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In the paper under discussion, the author presented interesting /^-divisibility criteria for 
Bernoulli numbers (B.n.) of the form B^2k-i)P

n+h w'lt^ a n °dd prime/?, k = 1,2,...,(/?- 3)/ 2, and 
» G N . However, the central part of the work (Theorem 2) can be proved directly in a short and 
elementary way by relying on the classical methods of G. F. Voronoi. In [2] the author first 
proves ap-adic analog of Voronoi's congruence (Theorem 1) using Fourier analysis, then derives 
Theorem 2 from this proof as a corollary by reducing mod pn the Teichmiiller character involved 
in Theorem 1. 

Theorem ([2]): Let/? be a prime > 3. If a is an integer with (a, p) = I, then 

{a-a""-'^^}B(2k_l)pn+l = f V ' ^ - V / / * ] (mod/?") 
/=1 

for every k>l such that p-\ does not divide 2k. Here [x] is the greatest integer < x. 

Remark: By von Staudt-Clausen's theorem and Rummer's congruence for B.n., we will rewrite 
the above congruence in the equivalent form 

p-i 
{a-aP"~ ^-2k^)Bzlz = ^iz'l[ai/p] (modpn) (1) 

/=i 

withz = (2A-l)/?w-1 + l, p>3. 
Indeed, (2k-l)pn+ l = (2k-l)p"-l(p-l) + zy and p-l does not divide (2k-\)pm +1 = 

2kpm~(pm-l) for an integer m> 0. Hence, B{2k_l)pn+l = ((2k-l)pn + l)Bz/z = Bz/z (modpn). 
Thus, we can give the proof of the theorem in the form (1). 

Proof: Let S: = Hf'i iz with z = (2k- T)pn~l +1, n eN. Then, by Voronoi's idea (see, e.g., 
[8] or [3]), we have 

S = %(ai-[ailp]pY 
i=\ 

/=1 i = l j=2 ^JJ i = l 

or 

S(a*-l)/z = / ^ 
i = l ; = 2 ^J ' i = l 

Consequently, 
P-I 

S(az-i)/z = pY(aif-\aiIp] (modpn+l), (2) 
/=i 
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because 

^{(jliy/^^Kji^-D^/oa-i))} 
> ordp{p"+1pJ~21 (j(J -1))} > n +1 forj > 2 andp > 3. 

On the other hand, S = (Bz+l(p) - Bz+l) I (z +1) or 

S(az -l)/z = (az- \)Bzp I z + pBz_x(az -1) / 2 

+ g {az - \){z - I^Z])PJBZ+1-J IUU ~ W ~ 2)), 

if we assume that Q = 1 and that an empty sum is equal to zero. 
Further, since by the Staudt-Clausen theorem, pBz+l_j is ̂ -integral, we obtain 

o i d / , { ( z - V ^ + w / 0 - ( / - l ) ( / - 2 ) ) } ^ o n i / , { ^ - 3 / ( y a - l X / - 2 ) ) } + / i + l^ i i + l 

for j > 3 and p > 3. Hence, it follows that 

S(az-\)lz^(a2-l)B2pIz (modpn+l). (3) 

With the help of ap"~1(p~l) = 1 (mod/?"), (a, p) = 1, we conclude that 

(ff-\)l(f-1 ^a-aPn~^-^2k-l^n~l ^a-aPn~l^-2k^ (mod/?*). (4) 

Note that the above transformation is useful for applications considered by the author (in the case 
l < £ < ( / ? - 3 ) / 2 , p>3). 

Congruences (2), (3), and (4) yield the interesting form (1) of Voronoi's congruence (with a 
short interval of summation in the right-hand side part). 

Remark 1: It should be noted that Voronoi has proved his famous congruence (a) for an 
arbitrary modulus > 1 (not only prime power!) and (b) without the restriction that p-1 does not 
divide 2k (see [8] and [3]). 

Remark 2: There is an interesting equivalent variant of Voronoi's congruence due to Vandiver 
(see [7] and [5]). 

Remark 3: It is clear from what has been said here that a congruence similar to (1) can be 
obtained for generalized Bernoulli numbers Bn belonging to a Dirichlet character (with the cor-
responding conductor). For relevant facts, see [4], and [9, chs. 4 and 5]. 

Remark 4: Finally, for more information on the history of the Voronoi congruence, see [6] or 
[1]. 
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