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1. INTRODUCTION 

It is well known that the entries p(n9 0 = (?)> weN = {l,2,3,...}, 0<t<n, of Pascal's tri-
angle satisfy equal product and equal gcd {greatest common divisor) hexagonal properties: the 
two alternate triads arising from the six binomial coefficients surrounding any given entry in 
Pascal's array have equal product and equal gcd[7, 8,10,14,15] (see Fig. 1). Pascal's array fails to 
satisfy an equal 1cm {least common multiple) hexagonal property. 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 

FIGURE 1. A Typical Hexagon In Pascal's Array 
Notice: 5 • 6 • 20 = 4 • 10 • 15 and gcd(5,6,20) = 1 = gcd(4,10,15). 

These observations of the early 1970s initiated the search for and discovery of many beautiful 
configurations within Pascal's array satisfying equal product, equal gcd and even equal 1cm prop-
erties [2,4,5,12]. Similar properties have been discovered for other arrays, such as the Binomial 
triangle, and for higher-dimensional "pyramids" of multinomials, multi-Fibonomials, and the like 
[1,3,9,11,13]. 

Recently, R. P. Grimaldi [6] discovered hexagonal properties occurring within the array with 
entries g(n, t) = FtFn+l_t {n e N, 1 < / < n). This array arose from a study of generating sets, that 
is, subsets S of [«]= {1,2, ...,w} satisfying S*u(S + l) = [n + l], where S + l = {s + l:s e S } e 
[n +1]. Counting the number of such sets that contain the particular element t produces the quan-
tity g{n, t). It is a surprise to learn that this array satisfies both the equal product and equal gcd 
hexagonal properties. 

In this paper we study higher-order generating sets, that is, subsets S of [n] satisfying 
Su{S + k) = [n + k] for some k eN, 1< k <n (where S = k = {s + k\s e i ] ) . We call such a set 
a k^ -order generating set and say that S generates [n + k]. 

Setting gk{n, t) to be the number of such sets that contain the particular element t e N, we 
are thus given, for each i G N , new arrays with potential hexagonal properties. We will show 
that the entries gk{n, t) are products of k +1 Fibonacci numbers and explore the extent to which 
equal product and equal gcd hexagonal properties hold. 
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In this paper it is convenient to set Fn = 0 for n a nonpositive integer. For x G IR, we use [x] 
to denote the least integer greater than or equal to x and |_*J the greatest integer less than or 
equal to x. 

We begin by recalling some standard properties of the Fibonacci sequence that will be used 
throughout this work. 

2. THE FIBONACCI NUMBERS 

An easy inductive argument establishes: 
A. gcd(Ft, Ft+l) = 1 for all t > 0. 

Since gcd(Ff, Ft+2) = gcd(F„ Ft+l + Ft) = gcd(Ft, FM), we have: 
B. gcd(Ff,i^2) = l fora l l />0 . 

We also have the key relation: 
C. Ft+r = FrFt+l+Fr_xFt for all t>0,r> l. 

This is easily established by an induction argument on r. With A and B it has the following conse-
quences: 

D. Let r,t>0,d GN. If d\Ft and d\Ft+r9 then d\Fr. Consequently gcd(F„Ft+r)\Fr. 
.E. Let r, t > 0,d GN. Suppose d\Ft and d\Ft+r. If, for k GN, d\Fk, then d\Fk±r. 

[By D, d\Fr. A and C now show d\Fk+r. If r < k, then; Fk = FrFk+l_r +Fr_xFk_r, from which it 
follows that d\Fk_r. The result is trivial for r > k.] 

F. Letr,k>0,d G N . If d\Fr and d\Fk, then d\Fk±mr for any m eM. 
[This follows from repeated application of E with t - 0.] 

G. F , | F m , f o r # a e N . 
[Set r = k in F.] 

H. Let d GN and let i^ be the first Fibonacci number (a GN) SO that d\Fa. Let k >0. 
Then J|F^<^>a|A:. 

[(<=) follows from G. For (=>), write k = ma+b with 0 < i < a , /MGN. F shows d\Fb, a con-
tradiction unless i = 0.] 

L For r, ^ e N, gcd(Fr, i^) = Fgcd(r^ k). 
[That i^cd(r^) is a common divisor of Fr and i^ follows from G, F, and the Euclidean algorithm 
show that gcd(Fr, Fk) = Fgcd(rJc).] 

3. A CONSTRUCTIVE MODEL 

We have the following familiar model for constructing Fibonacci numbers: For n,k,t GN, let 
Sn = the set of all n bit sequences beginning and ending with 1 and containing no two 

consecutive 0's. 
S% = the subset of those sequences that contain precisely k l's. 

S„(i) = the subset of all those sequences containing a 1 in the /* place. 
We have: 

J. \S„\ = F„for*aneN. 
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Proof: Clearly |Si | = |iS21 = 1 and, by considering the choice of the penultimate term in an n 
bit sequence, we see that \Sn\- \Sn_x| + \8n_21 for n > 3. D 

K. \S*| = _ » J provided n-k<k-l. (It is zero otherwise.) 

Proof: There are w - & zeros "to be placed" in the k -1 spaces between the ones. • 
This yields: 

i / i - i I 

L' ^ = Z ( A: } yt=0 V / 

PWw/: As Sw is the disjoint union of the subsets 5* 0 < & < n, \Sn \ = Tn
k=0\Sn I- D 

M. 1̂ (01 = % H -
Proof: Clearly Sn(t) is isomorphic as a set to ^ x Sn+l_r D 

Later, we will denote \Sn(t)\ by ^(w, /). Observe that, by reversing the strings, we have the 
symmetry, g1(ny t) = gl(n, n +1 -1) . This symmetry appears in many of the tables presented later 
in this paper. 

4e GENERATING SETS 

An n bit sequence determines a subset S e [«] and vice versa (declare t eS if and only if the 
r* place of that sequence is a one). Subsets arising from binary sequences as described in the 
previous section are the generating sets (of order 1). By J there are Fn generating subsets of [n] 
of order 1. 

More generally, let hk(ri) be the number of subsets of [n] of order k that generate [n + k]. A 
table for hk(n) appears in Figure 2. 

hk(n) 1 

+ -

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

1 

2 

3 

5. 

8 

13 

21 

34 

55 

2 

1 

1 

1 

2 

4 

6 

9 

15 

25 

3 

1 

1 

1 

1 

2 

4 

8 

12 

4 5 6 7 

1 

1 1 

1 1 1 

1 1 1 1 

1 1 1 1 

2 1 1 1 

4 1 1 1 

FIGURE 2 

8 9 10 

1 

1 1 

1 1 1 
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Theorem 4.1: For n, k G N , hk(ri) is a product of & Fibonacci numbers. Precisely 

where n = r (mod k) with 1 < r < k. 
Proof: Clearly hk(n) = 0 if n < k and the theorem is true. Assume then that n > k. Write 

n = mk+r with 1 < r < k. (Here, m = [f]-1.) 
Let Hk(ri) be the set of all n bit sequences that correspond to a generating set of order k. 

Any such sequence must contain a 1 in the first and last k places. It also has the property that if 
the 7th place fails to be a 1 then the t-k^ place must be. Thus, we can partition the sequence 
into k intertwined subsequences corresponding to those place numbers congruent mod k. Each 
such subsequence corresponds to a first-order generating set. Counting the lengths of these sub-
sequences, we see that we have a set isomorphism 

Hk\n) ~ $m+i x * * ° x Sm+\ xSmx--xSm. 
k-r 

The theorem follows from J. • 

5. ARRAYS 

For n,t,k sN, let gk(n, t) be the number of generating subsets of [n] of order k that contain 
t. Figures 3, 4, and 5 give tables for gk(~, - ) for k = 1,2, and 3, respectively. 

g\nj) | 1 2 3 4 9 10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

t- -

1 

1 

2 

3 

5 

8 

13 

21 

34 

55 

1 

1 

2 

3 

5 

8 

13 

21 

34 

2 

2 

4 

6 

10 

16 

26 

42 

3 

3 

6 

9 

15 

24 

39 

5 

5 

10 

15 

25 

40 

8 

8 

16 

24 

40 

FIGURE 3 

13 

13 

26 

39 

21 

21 

42 

34 

34 55 
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g2(n,t) | 1 2 3 4 5 6 7 8 9 10 

- H 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

1 

1 

1 

2 

4 

6 

9 

15 

25 

1 

1 

1 

2 

4 

6 

9 

15 

25 

1 

1 

1 

2 

4 

6 

9 

15 

l 

2 

2 

2 

6 

10 

15 

2 

4 

4 

6 

12 

20 

4 

6 

6 

10 

20 

FIGURE 4 

6 

9 

9 

15 

9 

15 15 

15 25 25 

g\n, 

-

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 1 
+ 

1 

0 

0 

I 

l 

I 

l 

2 

4 

8 

11 

2 

0 

1 

1 

1 

1 

2 

4 

8 

11 

3 

1 

1 

1 

1 

2 

4 

8 

11 

4 

1 

1 

1 

1 

2 

4 

7 

5 6 7 

1 

1 1 

2 2 2 

2 4 4 

4 4 8 

5 5 7 

FIGURE 5 

8 9 10 

4 

8 8 

11 11 11 
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Observation M establishes gl(n, t) = FtFn+l_t (see also [6]). We now determine the general 
formula for gk(n, i). 

Theorem 5.1: For n,k,t e N, if n = r (mod k) and t = / (mod k) with 1 < r. i < k, then 
\r—\f \k-r 

gk(n,t) = 

WW^^rti^Lfj-rti+i i f / > r 

Proof: Let Hk(n,i) be the set of?? bit sequences arising from &*-order generating sets 
£ c [«] containing the element f. Thus, we are declaring that a 1 must always appear in the t^ 
place. This 1 occurs in the |"~"| place of the Ith subsequence corresponding to the ith congruent 
class of place numbers mod k. Writing n = mk+r,ws have a set isomophism 

j * place 

Hk(nJ) = Sm+lx--'xSm+l([jf\)x--.x$m 

if i > r. The result follows. • 

6. EQUAL PRODUCT HEXAGONAL PROPERTY 

In [6], R. P. Grimaldi observed and proved that the gl(-, - ) array (Fig. 3) satisfies the equal 
product hexagonal property. For example, the two alternate triads in the six entries 6,4, 3, 5,10, 9 
surrounding g1(6,4) = 6 in a (skewed) hexagon have equal products: 6-3-10 = 4-5-9. 

We call such a hexagon a hexagon of radius L It is centered about g\6,4). We observe 
here that Figure 3 satisfies the equal product property for all hexagons of greater radii. For exam-
ple, taking two steps outward from the same center gl(6,4) in the direction of the vertices of the 
original (skewed) hexagon yields six entries 5,2,3,8,16,15 whose alternate triads again satisfy 
5-3-16 = 2-8-15. We call such a configuration of six entries a hexagon of radius 2. The notion 
of a hexagon of general radius r is defined similarly. 

Although all hexagons of arbitrary radius in Figure 3 satisfy the equal product property, the 
same is not true for the arrays in Figures 4 and 5, or in a general array gk(-, - ) , k > 2. Only 
those hexagons with radius divisible by k can be guaranteed to satisfy the equal product property. 

Theorem 6.1 (Equal Product Hexagonal Property): For n, k,t,a e N, 

gk(n-akj-ak)-gk(nj+ak)-gk(n+akj) = gk(n-akj)-gk(n:>t-ak)'gk(n+akj+ak). 

Proof: Suppose n = r (modk), t = i (modk) with l<i,r<k. Then 
n - ak, n,n + ak = r (mod k), 
t-ak,aj + ak = i (modk). 

Assume i < r. Then, by Theorem 5.1, 
\r~\/ \k-r 

g\n, t±ak) = (Fftf% j f >m±„ ^ f H t l + W a. 
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g*(n±ak,t±ak) = fe J > L f J ± « f \ 1 ± « % _ m + , 

and the result is easy to establish. The case i > r is proved similarly. D 

7, EQUAL gccf HEXAGONAL PROPERTY 

7.1 The g\-, - ) Array 

As established by Grimaldi [6], ^ ( - , - ) also satisfies the equal gcd hexagonal property for 
radius 1 hexagons. Inspection of Figure 3 might encourage one to suspect that the equal gcd 
property also holds for higher sized hexagons but this turns out to be false. Consider the hexagon 
of radius 2 centered in row w = 23 about ^(23,10). Here the greatest common divisors of the 
alternate triads are: 

gcd(^(21,10), ^(23,8), g*(25,12)) = gcd(15-144,21-987,144 -377) = 9, 
gcd(^(21, 8), ^(25,10), g\2\ 12)) = gcd(21.377,55 • 987,144 • 144) = 3. 

(Incidentally, this is the first instance of failed equal gcd for this array.) Note, however, that both 
gcd's are composed of powers of the same prime. We will say an array satisfies a, weak gcd hexa-
gonal property for hexagons of radius r if the greatest common divisors of the alternate triads in 
any hexagon of that radius are composed of positive powers of the same primes. 

Lemma 7.1: The array gl(~, - ) satisfies the weak gcd hexagonal property for all hexagons of 
arbitrary size. That is, for nj,r GN, 

gcd(gl(n -rj- r\ g\n, t + r\ g\n+r, t)) 
and 

gcd(gl(n - r, t\ gl(n, t - r\ g\n+rj+ r)) 

are composed of positive powers of the same primes. 
Proof: By observation M, 

g\n-rJ-r) = Ft_rFn+l_t, 
g\n,t + r) = Ft+rFn+l_t_r, 
gl(n + r,t) = FtFn+l_t+n 

and 
gl(n-r,t) = FtF„+l_t_r, 
g\nJ-r) = Ft_rFn+l_t_n 

gl(n + r,t+r) = Ft+rFn+l„t. 

Suppose p, a prime, is a common divisor of the first triad. (The case where/? is a common divisor 
of the second triad is proved similarly.) We have four possibilities: 
i) p divides each of Ft_r, Ft+r, and Ft. 
ii) p divides each of Fn+l_t_r, Fn+1_t+r, and Fn+l_t. 
iii) p divides two of Ft_r, Ft+r, and Ft but not the third. 
iv) p divides two of Fn+l_t_r, Fn+l_t+r, and Fn+l_t but not the third. 
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It is clear that cases i) and ii) imply that/? is a common divisor of the second triad. 
Consider case iii). By observation, E, it must be the case that p\Ft_r and p\Ft+r but p\Ft. 

By D, p\F2r. Since p\gl(n + rj), we have p\Fn+l_t+r. Consequently, by E, p\Fn+l_t_r andp is a 
common divisor of the second triad. 

Case iv) is established similarly. D 
We can now quickly establish Grimaldi's result. 

Corollary 72: All alternate triads for radius 1 hexagons in the gl(~, - ) array have greatest 
common divisor equal to 1. Consequently, the equal gcd hexagonal property holds for such hexa-
gons. 

Proof: We see from the proof of Lemma 7.1 that any common prime divisor/? of a triad 
satisfies p\F2r (in some instances, we even have p\Fr). When r = 1, F2r = 1. • 

7.2 The g2(~, - ) Array 

Consider the g2(-, - ) array derived from generating sets of order 2 (Fig. 4). Hexagons 
of arbitrary size generally fail to satisfy the weak gcd property. Section 6 suggests we focus on 
those hexagons whose radii are divisible by k = 2. We have the following result. 

Lemma 7.3: Consider hexagons of radius r - 2a, a e N, in the g2(-, - ) array. If a = 1, then the 
equal gcd property always holds (and in fact all gcd's of alternate triads equal 1). If a > 2, the 
weak gcd property always holds. 

Proof: Consider a hexagon of radius r - 2 centered about g2(n, t). We will show that each 
alternate triad has gcd equal to 1. 

Consider first the case where both n and t are odd. Set u = fjf] and v = [y~|. By Theorem 
5.1, our alternate triads are: 

g2{n-2,t-2) = Fu_2Fv_xFu_v+l, 
g2(n,t + 2) = Fu+lFv+lFu_v, 
g2(n + 2,t) = FuFvFu_v+2, 

and 
g2(n-2,t) = Fu_2FvFu_v, 
g2(n,t + 2) = Fu„lFv_lFu_v+2, 

g2(n + 2,t + 2) = FuFv+lFu 

help be a common prime divisor for the first triad. By observations A and B, it is impossible 
forp to be a common divisor of any two of Fu_2, Fu_l9 or Fu. It must be the case that/? divides at 
least two of Fv_xFu_v+l, Fv+lFu_v, and FvFu_v+2. Again, noting A and B, this allows six possi-
bilities: 

i) p\Fv_x and p\Fu_v (and consequently p\Fu). 
ii) p\Fu_v+l and p\Fv+l (and consequently p\Fu). 
iii) p\Fv_x and p\Fu_v+2 (and consequently p\Fu_x). 
iv) P\Fu-v+i a n d P\Fv (a n d consequently p\Fu_x). 
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v) p\Fv+lmdp |i^_v+2 (&nd consequently p\Fu_2). 
v 0 PWu-v anc* P\K (and consequently p\Fu_2). 

Let Fm be the first Fibonacci number such that p\Fm9 and consider case i). By H we have 
v - l s O (mod/if), 
u-v = 0 (mod/if), 

u = 0 (mod/if). 

Consequently m-\ and p\Fm = l. 
Similarly, the remaining cases yield contradictions. Thus, the greatest common divisor of the 

first triad must be 1. Similarly for the second triad. 
The same argument applies to the cases n even, and n odd, t even. 
We will now establish the weak gcd property for hexagons of radius r = 2a, a GM. Again, 

set u - ff] and v = |~y] and consider the case n odd, t odd. The alternate triads are: 

g2(n -2a J- 2a) = Fu_x_aFv_aFu_v^ 
g2(n, t + 2a) = F^F^F^^, 
g2(n + 2a,t) = Fu_l+aFvFu 

and 
g2(n - 2a, t) = Fu_x_aFvFu_v+l_a, 
g2(n, t-2a) = Fu_xFv_aFu_v+l+a, 

g2{n + 2aj + 2a) = Fu_l+aFv+aFu_v+v 

Let p be a common prime divisor of the first triad. There are 27 possibilities as to which Fibo-
nacci factors it must divide. We must show that each scenario forces/? to be a common divisor of 
the second triad. We will illustrate the four typical arguments used to demonstrate this. We leave 
the details of applying these arguments to the remaining 23 cases to the diligent reader. 

Suppose p\Fu_x_a, p\Fv+a, and p\Fu_v+1+a. Then p is trivially a common divisor of the 
second triad. 

Suppose p\Fu_x_a, p\Fu_v Then, by E, p\Fu_l+a and sop is a common divisor of the second 
triad. 

Suppose p\Fu_x_a, p\Fv+a. Then, by D, p\F2a and, by E, p\Fv+a_2a = Fv_a and sop is a com-
mon divisor of the second triad. 

Suppose p\Fu_l+a, p\Fv+a, and p\Fu_v+l. Let Fm be the first Fibonacci number such that 
p\Fm. Then, by H, 

u-a + l = Q (modm), 
v+a = 0 (mod/if), 

u-v + l = 0 (mod/n).. 

This is possible only if m - 1 or m - 2. But p\Fm yields a contradiction. Therefore, this scenario 
cannot occur. 

The remaining cases n even, and n odd, t even, are proven similarly. • 
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The following example shows that the equal gcd hexagonal property fails even for the case 
a = 2. Consider the hexagon of radius 4 centered about g2(44,19). Then the alternate triads are: 

^(40,15) = F20FsFl3 = 6765-21-233, 
g2(44,23) = F22Fl2Fn = 17711-144-89, 
#2(48,19) = F24F10^15 = 46368-55-610, 

with gcd = 9, and 
^(40,19) = F20Fl0Fn = 6765-55-89, 
g2(44,15) = F22FsFl5 = 17711-21-610, 
g2(48,23) = F24Fl2Fl3 = 46368-144-233, 

with gcd = 3. 
(Challenge for the reader: Prove that any common prime divisor/? of an alternate triad from a 

hexagon of radius 4 in the g2(~, - ) array must be a divisor of Fs = 21. Consequently p = 3 or 7.) 

7.3 The £*(-, - ) Array, k > 3 

In general, not even the weak gcd hexagonal property holds for gk{-, - ) , k > 3, arrays, even 
if the hexagon is of radius divisible by k. One can easily find examples to illustrate this. A simple 
one is the hexagon of radius 3 in the g3(-, - ) array centered about n = 14, t = 5. Here the alter-
nate triads are: 

^ ( 1 1 , 2 ) ^ ^ 3 ^ = 18, 
^(14,8) = F5F4F3F3-60, 
^(17,5) = F6F5F2F5 = 200, 

with gcd = 2, and 
g\13,5) = F4F3F2F3 = 12, 
^(14,2) = ̂ 4 ^ = 75, 
^(17,8) = F6F5F3F4 = 240, 

with gcd = 3. 
This completes our analysis of the gk(-, - ) arrays. We summarize our results in the follow-

ing theorem. 

Theorem 7.4: Concerning gcd hexagonal properties for hexagons of radius r = ka in the array 
gk(-, - ) (with a, k sN)we have the following: 

1) For k-\ and k - 2: The equal gcd property folds for a = 1. The weak gcd property 
holds for a> 2. 

2) For k > 3: The weak gcd property fails. 

As a final comment, we note that the equal 1cm hexagonal property does not hold for the 
arrays #* ( - , - ) . 
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