-\\nJ F 

Z ( - i ) ^ ^ -c J r ("+1) • (5-2> F 

and 

t^mk = FmnI?"+\ (5-3) 

I^mfc = ̂ 4 ^ . (5-4) 
The Lucas counterpart of (1.1), which appears as I4 in [3], is 

n 
2^,1% = LnLn+l -2 = LnLn+l -LQL^ (5.5) 
k=\ 

The right side of (5.5) suggests the notation [LjLJ+lf^. 
We now make an observation about identity (3.4) and its Lucas counterpart. We have found 

that for m = 1 they can be expressed as 
n 

and 

K - l ) ^ 4 =-4^" F„_2FnF„+lF„+3, (5.6) 

K-Dfc4 = t$LL LL L 
2 Llj-2LljL'j+lL,J+i 

(5.7) 

They can be proved quite effectively using the method outlined on page 135 of [2]. We illustrate 
by proving (5.7). 

Let ln denote the sum on the left side of (5.7), and let rn = ^-y-Ln_2LnLn+lLn+3t. Then 

Tn ~ Tn-\ ~ ^ AI(AI-2Af+lAi+3 + Af-3 Ai-1 Ai+2/- \?• °) 

Now, by using the recurrence satisfied by the Lucas numbers, we express Z„_2, Zw+3, Ln_3, Ln_x, 
and Ln+2 in terms of 1^ and Z^+1, and substitute in (5.8) to obtain 

r _r - / _/ - (~lf r* 
fn fn-\-ln V-l ~ ^ "' 

Thus, ln-rn = -r0, and this proves (5.7). 
To conclude, we mention that for/? real the sequences {£/„} and {Vn} defined for all integers 

n by 
lUn = PU„_l + U„_2, tf0 = 0 , ^ = 1, 

generalize the Fibonacci and Lucas numbers, respectively. Identities (2.12)-(2.15), together with 
the results in Section 3, and (5.1)-(5.4) translate immediately to Un and Vn. The reason is that if 
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we replace Fn by Un, Ln by Vm and 5 by p2 + 4, then Un and Vn satisfy (2.1)-(2.11), upon which 
all our proofs are based. For example, if m is odd, (3.4) and (3.5) become, respectively, 

U }Umk = WTwK, ' (59) 

and 

£ {-ifV^ = &+WmU«ny[WJ'«n+l)+W2Jt n eyen (5 1Q) 
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