DERIVATIVE SEQUENCES OF GENERALIZED JACOBSTHAL AND JACOBSTHAL-LUCAS POLYNOMIALS

Gospava B. Djordjevic

University of Niš, Faculty of Technology, 16000 Leskovac, Yugoslavia
(Submitted October 1998-Final Revision March 1999)

1. INTRODUCTION

In this note we define two sequences $\left\{J_{n, m}(x)\right\}$-the generalized Jacobsthal polynomials, and $\left\{j_{n, m}(x)\right\}$-the generalized Jacobsthal-Lucas polynomials, by the following recurrence relations:

$$
\begin{equation*}
J_{n, m}(x)=J_{n-1, m}(x)+2 x J_{n-m, m}(x), \quad n \geq m, \tag{1.1}
\end{equation*}
$$

with starting polynomials $J_{0, m}(x)=0, J_{n, m}(x)=1, n=1,2, \ldots, m-1$, and

$$
\begin{equation*}
j_{n, m}(x)=j_{n-1, m}(x)+2 x j_{n-m, m}(x), \quad n \geq m, \tag{1.2}
\end{equation*}
$$

with starting polynomials $j_{0, m}(x)=2, j_{n, m}(x)=1, n=1,2, \ldots, m-1$.
For $m=2$, these polynomials are studied in [1], [2], and [3].
From (1.1) and (1.2), using the standard method, we find that the polynomials $\left\{J_{n, m}(x)\right\}$ and $\left\{j_{n, m}(x)\right\}$ have, respectively, the following generating functions:

$$
\begin{equation*}
F(x, t)=\left(1-t-2 x t^{m}\right)^{-1}=\sum_{n=1}^{\infty} J_{n, m}(x) t^{n-1} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x, t)=\frac{1+4 x t^{m-1}}{1-t-2 x t^{m}}=\sum_{n=1}^{\infty} j_{n, m}(x) t^{n-1} . \tag{1.4}
\end{equation*}
$$

From (1.3) and (1.4), we find the following explicit representations for the polynomials $\left\{J_{n, m}(x)\right\}$ and $\left\{j_{n, m}(x)\right\}:$

$$
\begin{equation*}
J_{n, m}(x)=\sum_{k=0}^{[n-1) / m]}\binom{n-1-(m-1) k}{k}(2 x)^{k} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{n, m}(x)=\sum_{k=0}^{[n / m]} \frac{n-(m-2) k}{n-(m-1) k}\binom{n-(m-1) k}{k}(2 x)^{k} . \tag{1.6}
\end{equation*}
$$

Differentiating (1.5) and (1.6) with respect to x, we get

$$
\begin{equation*}
J_{n, m}^{(1)}(x)=\sum_{k=1}^{[(n-1) / m]} 2 k\binom{n-1-(m-1) k}{k}(2 x)^{k-1} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{n, m}^{(1)}(x)=\sum_{k=1}^{[n / m]} 2 k \frac{n-(m-2) k}{n-(m-1) k}\binom{n-(m-1) k}{k}(2 x)^{k-1} \tag{1.8}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{n, m}^{(1)}(x)=j_{n, m}^{(1)}(x)=0, \quad n=0,1, \ldots, m-1 . \tag{1.9}
\end{equation*}
$$

For $x=1$ in (1.5), (1.6), (1.7), and (1.8), we have, respectively: $\left\{J_{n, m}(1)\right\}$-the generalized Jacobsthal numbers, $\left\{j_{n, m}(1)\right\}$-the generalized Jacobsthal-Lucas numbers, $\left\{J_{n, m}^{(1)}(1)\right\}$-the
generalized Jacobsthal derivative sequence, and $\left\{j_{n, m}^{(1)}(1)\right\}$-the generalized Jacobsthal-Lucas derivative sequence.

The aim of this note is to study some characteristic properties of the sequences of numbers $\left\{J_{n, m}^{(1)}(1)\right\}$ and $\left\{j_{n, m}^{(1)}(1)\right\}$. We shall use the notations $H_{n, m}^{1}$ instead of $J_{n, m}^{(1)}(1)$ and $K_{n, m}^{1}$ instead of $j_{n, m}^{(1)}(1)$.

The first few members of the sequences $\left\{J_{n, m}(x)\right\},\left\{J_{n, m}^{(1)}(x)\right\}$, and $\left\{H_{n, m}^{1}\right\}$ are presented in Table 1, and the first few members of the sequences $\left\{j_{n, m}(x)\right\},\left\{j_{n, m}^{(1)}(x)\right\}$, and $\left\{K_{n, m}^{1}\right\}$ are given in Table 2.

TABLE 1

n	$J_{n, m}(x)$	$J_{n, m}^{(1)}(x)$	$H_{n, m}^{1}$
0	0	0	0
1	1	0	0
2	1	0	0
\vdots	\vdots	\vdots	\vdots
$m-1$	1	0	0
m	1	0	0
$m+1$	$1+2 x$	2	2
$m+2$	$1+4 x$	4	4
$m+3$	$1+6 x$	6	6
\vdots	\vdots	\vdots	\vdots
$2 m-1$	$1+2(m-1) x$	$2(m-1)$	$2(m-1)$
$2 m$	$1+2 m x$	$2 m$	$2 m$
$2 m+1$	$1+2(m+1) x+4 x^{2}$	$2(m+1)+8 x$	$2 m+10$
$2 m+2$	$1+2(m+2) x+12 x^{2}$	$2(m+2)+24 x$	$2 m+28$
\vdots	\vdots	\vdots	\vdots

TABLE 2

n	$j_{n, m}(x)$	$j_{n, m}^{(1)}(x)$	$K_{n, m}^{1}$
0	2	0	0
1	1	0	0
2	1	0	0
\vdots	\vdots	\vdots	\vdots
$m-1$	1	0	0
m	$1+4 x$	4	0
$m+1$	$1+6 x$	6	0
$m+2$	$1+8 x$	8	0
$m+3$	$1+10 x$	10	0
\vdots	\vdots	\vdots	\vdots
$2 m-1$	$1+2(m+1) x$	$2(m+1)$	$2(m+1)$
$2 m$	$1+2(m+2) x+8 x^{2}$	$2(m+2)+16 x$	$2 m+20$
$2 m+1$	$1+2(m+3) x+20 x^{2}$	$2(m+3)+40 x$	$2 m+46$
\vdots	\vdots	\vdots	\vdots

DERIVATIVE SEQUENCES OF GENERALIZED JACOBSTHAL AND JACOBSTHAL-LUCAS POLYNOMIALS

From Table 1 and Table 2, we can prove by induction and (1.1) the following relation:

$$
\begin{align*}
j_{n, m}(x) & =J_{n, m}(x)+4 x J_{n+1-m, m}(x) \\
& =J_{n+1, m}(x)+2 x J_{n+1-m, m}(x), \quad[\text { by }(1.1)] . \tag{1.10}
\end{align*}
$$

Observe that the first equation in (1.10) is a direct consequence of (1.3) and (1.4).

2. SOME PROPERTIES OF $\boldsymbol{H}_{\boldsymbol{n}, \boldsymbol{m}}^{\mathbf{1}}$ AND $\boldsymbol{K}_{\boldsymbol{n}, \boldsymbol{m}}^{\mathbf{1}}$

Differentiating (1.3) and (1.4) with respect to x, we get the following generating functions, respectively:

$$
\begin{equation*}
\sum_{n=0}^{\infty} J_{n, m}^{(1)}(x) t^{n}=\frac{2 t^{m+1}}{\left(1-t-2 x t^{m}\right)^{2}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} j_{n, m}^{(1)}(x) t^{n}=\frac{2 t^{m}(2-t)}{\left(1-t-2 x t^{m}\right)^{2}} . \tag{2.2}
\end{equation*}
$$

Hence, for $x=1$ in (2.1) and (2.2), we get the generating functions for $H_{n, m}^{1}$ and $K_{n, m}^{1}$, respectively:

$$
\begin{equation*}
\sum_{n=0}^{\infty} H_{n, m^{1}}^{1}=\frac{2 t^{m+1}}{\left(1-t-2 t^{m}\right)^{2}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} K_{n, m}^{1} t^{n}=\frac{2 t^{m}(2-t)}{\left(1-t-2 t^{m}\right)^{2}} . \tag{2.4}
\end{equation*}
$$

If we substitute $x=1$ in (1.1) and (1.2), we get the sequences of numbers $\left\{J_{n, m}\right\}$ and $\left\{j_{n, m}\right\}$, which satisfy the following relations:

$$
\begin{array}{ll}
j_{n, m}=J_{n, m}+4 J_{n+1-m, m}=J_{n+1, m}+2 J_{n+1-m, m} & {[\text { by (1.10)], }} \\
j_{n+1, m}+j_{n, m}=3 J_{n+1, m}+4 J_{n+2-m, m}-J_{n, m} & {[\text { by (2.5), (1.1)], }} \\
j_{n+1, m}-j_{n, m}=4 J_{n+2-m, m}+J_{n, m}-J_{n+1, m} & {[\text { by (2.5), (1.1)], }} \\
j_{n+1, m}-2 j_{n, m}=4 J_{n+2-m, m}+2 J_{n, m}-3 J_{n+1, m} & {[\text { by (2.5), (1.1)], }} \\
J_{n, m}+j_{n, m}=2 J_{n+1, m} . \tag{2.9}
\end{array}
$$

For $m=2$, relations (2.5)-(2.9) yield the following relations:

$$
\begin{array}{ll}
j_{n}=J_{n+1}+2 J_{n-1} & ((2.10) \text { in [2]), }, \\
j_{n+1}+j_{n}=3\left(J_{n+1}+J_{n}\right) & ((2.12) \text { in [2]), } \\
j_{n+1}-j_{n}=5 J_{n}-J_{n+1}, & \\
j_{n+1}-2 j_{n}=3\left(2 J_{n}-J_{n+1}\right) & ((2.14) \text { in [2]), } \\
J_{n}+j_{n}=2 J_{n+1} & ((2.20) \text { in [2]), }
\end{array}
$$

where $J_{n, 2}=J_{n}$ and $j_{n, 2}=j_{n}$.

Differentiating (1.1) and (1.2) with respect to x, and substituting $x=1$. we get the following recurrence relations:

$$
\begin{equation*}
H_{n, m}^{1}=H_{n-1, m}^{1}+2 H_{n-m, m}^{1}+2 J_{n-m, m}, \quad n \geq m, \tag{2.10}
\end{equation*}
$$

with $H_{n, m}^{1}=0, n=0,1, \ldots, m-1$ and

$$
\begin{equation*}
K_{n, m}^{1}=K_{n-1, m}^{1}+2 K_{n-m, m}^{1}+2 j_{n-m, m}, \quad n \geq m \tag{2.11}
\end{equation*}
$$

with $K_{n, m}^{1}=0, n=0,1, \ldots, m-1$.
In a similar way, from (1.10), we get

$$
\begin{equation*}
K_{n, m}^{1}=H_{n, m}^{1}+4 H_{n+1-m, m}^{1}+4 J_{n+1-m, m}, \quad n \geq m-1 \tag{2.12}
\end{equation*}
$$

For $m=2$, relations (2.10)-(2.12) become

$$
\begin{aligned}
H_{n+2}^{1}= & H_{n+1}^{1}+2 H_{n}^{1}+2 J_{n} \quad((3.3) \text { in }[1]), \\
K_{n+2}^{1}= & K_{n+1}^{1}+2 K_{n}^{1}+2 j_{n} \quad((3.4) \text { in }[1]), \\
& K_{n+1}^{1}=H_{n+1}^{1}+4 H_{n}^{1}+4 J_{n} .
\end{aligned}
$$

From (2.10) and (2.12), we get $K_{n, m}^{1}+H_{n, m}^{1}=2 H_{n+1, m}^{1}$.
For $m=2$, the last equality yields the known relation (3.8) in [1].
Again, from (2.10) and (2.12), we find

$$
\begin{equation*}
K_{n, m}^{1}-H_{n, m}^{1}=2 H_{n+1, m}^{1}-2 H_{n, m}^{1} . \tag{2.13}
\end{equation*}
$$

For $m=2$, (2.13) becomes (3.9) in [1].
Theorem 2.1: The polynomials $\left\{J_{n, m}(x)\right\}$ and $\left\{j_{n, m}(x)\right\}$ satisfy the following relations, respectively,

$$
\begin{equation*}
\sum_{i=0}^{n} J_{i, m}(x)=\frac{J_{n+m, m}(x)-1}{2 x} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{n} j_{i, m}(x)=\frac{j_{n+m, m}(x)-1}{2 x} \tag{2.15}
\end{equation*}
$$

Proof: From (1.1) and (1.2), by induction on n, we can prove (2.14) and (2.15).
Corollary 2.1: For $m=2$ in (2.14) and (2.15), we get the known relations (2.7) and (2.8) in [2].
Theorem 2.2: The numbers $H_{i, m}^{1}$ and $K_{n, m}^{1}$ satisfy the following relations, respectively,

$$
\begin{equation*}
\sum_{i=0}^{n} H_{i, m}^{1}=1 / 2\left(H_{n+m, m}^{1}-J_{n+m, m}+1\right) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{n} K_{i, m}^{1}=1 / 2\left(K_{n+m, m}^{1}-j_{n+m, m}+1\right) . \tag{2.17}
\end{equation*}
$$

Proof: Differentiating (2.14) and (2.15), respectively, with respect to x, and substituting $x=1$, we get (2.16) and (2.17).

Corollary 2.2: For $m=2$, from (2.16) and (2.17), we have

$$
\sum_{i=0}^{n} H_{i}^{1}=1 / 2\left(H_{n+2}^{1}-J_{n+2}+1\right) \text { and } \sum_{i=0}^{n} K_{i}^{1}=1 / 2\left(K_{n+2}^{1}-j_{n+2}+1\right)
$$

Furthermore, from (1.7), we get

$$
\begin{equation*}
H_{n+m, m}^{1}+2(m-1) H_{n, m}^{1}-2 n J_{n, m} \tag{2.18}
\end{equation*}
$$

For $m=2$ in (2.18), we have ((3.6) in [1]), $H_{n+2}^{1}+2 H_{n}^{1}=2 n J_{n}$.
In a similar way, from (1.8), we get

$$
\begin{equation*}
K_{n, m}^{1}=2(n+2-m) J_{n+1-m, m}-2(m-2) H_{n+1-m, m}^{1} \tag{2.19}
\end{equation*}
$$

For $m=2$ in (2.19), we obtain ((2.4) in [1]), $K_{n}^{1}=2 n J_{n-1}$.

GENERALIZATION

Differentiating (1.1), (1.2), and (1.10) k times with respect to x, we get

$$
\begin{gathered}
J_{n, m}^{(k)}(x)=J_{n-1, m}^{(k)}(x)+2 k J_{n-m, m}^{(k-1)}(x)+2 x J_{n-m, m}^{(k)}(x), \quad k \geq 1, n \geq m \\
j_{n, m}^{(k)}(x)=j_{n-1, m}^{(k)}(x)+2 k j_{n-m, m}^{(k-1)}(x)+2 x j_{n-m, m}^{(k)}(x), \quad k \geq 1, n \geq m \\
j_{n, m}^{(k)}(x)=J_{n-1, m}^{(k)}(x)+4 k J_{n+1-m, m}^{(k-1)}(x)+4 x J_{n+1-m, m}^{(k)}(x), \quad k \geq 1, n \geq m
\end{gathered}
$$

respectively.
From the last equalities, using the notations $J_{n, m}^{(k)}(1) \equiv H_{n, m}^{k}$ and $j_{n, m}^{(k)}(1) \equiv K_{n, m}^{k}$, we can prove the following relations:

$$
\begin{gathered}
H_{n, m}^{k}=H_{n-1, m}^{k}+2 k H_{n-m, m}^{k-1}+2 H_{n-m, m}^{k}, \quad k \geq 1, n \geq m, \\
K_{n, m}^{k}=K_{n-1, m}^{k}+2 k K_{n-m, m}^{k-1}+2 K_{n-m, m}^{k}, \quad k \geq 1, n \geq m-1, \\
K_{n, m}^{k}=H_{n-1, m}^{k}+4 k H_{n+1-m, m}^{k-1}+4 H_{n+1-m, m}^{k}, \quad k \geq 1, n \geq m-1 .
\end{gathered}
$$

The sequences $\left\{H_{n, m}^{k}\right\}$ and $\left\{K_{n, m}^{k}\right\}$ have the following generating functions:

$$
\sum_{n=0}^{\infty} H_{n, m}^{k} t^{n}=\frac{2^{k} k!r^{m k+1}}{\left(1-t-2 t^{m}\right)^{k+1}} \quad \text { and } \quad \sum_{n=0}^{\infty} K_{n, m}^{k} t^{n}=\frac{2^{k} k!(2-t) t^{m k}}{\left(1-t-2 t^{m}\right)^{k+1}}
$$

REFERENCES

1. A. F. Horadam \& P. Filipponi. "Derivative Sequences of Jacobsthal and Jacobsthal-Lucas Polynomials." The Fibonacci Quarterly 35.4 (1997):352-58.
2. A.F. Horadam. "Jacobsthal Representation Numbers." The Fibonacci Quarterly 34.1 (1996): 40-54.
3. A.F. Horadam. "Jacobsthal Representation Polynomials." The Fibonacci Quarterly 35.2 (1997):137-48.

AMS Classification Numbers: 11B39, 26A24, 11B83

