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1. INTRODUCTION 

Let a, b be integers with b>0. If we perform the Euclidean algorithm to find (a,b)y the 
greatest common divisor of a and b, we get 

a 
h 
ro 

= <lob+r0 

= Wo +.n 
= <Wi+r2 

(0<r0<b) 
(0<r,<r0) 
(0£r2<#i) 

until we finally find the least n>0 such that rn -0. Note that for this value of n we get qn>\. 
We will define E(a, b) to be this value n. We now let a, q be any pair of coprime integers with 
q>0 and set m - co(a9 q) to be the multiplicative order of a modulo q; that is, OD is the least posi-
tive value of m such that am = 1 (mod q). We define the number theoretic function W(a, q) by 

CO 

W{a,q) = 2Y)LE(ai,q)l2\. (1.1) 
1 = 1 

We next let N be any positive non-square integer and define 

v(N) = ( a - l + VF)/<7, 
where 

[2 when# = l (mod 4), 
0" = ' 

11 otherwise. 
Now consider 

N = (a(qran + ju(®k + X)lq)l 2)2 - a2fiXanr9 

where /i,X e{1,-1}, gr |a* + X, (n,k) = l, n>k>l, and 

_ fl if 2\qran +ju(ak + X)/q, 
[2 if2\qran + ju{ak+X)lq. 

It was shown in Williams [16] that W(a, q) is a very important function for determining a priori 
the period, length p(N) of the simple continued fraction expansion of v(N). For example, in the 
simple case of r = ju = -X = 1, we get 

p(N) = 2n + k + kW(a, q) I m{a9 q). 

Indeed, as shown in Mollin and Williams [6], we get the simple continued fraction expansion for 
v(N) as 

viN) = (q0,ql9q29...,qp), 
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where we can actually provide formulas for qi (i = 0,1,2,..., p = p(N)) in terms of q, a, n, k. In 
order to do this, we first need to define for 1 < j < n - 1 the symbols: 

Xj - jk-\kj/njn, 
Sj^U + dk/nj-lJk/ni 
Pj^k-n + Aj, 

_ [l\E{a\q)l2\ + l when s}. = 1, 
m 

II when €j = 0, 
and y/(i), where ^(1) = 3 and y/{j +1) = y/(J) + ejmj + 2. With these in mind we get 

q0=(qa» + (ak-l)/q)/2 + (a-l)/a, 

f qa J when Sj = 0, 

qa j + (aPj - yj) I q when Sj = 1. 

for \<i <m•, 

n—k—A, 

Also, if 8jr = 0, then fy^i = 9a 7, and if £,- = 1, then 

^ 0 ) + / | g a 2 w - ^ + ( a w - ^ - ^ ) / ^ fori = iify + L 
Here, 

aPj /q = (h0tPblp...,hmjtJ\ 

yj = aPJ(modq), 8'. = an~Xj{mo&q\ an(* ®<yJ> $j <cl-

We have p(N) = 2 + y/(n -1) = 2n + k + kW(a, q) I co(a, q). 
Some properties of W(a, q) were developed by Mollin and Williams [7]; for example, 

(ft>-l)/2 
W(a,q) = 4 X [E{a\q)l2\ when 2\m (1.2) 

and 
<y/2- l 

W(a,q) = 4j] [E{a\q)l2\ + 2\_E{a0),2,q)l2\ when2|^. (1.3) 

Thus, if co is odd, we always have 41 W(a, q), but if co is even, the value of W(a, q) is always 
even, of course, but its value modulo 4 is determined by 2\E{am'2,q)l2\. In the simple case of 
am/2=-l (mod q\ we have E(a6)/2,q) = 2, but we see that co(29,35) = 2 and £(29,35) = 4. 
Thus, it appears that W(a, q) = 2,0 (mod 4) when 21 co. This raises the question of exactly what 
values can be assumed by W(a,q). In this paper we will find values that can be assumed by 
W(a, q) when CD = 1,2,3,4,6. In particular, we show that if co = 2 or o> = 3 then ff (a, g) can 
assume all possible positive values that are allowable under the above conditions, i.e., W(a, q)l2 
or W(a, q)/4 can be any given positive integer when m = 2 or co - 3, respectively. We will then 
apply our results to the problem of determining values of N such that the period of the continued 
fraction expansion of v(N) has a cyclic structure. 

202 [JUNE-JULY 



A NUMBER THEORETIC FUNCTION ARISING FROM CONTINUED FRACTIONS 

Bernstein [1], [2] seems to have been the first individual to examine the cycle structure 
of periodic continued fractions to any great extent. He developed a rather complicated definition 
of a cycle, which resulted from his investigation of the continued fraction expansion of 4W for 
certain parametric families of values ofN. However, Nyberg [9], Shanks [11], [12], Yamomoto 
[18], and Hendy [4] had essentially discovered cycle structures for certain <JW or v(N) earlier. 
For example, a result of Hendy is that if N = (qan + (a -1) / q)2 + 4an, where a = 1 (mod q) and 
2lqan + (a~l)/q,thm 

where 

qQ = (qan+(a~l)/q + l)/2, q2i+l=qa\ q2i+2=qan^~l 

for i = 0,1,2,..., n -1, qp- 2qQ - 1 , p = p(N) = 2n + l. Bernstein considered pairs like {qal, 
aqn~1"1} (i = 0,1,2, ...,w-l) to be cycles in the period ft, #2> •••>?/> of the continued fraction 
expansion of v(N). For the purpose of this paper we will provide a somewhat more restrictive 
definition of cycles than that of Bernstein. 

Let ^ , ? 2 , . . . , ^ c Z and 2P = 9\ x<5>2 x — xg^ be infinite. Let F be some function 
defined on SP such that F: 9 -» Z and let 

AT not a perfect square}. 

We say that the simple continued fraction expansions of the values of v(N) in the family M have 
the structure of cycles of length c if the periodic part qh q2y..., qp (p = p(N)) of these continued 
fractions can, for some fixed value of b > 0, be given by 

<li(*j+b = fj(i>l\>P2>-->Pk) (f = o,i ,2, . . . , r- i) , 

where p(iV) = & (mod c), f > 2, and fj (/ = 0,1,2,..., c -1) are c fixed fiinctions such that 

/ i . : { 0 , l , 2 , . . . , / - l } x ^ ^ Z . 

A cycle in the period of the continued fraction of v(N) GM k any set 

The restriction that f > 2 ensures that there are at least two cycles in the period; otherwise, all 
continued fractions could be considered to have a cycle structure. In the case of Hendy's 
example, we get b = 1, c = 2, /0(i, a, ft #?) = qa\ f{i, a, 9, n) = ^ a ^ ' 1 . 

In the families considered by Nyberg, Shanks, Yamomoto, and Hendy, the values of c are 
either 2 or 6, but Bernstein discovered families for which c = 4,5,6,8,10,11,12. Later, his results 
were extended by Williams [15] and Halter-Koch [3], but no new values of c were found except 
for c = 3. Bernstein expressed surprise that cycles with c as large as 12 exist, but we will show 
here that even under our more restrictive definition of cycle structure there always exist infinite 
families JV* such that any v(N) e M has the structure of cycles of length c for any preselected 
value of c>0. 
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2. SOME PRELIMINARY RESULTS 

In order to determine values for W(a, q), we must find values of a, q such that a® = 1 (mod 
q) for a given co and such that we can predict the values of E(a\ q). We will do this by making 
use of some elementary properties of the continued fraction expansion of quadratic irrationals. In 
developing the material in this action, it is assumed that the reader is familiar with basic results 
concerning continued fractions which can be found in Perron [10] and Mollin [5] or Stephens and 
Williams [13], [14], and Williams and Wunderlich [17]. 

Consider the continued fraction (q0, ql9..., qrt9...). For a fixed / and./, define Ajt and BJti by 

Bj+i,i = 4j+i+iBj,i +sj-i,i> 

where A_2J = 0, A_Xi = 1, B_2i = 1, B_Xi = 0. Then 

An 

Bn 

- ^ - = <«f+y> ft+y-i, • • •, ft+iX (2-2) 

and 
AJtlBJ_H-AJ_itlBJtl={-\y+l. (2.3) 

Put ^ = ^ 0 , Bj=BJr0. IfP, Q, Del, 0 = (P + jD)/Q, where D is any positive non-
square integer and Q \ D - P2, we put P0 = P, Q> = Q, <j>0 = <f>, q0 = [>J . Compute P„, Q„, f„, q„ 
recursively by P„ = q^Q^ - P„.u Q„ =(D-P„2)/Q_„ </>n = (P„+jD)lQ„, *„ = !>„J, and 
define 

" * J' ' ' ' (2.4) 
Gy = G;,o. 

Then ^0 can be written in a continued fraction as ̂ 0 = (q0, ft,. ., <7„_i, </>„) and, in general, ^, can 
be written as $fr, = (qt, qi+l,..., q„_{, $„). If we define 0k = n i l 1 #"', then 

^ = ( - l ) i - 1 ( 4 _ 2 - ^ _ 2 ) = (-l)*-1(G,_2-VD^_2)/Q). (2.5) 

Denote by # ( a ) the norm of a. Since 

m ) = (-l)*_1ft-i/G>, (2-6) 
we can show that 

= (-l)'(Q-i -JDB^G^j + VD3+y)/(&0+y+1); 
hence, 

GJtl+jDBJfl = (-1)'(GM - VD^_,XG/+y + JDB^IQ,. (2.7) 

Since ,̂. = <#, $+1,..., ?,+y, #/+/rt>, we get 
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on equating rational and irrational parts, we find that 

Gj,t = Pi+j+lBj,i+Q+J+lBj-l,n 

Let Q, be selected such that QQ\2D. Since G, = -PQBt (mod Q,) for any i>-2, we get 

(G„ - 4DBn){Gm - 4DBm) = GnGm + DB„Bm - (G„Bm + GmBn)4D - 0 (mod &); 

therefore, (G„ - jDBn)(Gm - -JDBJIQ, e Z[VZ>] for n,m>-2. Now let I J e Z and put w = 
JV(X + VZ5T). We have the following theorem. 

Theorem 2.1: Let U,TeZ such that U + JDT = (Gt_x - JDB^fiX + -JDY) IQQ (i > 0); then 
S = (U + PjT)/Q&ZandS2 = m (modJ). 

Pinoo/I- Put 
R + jDS = -(G,_2 - yfDB^XG,^ - JDB^XX + 4DY) I &, 

i?' + V#S' = (G,_2 - JDB^fiX + 4DY) IQ,, 

where i?, 5, R', 5 ' e Z . We get 

i? + Vff S = G,_2 - -jDBt_2 =R' + JDS' (29) 

U + jDT GM—ySflf,.! i? + V£S ' 
Now, by (2.5), 

G,_2-Vfl£,_2 = i>+V£. 
G^-JDB^ Q ' 

hence, by equating rational and irrational parts in (2.9), we get U + RT = QS, UPt + TD = QR, 
R + PtS = QS'. It follows that 

Q2S' ^UPi + TD + Pt(U + PtT) = 2P&S + QQ^T 
and 

S' = (2PiS + Q_lT)/Qi. 

By (2.6), we have U2 - DT2 = Q2m; therefore, (QtS- PtT)2 - DT2 = Q2m, which can be written 
as S2-TS'=m. 0 

We next consider the special cases of m -1, - 1 , - 3. As before, we let P0, Q be selected 
such that Qo\2D and Q)\D-PQ. Denote by n the period length of the continued fraction 
expansion of 0O = (P0 + 4D)I QQ. We know (see, e.g., [13]) that there must exist some minimal 
h > 0 such that either Ph = Ph+l or Qh = Qh+l; in the former case, we get n = 2h and in the latter, 
n = 2h + l. If n = h (mod n), put 

X + Y4D = (G^+jDB^f/iaQ,) (2.10) 
when 7r~2h, and put 

X+YJD=(ph+l+VDXG^+v^)2 / caaa+i) (2.11> 
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when n: = 2h + l. It Is well known (see, e.g., [10]) that 

N(X + YjD) = (-iy. (2.12) 

From results In Mollin, van der Poorten, and Williams [8], we know that if the Diophantine 
equation x2- Dy2 = -3 is solvable for X J G Z , then we must get Qh+l = Ph+l + Qh for some choice 
of QQ, where Q, 12D. We will assume that Q) has been so selected. Let n = h (mod n), then if 

X + Y^D^(2Qh-QM+2,fD)(Gn + jDBn)2/(aQL), (2.13) 
we have X,Y eZ and 

N(X + Y-jD) = -3. (2.14) 

If, for example, we have X, Y given by (2.13), we get 

U + 4DT = (G,_, - jDB^fiX+Y4D) IQ, 
= ((G^,,+VD5fM>/)/a+i)2(2a-GLi + 2VD) 

by (2.7). It can be verified after some manipulation involving the identities in (2.8) and the condi-
tion GU = P/H-i + Qh that 

U = 2Gn„iJBn_ii+Gn_hiBn_i_li+Gn_i_lJBn_ii +2G/I_/_U2?/I_J-_U, 
T = 2{Bl_u t + 5 ^ A-,-i,,. + B2_f_h i). 

On using (2.4) and (2.3), we get 
S = (U + PtT)/Q 

= 2A„_i9iBn_t i + A^^ /$„_/_!,/ + At-i-\,iBn-i, i + ^Ai-i-U iBn-i-l, i (2-16) 
= 2(4,_,,5„-M + 4-,-i, A-,,, + 4,-,-!, A-,-u)+(-ir'+I. 

Similarly, we get 
T = Bn_t_^ tBn_u j + Bn_i_29 /^-/-i,,-, 
$ ~ Bn-i-liAi-i,i + ®n-i-2,iAi-i-\,i> 

when Jf, 7 are given by (2.10), and 
T = Bl-Ui+Bl-i-l,i> 

(2.17) 

(2.18) 

when X, 7 are given by (2.11). 

3. VALUES ASSUMED BY W(a, q) 

We now need to find a, q such that we can easily compute E(al, q) for i = 1,2,..., [co/2J. 
We first note that jE(a, #) = 1 if and only if q \a, and E(a, q) = l if and only if a = 1 (mod g); thus, 
W(a, q) = 0 whenever co = 1 and fF(a, ^) * 0 whenever <y > 1. Indeed, the story concerning the 
values that W(a, q) can assume when co = 2 is very different from that when co = 1. For let T and 
£ be given by (2.17). We have S2 = 1 (mod 7) by Theorem 2.1, and 

S = (4,-,-u /4-,-2,/H-/,/ + 4i-/-u 
r (£„-/-!, / / Bn-i-2,i)Bn-i,i + ^ - i - l , / 
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= <?/> 9/+l> •••> ? w , Bn-i-l,i IBn-i-2,i> 

by (2.1) and (2.2). Thus, E(S, t) = 2w - 2i - 1 - #/+1, where ^ Is defined by 

f 0 when q^ > 1, 
7 11 when f;- = 1. 

Thus, ifq=T and a = S (mod f), then 
W(a, q) = 2[£(a, g) / 2j = 2(w -1 -1). 

It is evident that if we put n = k7i + h then, for any given positive integer x, we can find k, i such 
that W(a, q) = 2x when m = 2. Hence, FF(a, qr) can assume all possible even positive values 
when o = 2. 

We next consider the case of m = 4. We let T and £ be given by (2.18); we have S2 = -1 
(mod J) and 

iS = (ffi-/,i f Bn-i-ldA-Ui +An-i-l,i 
T (Bn-i,i,Bn-i-li)Bn-i,i+Bn-i-li 

Hence, E($, T) = 2n-2i- %i+l. On putting g = J and a s 5 (mod g), we get 
W(a,q)=4lE(S,T)/2} + 2 = 4(n-i-Xi+l) + 2. 

For D = (4fc2 + c + ff + 4/c+1, we get VJD = (ft, 2c, 2c, 26) with ft = 4/c2 + c + / . In this case, 
we have h = l,K = 3,n = 3r + l,Xj=0 for allj; hence, FF(a,gr) = 4(3r +1 - /') + 2. Thus, given any 
positive x = 2 (mod 4), we can find values of a, q such that m(a, q) = 4 and W(a9 q) = x. 

The case of m = 3 is a little more difficult. We let T and 5 be given by (2.15) and (2.16) and 
note that S2 = -3 (mod I). Thus, since 2\\T, we have S = 1 (mod 2) and 

( (£ - l ) /2 ) 2 + ( S - l ) / 2 + 1^0 (mod 77 2); 
it follows that 

( ( £ - 1 ) / 2 ) 3 S E 1 (mod 77 2) 

anda>((S-l)/2,7) = 3. Let n = h (mod n) and put q'n = qn + l-?], <f^qn^r\, where r\ 6{0,1}. 
Then 

< * ? 9 / + i ? - - - 5 ^ - i ? ^ > = 
* » - # . / + 0 - ? ) 3 M - U ' 

< C ^ - i ? ^ - 2 5 - ^ / + i > = C + - s — - = •» +*?; 
nn-i-l,i nn-i-l,i 

hence 
(772X*„ 
= K-uiK-ui + 4,-M, A-,,,+4-,-L A-,-u + /K-ir(+1 

= (S + (-l)n-'+1(27/-l))/2 

by (2.3) and (2.16). Putting 2r\-1 = (-1)""', we get 
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and £( (5-1) /2 , T/2) = 2n-2i-zM. If we put 9 = 7 /2 and a = ( 5 - l ) / 2 (mod g), we see by 
(1.2) that 

»r(fl,^)=4L£(a^)/2j = 4 ( i i - / - ^ + 1 ) . 

We should also observe that, since Qh+i=Qh + Ph+i, w e h a v e D = PL\ + Ph+\Qh + 2 l and 

v o < p A f l + a . it follows that %+1=i? ^ 2 = 0 ^ 1 - ^ 1 = a , a n d a+2=Afi; hence> a+i= 
GU2 + ̂ +2 • B y the symmetry rules Q^ = Q and P^ = PM, we get Qn_h_x = Pn_h_x + Q , . ^ . 
Thus, we can replace hby n-h-2 and still have Qh+l = Qh + Ph+l. It follows that n-i- %i+1 can 
be = h -1 - jf/+1 or = -/? - 2 - J - j / + 1 (mod ;r). For example, in the simple case of D = 21, j ^ , = 0, 
Q, = 1, we get 

V2l = (4,1,1,2,1,1,8) 
with Qi = Qo + Pi and 2s = QA + ^5- W e have ;r = 6 and n = 6m or n = 6?n + 4, %\ = ^ Z2 = ^ 
#3 = 0, Z4 = l ? 2r5 = l ? ^ 6 = 0- The values of n-i-%M can be 6m-1, 6m-2, 6m-4, 6m-5, 
6m-3, 6#i-6, where in the last case w> 1; that is, n-i-%M can take on any positive integral 
value and therefore W(a, q) 14 can take on any positive integral value. 

For 7, 5 given by (2.15), (2.16), we also have 

((£ + l ) /2 ) 2 - (S + l)/2 + l = 0 (modJ/2); 

hence, ((S + l)/2)6 = 1 (mod 7/2) and ((£ + l)/2)3 » - 1 , ((S + l)/2)2 # 1, (5, + l ) / 2 ^ 1 (mod 
7/2) . Weget<y((S + l ) /2 ,7 /2 ) = 6and 

JP(a, 0 = 4[£(a, ? ) / 2 j + 4 j£(a 2 , 9 ) /2 j + 2 

by (1.3) when # = 7 /2 and a = (£ +1)/2 (mod 7/2). Since a2 = (S-l)/2 (mod 7/2) , the 
continued fraction expansion for alq and a2lq are identical except that the values of q'n and q% 
are interchanged. We get 

W(a,q)=S(n-i-XM) + 2 

and W(a, q) can therefore assume any positive value which is 2 (mod 8), but these need not be 
the only values that W(a, q) is capable of assuming when 0 = 6. 

4. CYCLE STRUCTURES 

We will now use our earlier results to establish the existence of cycle structures of arbitrary 
length in the continued fraction period of v(N) for N = (a(qan + (ak -1) / q))2 + a2an with cer-
tain values of a, q, n, k. We put n = sk +1 (s > 1), k = cot, where c$ = w(a,q). Then 

/>(JV) = 2(s* + l) + a>f+rtr=/c + 2, 

where FF = W(a, q) and c = (2s+1)^ + W. 
Let7 be any nonnegative integer <n-l = sk = cost, and suppose j = us+r (1 <r <s). We 

get kj = un + a)tr-u and 0<a)tr-u<o)st + l = n; thus, A7 =6^r -#<(s - ! )# ; /+1 when r <& It 
follows that Xj<n-k \f r<s\ hence, by Lemma 4.5 of [6], ^ = 0ifr <5 or, equivalently, 
8j = 0\fslj. lSs\j,t\itnr-smdu = jls-l<k-l. Inthiscase, 
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Xj = mrt-u > mt-(k -1) = (s- l)o)t+1 -n-k\ 

thus, €j = 1 if and only ifs\j. 
We next assume that j + gsoo <n-1. We get k(j + gsco) = n(u + cog)-u-oog+oort. Now, 

cort<mt = n-l and mt>j + gsco or o)t>u + gco+r/s; hence, w + g#) <o)tr<n and 

L*0' + #^ ) /wJ = H + a#. 
It follows that 

f/+g*» = ̂ " ^ • 
If j - gs® + is, then A, = Xis = -i +1 (mod o>) and pi = -i (mod ©). 

Consider 
V(g) = W((g + l)sa> +1) - K«sa> +1) 

(g+l)5fi> (g+l)s<y 

- I>o+i)-K/) = £ (w+ 2 ) 

1=1 

a value independent of the value of g as long as (g + l)sw <n-l- stco or g + l<t. From this, 
we can easily establish by induction that y/(g$a) +1) = gc + 3, and since 6j = sgsG}Jrj, ntj = ntgsa}+J, 
we can use induction to show that y/(g$co + j) = gc + y/(j) whenever g+l<t and j <cos. 

We now see that the continued fraction expansion of v(N) given in Section 1 with n = sk + l 
(s > 1) has 

q0 = (qan+(ak-l)/q)/2 + (a-l)/a, 
% = %, % = ^n~k-

l£0<g<t~l, \<h<sm, then 

_ [qaXh~gQ} when s\h, 
%{h)+gc - yaxh-ga> + (j-n+Arga, -Sh)/q when s I A; 

furthermore, when s\h, 
n - ann-k-Xh+go) 
%{h)+gc+l - Ha > 

and when s\h, 

f buh whenl<i <mh, 

qa2n-k-Xh+g<o + {an-g.-Xh _ gj , q w h e n f = % + ^ 
where 

fl/,*/?=(^A* *%*)• 
That is, there are c functions fj(g, a, q,n,k) (j = 0,1,2,..., c -1) such that 

qg^j^^fj{g9a9q9n9k) 

for g=0,l,...,t-l. This means that the period of v(N) has f cycles of length c - (2s + t)co + 
JF(a, q) whenever « = 5# +1 > 1. 
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We next show that, given any positive integer c, we can find s, a9 q such that 
c = (2s + l)a)(a9 q) + W(a9 q). 

When c is odd, this is very easy because W = 0 whenever m = 1; thus, we need only put 
s = (c -1) / 2, a- mq +1. For example, if we have c = 7 (a cycle length not previously known), 
we can put j = 3,t = /,» = 3i + l , a s l (mod g) and 

/o(& ft 0, *) = go*"*, fi(g, ft ft *) = ft^+g+\ 
/2(g, a, ?, *) = qa2k~g

9 f3(g, a, qr, k) = ga^+1, 

/4fe, ft 9, *) = V * + (P*-*-1 -1) / ft 
f5(g, ft ft *) = ft /6te, ft ft *) = ^2"+g+2 + (®8+l -1) / ft 

We get for iV = (^a3^+1 + (a* -1) / q)2 + 4a3k+l (21 a) that the periodic part of the continued frac-
tion expansion of v(N) is given by q*jg+J+3 = fj(g9 ft q, k) for g = 0,1,2,..., £ - 1 . 

It is also easy to handle this problem when c is even. Since 21W(a, q), we must have 2\W. 
If we put m = 29 we get c = 2(25 + l) + FF(a, 9), but we can find a, f such that W(a9q) = 
c-2(25 + 1) for any s> 1 such that c-2(25 + l)>0. Thus, if c>8, we can always produce by 
this technique cycles of length c. We have already seen that examples exist of cycles of length 2, 
4,6. 

When, in the case of odd c, we put m = 1, we are compelled to make s large in order to 
produce a large cycle length. We can also do this in another way by using a> = 3. In this case, we 
have c = 3(25 +1) + W. Thus, we can keep s small and try to find W = c-3(25 +1). For example, 
consider the case of c = 13; we put 5 = 1 and must find a, q such that W(a, q) = 4. If we use 
Z> = 2 U = 5,Jt = 6, we get n-i-%i+l = l and ( 5 - l ) / r = <l,9,8>. Hence, ( S - l ) / 2 = 81 and 
T/2 = 73; and if a = 8 (mod 73), q - 73, we get o)(q, q)~A. It follows that if 2\a and a = 8 
(mod 73), then v(N)9 where 

N = (73a3f+1 + (a3r -1) / 73)2 + 4a3t+1 

has a cycle length of 13. This cycle is given by qug+j+3 = ./}(#, ft t)9 where 

/ofe, a, 0 = 73a*-3* + (a3'"1"3* - 64) / 73, 
fi(g,®J) = l fi(g,a9t) = l9 f3(g,a,t) = 9, 

f4(g,ft 0 = ^38+2 + C*3**1 - «) / A 
/5(g, a, 0 = 73a*-*-1 + (a*"3*"2 - 8) / 73, 
/ 6 f e " , 0 = 9, f,(g,a,t) = 7, fg(g,a,t) = l9 

f9(g, ft 0 = 73a3*+3 + (a3*+2 - 64) / 73, 
/iofe ft 0 = 73a*"3*-2 + (a*"3*"3 -1) / 73, 
/ l i f e ft /) = 73, /12fe, a, /) = 73a3**4 + (a3*+3 -1 ) / 73. 

A more extreme example is provided by putting i = 0, n = 12. We get w - i - j / + 1 = 11, rj = l, 
(S-l)/T = (49l91,2,1,1,8,1,1,2,1,1,8,9,1,1,2,1,1,8,1,1,2,2) 

= 664670164/1450042921. 
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Thus, if 
N = (145004292la6t+l + (a3t -1)/1450042921)2 + 4a6t+\ 

where a = 84498480 (mod 1450042921) and 2|a? then v(N) has a cycle structure with cycle 
length 

c = W+(2s+l)a) = 44 + 15 = 59. 
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