SUFFIXES OF FIBONACCI WORD PATTERNS

Wai-Fong Chuan, Chih-Hao Chang, and Yen-Liang Chang

Department of Mathematics, Chung-yuan Christian University, Chung Li, Taiwan 32023, R.O.C. (Submitted November 1998-Final Revision June 1999)

1. INTRODUCTION

Let \mathcal{A} be an alphabet. Let \mathcal{A}^* be the monoid of all words over \mathcal{A} . Let ε denote the empty word, and let $\mathcal{A}^+ = \mathcal{A}^* \setminus \{\varepsilon\}$. If $w = a_1 a_2 \dots a_n$, where $a_i \in \mathcal{A}$, the positive integer *n* is called the *length* of *w*, denoted by |w|. Let $|\varepsilon|=0$. A word *x* is said to be a *prefix* (resp., *suffix*) of *w*, denoted by $x <_p w$ (resp., $x <_s w$), if there is a word $y \in \mathcal{A}^+$ such that w = xy (resp., w = yx). We write $x \leq_p w$ (resp., $x \leq_s w$) if $x <_p w$ (resp., $x <_s w$) or x = w. Prefixes and suffixes of an infinite word are defined similarly.

Let f be an infinite word over \mathcal{A} . For $j \ge 0$, let $S^j f$ denote the suffix of f obtained from f by deleting the first j letters of f. For simplicity we write Sf for S^1f . This defines an operator S acting on infinite words over \mathcal{A} . The cyclic shift operator T on \mathcal{A}^+ is given by $T(a_1a_2...a_n) = a_2...a_na_1$, where $a_i \in \mathcal{A}$. For $j \ge 1$, let $T^j = T(T^{j-1})$, where T^0 denotes the identity operator on \mathcal{A}^+ . Clearly, each operator T^j has an inverse T^{-j} .

Let $u, v \in \mathcal{A}^+$, $x_1 = u$, $x_2 = v$, and $x_n = x_{n-2}x_{n-1}$ $(n \ge 3)$. The infinite word $x_1x_2x_3...$ is called a *Fibonacci word pattern* generated by u and v and is denoted by F(u, v). The words u and v are called the *seed words* of F(u, v). Let $\mathcal{F}^{m,n}$ denote the set of all Fibonacci word patterns F(u, v) with |u| = m and |v| = n. Let \mathcal{F} denote the set of all Fibonacci word patterns.

Given $u, v \in A^+$, |u| = m, |v| = n, Turner [17] proved that $F(u, v) \in \mathcal{F}^{r,s}$, where $(r, s) = (F_{2i-1}m + F_{2i}n, F_{2i}m + F_{2i+1}n)$ for all $i \ge 1$. In Section 2 of this paper we find necessary and sufficient conditions for F(u, v) to be a member of $\mathcal{F}^{n,m+n}$ (resp., $\mathcal{F}^{n-m,m}, \mathcal{F}^{2m-n,n-m}$) (Theorems 2.2-2.4). We also find necessary and sufficient conditions for SF(u, v) to be a member of $\mathcal{F}^{m,m+n}$ (resp., $\mathcal{F}^{n-m,m}, \mathcal{F}^{2m-n,n-m}$) (Theorems 2.5-2.6). The fact that \mathcal{F} is invariant under S is a consequence of Theorem 2.7, which asserts that SF(u, v) always belongs to $\mathcal{F}^{m+n,m+2n}$. The Fibonacci word patterns over $\{0, 1\}$ are called Fibonacci binary patterns (see [5], [17]). The most famous Fibonacci binary pattern is the golden sequence F(1, 01), which is identical to the binary word $c_1c_2...$, where $c_n = [(n+1)\alpha] - [n\alpha]$, $n \ge 1$, and $\alpha = (\sqrt{5} - 1)/2$. See, for example, [2], [3], and [5]-[18]. In Section 3 we use the above results and Lemma 3.1 to compute the possible lengths of the seed words of the suffixes $S^j F(1, 01)$, $j \ge 0$ (Theorem 3.2 and Table 1). It turns out that all these possible pairs of seed words of $S^j F(1, 01)$ have Fibonacci lengths and are pairs of Fibonacci words, the notion of which was introduced by Chuan [4] (see Definition in Section 4). They can be determined by different representations of j in Fibonacci numbers (Theorems 4.5 and 4.6). This gives another proof of Corollary 3.3 of [9] for the case $\alpha = (\sqrt{5} - 1)/2$.

2. FIBONACCI WORD PATTERNS AND THEIR SUFFIXES

Throughout this section, let $u, v \in \mathcal{A}^+$, |u| = m, |v| = n.

Theorem 2.1 (see [17]): $F(u, v) = F(uv, uvv) \in \mathcal{F}^{m+n, m+2n}$.

Theorem 2.2:

- (a) Let $m \le n$. Then $F(u, v) \in \mathcal{F}^{n, m+n}$ if and only if $u \le_s v$. Moreover, F(u, xu) = F(ux, uux) for all $x \in \mathcal{A}^*$.
- (b) Let m > n, u = xy, where $x, y \in \mathcal{A}^+$, |x| = n. Then $F(u, v) \in \mathcal{F}^{n, m+n}$ if and only if xy = yv. In this case, F(u, v) = F(x, xyx).

Proof: (a) $(m \le n)$ Suppose that $F(u, v) \in \mathcal{F}^{n, m+n}$. Let v = xy, where $x, y \in \mathcal{A}^*$, |y| = m. Then

$$F(u, v) = F(u, xy) = (u)(xy)(uxy)(xyuxy) \cdots$$
$$= (ux)(yux)(yxyux) \cdots$$

Since $F(u, v) \in \mathcal{F}^{n, m+n}$, it follows that

$$F(u, v) = F(ux, yux) = (ux)(yux)(uxyux)\cdots$$

By comparing the two expressions of F(u, v) and using the assumption that |y| = |u| = m, we have u = y. This proves that $u \leq v$, v = xu, and F(u, xu) = F(ux, uux).

Conversely, let v = xu, where $x \in \mathcal{A}^*$. We claim that F(u, xu) = F(ux, uux). Let

$$\begin{aligned} x_1 &= u, & x_2 = v = xu, & x_n = x_{n-2}x_{n-1}, \\ y_1 &= ux, & y_2 = uux, & y_n = y_{n-2}y_{n-1}, n \ge 3. \end{aligned}$$

Clearly, $u \leq_s x_n$, $n \geq 1$. Write $x_n = z_n u$, where $z_n \in \mathcal{A}^*$. Since $x_n = x_{n-2}x_{n-1}$, we have $z_n = z_{n-2}uz_{n-1}$, $n \geq 3$. Now it is easy to see that $y_{n-1} = uz_n$, $n \geq 2$. Therefore,

$$F(u, v) = F(u, xu) = x_1 x_2 x_3 \dots = u(z_2 u)(z_3 u) \dots$$

= $(uz_2)(uz_3)(uz_4) \dots = y_1 y_2 y_3 \dots = F(ux, uux).$

(b) (m > n) The proof is similar to part (a). \Box

We note that the condition xy = yv holds if and only if there are words $z_1, z_2 \in \mathcal{A}^*$ and an integer $r \ge 0$ such that $x = z_1 z_2$, $y = (z_1 z_2)^r z_1$, and $v = z_2 z_1$ (see [15]).

Corollary: Let $u \leq_s v$ and let $u_k, v_k \in \mathcal{A}^+$ be such that $|u_k| = F_{k-1}m + F_kn$, $|v_k| = F_km + F_{k+1}n$, and $u_k v_k <_p F(u, v)$, $k \geq 0$. Then $F(u, v) = F(u_k, v_k) \in \mathcal{F}^{|u_k|, |v_k|}$ and $u_k \leq_s v_k$. Here $F_{-1} = 1$, $F_0 = 0$.

Theorem 2.3: Let $m < n \le 2m$. Then $F(u, v) \in \mathcal{F}^{n-m, m}$ if and only if u and v have a common prefix of length n-m and $u <_{s} v$.

Proof: Suppose that F(u, v) = F(x, z), where |x| = n - m and |z| = m. It follows from part (a) of Theorem 2.2 that $x \leq_s z$, i.e., z = yx for some $y \in \mathcal{A}^*$. Also, u = xy and v = xxy. Hence, x is a common prefix of u and v of length n - m and $u <_s v$.

Conversely, suppose that u and v have a common prefix x of length n-m and $u <_s v$. Then u = xy, v = xxy, where $y \in \mathcal{A}^*$. Then, according to part (a) of Theorem 2.2, we have F(x, yx) = F(xy, xxy). Hence, $F(u, v) \in \mathcal{F}^{n-m,m}$. \Box

Theorem 2.4 follows from Theorem 2.1.

Theorem 2.4: Let m < n < 2m. Then $F(u, v) \in \mathcal{F}^{2m-n, n-m}$ if and only if u and v have a common suffix of length n-m and $u <_p v$.

2000]

Theorem 2.5: Let $1 \le k \le \min(m, n)$. Then $S^j F(u, v) \in \mathcal{F}^{m, n}$ for all $j, 0 \le j \le k$, if and only if u and v have a common prefix of length k. In this case, $S^j F(u, v) = F(T^j(u), T^j(v))$. If, in addition, $u \le_s v$, then $T^j(u) \le_s T^j(v)$.

Proof: Suppose that $S^k F(u, v) \in \mathcal{F}^{m,n}$. Let u = wx, $v = w_1 y$, where w, w_1 , x, and y are words and $|w| = |w_1| = k$. Then it is clear that $S^k F(u, v) = F(xw_1, yw)$ and $w = w_1$. Thus, w is a common prefix of both u and v.

Conversely, suppose that u and v have a common prefix az, where $a \in \mathcal{A}, z \in \mathcal{A}^*$. Write u = azx, v = azy, where $x, y \in \mathcal{A}^*$. Then $SF(u, v) = F(zxa, zya) \in \mathcal{F}^{m, n}$. Moreover, z is a common prefix of the seed words zxa, zya of SF(u, v), |z| = k - 1, zxa = T(u), and zya = T(v). If $u \leq_s v$, then clearly $zxa \leq_s zya$. Now the result follows by inductive argument. \Box

The following theorem can be proved in a similar way.

Theorem 2.6:

- (a) Let $m \le n$. Then $SF(u, v) \in \mathcal{F}^{n, m+n}$ if and only if u and v have a common suffix of length m-1. Moreover, F(ax, zx) = aF(xz, xaxz) for all $a \in \mathcal{A}, x, z \in \mathcal{A}^+$.
- (b) Let m > n, u = axy, where $a \in \mathcal{A}$, x, $y \in \mathcal{A}^*$, |x| = n. Then $SF(u, v) \in \mathcal{F}^{n, m+n}$ if and only if xy = yv. In this case, F(axy, v) = aF(x, yvax).

Corollary: Let $j \ge 0$, u_j , $v_j \in \mathcal{A}^+$, $u_j v_j <_p S^j F(u, v)$, $|u_j| = F_{j-1}m + F_j n$, $|v_j| = F_j m + F_{j+1} n$. If $u \le_s v$, then $S^j F(u, v) = F(u_j, v_j) \in \mathcal{F}^{|u_j|, |v_j|}$ and $u_j \le_s v_j$.

Theorem 2.7: $SF(u, v) \in \mathcal{F}^{m+n, m+2n}$.

Proof: According to Theorem 2.1, $F(u, v) = F(uv, uvv) \in \mathcal{F}^{m+n, m+2n}$. Since uv and uvv have the same first letter, it follows from Theorem 2.5 that $SF(u, v) = SF(uv, uvv) \in \mathcal{F}^{m+n, m+2n}$. \Box

Corollary: All suffixes of F(u, v) belong to \mathcal{F} . More precisely, for $j \ge 0$, $S^{j}F(u, v) \in \mathcal{F}^{r,s}$, where $(r, s) = (F_{2j-1}m + F_{2j}n, F_{2j}m + F_{2j+1}n)$.

3. THE GOLDEN SEQUENCE F(1, 01)

Let $\mathcal{A} = \{0, 1\}$. Consider the golden sequence f = F(1, 01). For each $j \ge 0$, we shall show how to compute pairs of positive integers (r, s) for which $S^j f \in \mathcal{F}^{r, s}$. A key observation is the following lemma.

Lemma 3.1: Let $n \ge 2$ and $F_n - 1 \le j \le F_{n+1} - 2$. Then $S^j f = F(u_j, v_j)$, where $u_j, v_j \in \{0, 1\}^+$, $|u_j| = F_n$, $|v_j| = F_{n+1}$, $u_j <_s v_j$, and u_j, v_j have a common prefix of largest length $F_{n+1} - 2 - j$. (When n = 2 and j = 0, u_0, v_0 have different first letters.)

Proof: The result clearly holds when n = 2, 3. Suppose that it holds for n = k. Let $i = F_{k+1} - 2$. It follows from Theorems 2.5 and 2.6 that $S^{i+1}f \in \mathcal{F}^{F_{k+1}, F_{k+2}} \setminus \mathcal{F}^{F_k, F_{k+1}}$. Moreover, $S^{i+1}f = F(u_{i+1}, v_{i+1})$, where $|u_{i+1}| = F_{k+1}$, $|v_{i+1}| = F_{k+2}$, $u_{i+1} <_s v_{i+1}$, and u_{i+1}, v_{i+1} have a common prefix of largest length $F_k - 1$. According to Theorem 2.5, if $1 \le m \le F_k$ and j = i + m, then

[NOV.

 $S^{j}f = F(u_{j}, v_{j})$, where $|u_{j}| = F_{k+1}$, $|v_{j}| = F_{k+2}$, $u_{j} <_{s} v_{j}$, and u_{j}, v_{j} have a common prefix of largest length $F_{k} - m = F_{k+2} - 2 - j$. Thus, the result holds for all $n \ge 2$. \Box

Theorem 3.2: Let $n \ge 2$ and $F_n - 1 \le j \le F_{n+1} - 2$. Then $S^j f \in \mathcal{F}^{F_k, F_{k+1}}$ if $k \ge n$, and $S^j f \notin \mathcal{F}^{F_k, F_{k+1}}$ if $1 \le k \le n-1$.

Proof: The first part is a consequence of Lemma 3.1, Theorem 2.5, and the Corollary to Theorem 2.2. The second part follows from Lemma 3.1 and Theorems 2.1, 2.3, and 2.4. \Box

For example, when n = 6 and $7 \le j \le 11$, Theorem 3.2 implies that $S^j f \in \mathcal{F}^{r,s}$, where $(r, s) = (8, 13), (13, 21), (21, 34), \dots$ and $S^j f \notin \mathcal{F}^{r,s}$, where (r, s) = (1, 2), (2, 3), (3, 5), (5, 8). This completes the part of Table 1 corresponding to $7 \le j \le 11$.

1	() C 1'1 Gic Ore
j	(r, s) for which $S^{j} f \in \mathcal{F}^{r, s}$
0	(1,2), (2,3), (3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
1	(2,3), (3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
2	(3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
3	(3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
4	(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
5	(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
6	(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
7	(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
8	(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
9	(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
10	(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
11	(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
12	(13,21), (21,34), (34,55), (55,89), (89,144)
13	(13,21), (21,34), (34,55), (55,89), (89,144)

TABLE 1

4. SEED WORDS OF $S^{j}F(1,01)$ ARE FIBONACCI WORDS

Again we let f = F(1, 01). We have seen in Theorem 3.2 that, if $n \ge 2$ and $F_n - 1 \le j \le F_{n+1} - 2$, then $S^j f \in \mathcal{F}^{F_k, F_{k+1}}$ for all $k \ge n$. Now let (u_{jk}, v_{jk}) denote the pair of seed words of $S^j f$ such that $|u_{jk}| = F_k$ and $|v_{jk}| = F_{k+1}$. We shall show in Theorem 4.5 that u_{jk} and v_{jk} are Fibonacci words, as defined below, whose labels can be determined. Special cases can be found in [5].

Fibonacci words over the alphabet {0, 1} are defined as follows: Let

$$w(0) = 10, w(1) = 01,$$

 $w(00) = 101, w(01) = 110, w(10) = 011, w(11) = 101.$

For any binary sequence $r_1, r_2, ..., r_n, n \ge 3$, the word $w(r_1r_2...r_n)$ is defined recursively by

$$w(r_{1}r_{2}...r_{k}) = \begin{cases} w(r_{1}r_{2}...r_{k-1})w(r_{1}r_{2}...r_{k-2}) & \text{if } r_{k} = 0, \\ w(r_{1}r_{2}...r_{k-2})w(r_{1}r_{2}...r_{k-1}) & \text{if } r_{k} = 1, \end{cases}$$

2000]

 $3 \le k \le n$. The word $w(r_1r_2...r_n)$ is called a *Fibonacci word* generated by the pair of words (0, 1). The sequence $r_1, r_2, ..., r_n$ is called a *label* of $w(r_1r_2...r_n)$. It describes how the Fibonacci word $w(r_1r_2...r_n)$ is generated. A Fibonacci word may have several different labels. For example, 10101101 = w(0010) = w(1100) = w(1111). The words 0 and 1 are also Fibonacci words. For convenience, we write $1 = w(\lambda)$, where λ denotes the empty label. The above notion of Fibonacci word was introduced by Chuan [4] and was later generalized to the notion of α -word by her [8]. :Many known results in the literature involve Fibonacci words (see, e.g., [4]-[12], [16]-[18]).

We need the following properties of Fibonacci words, the proofs of which can be found in [4]. Let $y_1 = 0$, $y_2 = 1$, $y_n = y_{n-2}y_{n-1}$ (i.e., $y_n = w(11...1)$), $n \ge 3$.

Lemma 4.1: Let $n \ge 1, r_1, r_2, ..., r_n, s_1, s_2, ..., s_n \in \{0, 1\}$. Then:

- (a) $|w(r_1r_2...r_n)| = F_{n+2}$.
- (b) If $j = \sum_{i=1}^{n} r_i F_{i+1}$, then $w(r_i r_2 \dots r_n) = T^{-k}(y_{n+2})$, where $k = F_{n+3} 2 j$.
- (c) If $\sum_{i=1}^{n} s_i F_{i+1} \equiv \sum_{i=1}^{n} r_i F_{i+1} \pmod{F_{n+2}}$, then $w(r_1 r_2 \dots r_n) = w(s_1 s_2 \dots s_n)$.

Let $u, x \in \mathcal{A}^+$. Then

$$F(u, xu) = F(ux, uux) = uF(xu, uxu) = uxF(uux, uxuux).$$

The first equality follows from part (a) of Theorem 2.2; the second one is trivial; the third one can be proved in a similar way as Theorem 2.2(a). It follows that, if |u| = m and |x| = t, then

$$S^{m}F(u, xu) = F(xu, uxu),$$

$$S^{m+t}F(u, xu) = F(uux, uxuux).$$

In particular, we have the following lemma. Part (d) follows from Theorem 2.1.

Lemma 4.2: Let $n \ge 1, r_1, r_2, ..., r_n, r_{n+1} \in \{0, 1\}$. Let $u = w(r_1r_2...r_n), v = w(r_1r_2...r_n)$. Then:

- (a) $F(u, v) = F(w(r_1r_2...r_n0), w(r_1r_2...r_n01)).$
- **(b)** $S^{F_{n+2}}F(u, v) = F(w(r_1r_2...r_n1), w(r_1r_2...r_n11)).$
- (c) $S^{F_{n+3}}F(u, v) = F(w(r_1r_2...r_n01), w(r_1r_2...r_n011)).$
- (d) $F(w(r_1r_2...r_n), w(r_1r_2...r_{n+1})) = F(w(r_1...r_{n+1}1), w(r_1...r_{n+1}10)).$

Lemma 4.3 (see [1]): Each positive integer j is uniquely expressed as $j = \sum_{i=1}^{n} r_i F_{i+1}$, where $r_n = 1$, $r_i \in \{0, 1\}$, and $\max(r_i, r_{i+1}) = 1$ $(1 \le i \le n-1)$.

The representation $j = \sum_{i=1}^{n} r_i F_{i+1}$ in Lemma 4.3 is called the *maximal representation* of j. The code $\langle r_1 r_2 \dots r_n \rangle$ is called the *maximal code* of j. The number n is called the *length* of the maximal code of j. For convenience, the maximal code of the integer 0 is defined to be the empty code λ . It has length 0. We note that $F_{n+2} - 1 \le j \le F_{n+3} - 2$ if and only if the length of the maximal code of j is n.

Lemma 4.4: For each $j \ge 0$, let $\langle r_1 r_2 \dots r_n \rangle$ be the maximal code of j. Then $S^j f = F(w(r_1 r_2 \dots r_n), w(r_1 r_2 \dots r_n 1))$.

[NOV.

436

Proof: The result clearly holds for $0 \le j \le 3$. Now suppose that k > 3 and that the result is true for all j, $0 \le j < k$. We show that it is also true for j = k. Let $n \ge 3$ be such that $F_{n+2} - 1 \le k \le F_{n+3} - 2$.

(a) If
$$F_{n+2} - 1 \le k \le 2F_{n+1} - 2$$
, then $F_n - 1 \le k - F_{n+1} \le F_{n+1} - 2$. By the inductive hypothesis,

 $S^{k-F_{n+1}}f = F(w(r_1r_2...r_{n-2}), w(r_1r_2...r_{n-2}1)),$

where $\langle r_1 r_2 \dots r_{n-2} \rangle$ is the maximal code of $k - F_{n+1}$. Clearly, $\langle r_1 r_2 \dots r_{n-2} 0 1 \rangle$ is the maximal code of k. Also,

$$S^{k}f = S^{F_{n+1}}S^{k-F_{n+1}}f = S^{F_{n+1}}F(w(r_{1}r_{2}...r_{n-2}), w(r_{1}r_{2}...r_{n-2}1))$$

= F(w(r_{1}r_{2}...r_{n-2}01), w(r_{1}r_{2}...r_{n-2}011)),

according to part (c) of Lemma 4.2.

(b) If $2F_{n+1}-1 \le k \le F_{n+3}-2$ and if $\langle r_1r_2...r_{n-1}\rangle$ is the maximal code of $k-F_{n+1}$, then the inductive hypothesis implies that

$$S^{k-F_{n+1}}f = F(w(r_1r_2...r_{n-1}), w(r_1r_2...r_{n-1}1)).$$

Therefore, $\langle r_1 r_2 \dots r_{n-1} \rangle$ is the maximal code of k and

$$S^{k}f = F(w(r_{1}r_{2}...r_{n-1}1), w(r_{1}r_{2}...r_{n-1}11)),$$

according to part (b) of Lemma 4.2. \Box

Using Lemma 4.4 and part (a) of Lemma 4.2, the seed words of $S^{j}f$ can now be determined.

Theorem 4.5: Let $j \ge 0$ and let $\langle r_1 r_2 \dots r_n \rangle$ be the maximal code of j. Let $k \ge n+2$. Then $u_{jk} = w(r_1 r_2 \dots r_n 0 \dots 0)$ and $v_{jk} = w(r_1 r_2 \dots r_n 0 \dots 0)$ (there are k - n - 2 zeros right after r_n).

For example, since $3 = F_2 + F_3$ is the maximal representation of 3, we have $u_{36} = w(1100)$, $v_{36} = w(11001)$. As observed before, the labels for u_{jk} and v_{jk} may not be unique.

Corollary: Let $j \ge 0$ and let *n* be the smallest integer ≥ 2 such that $j \le F_{n+1} - 2$. If $k \ge n$, then $S^j f = F(T^{-i_k}(y_k), T^{-i_k}(y_{k+1}))$, where $i_k = F_{k+1} - 2 - j$.

Proof: The result follows from Theorem 4.5 and part (b) of Lemma 4.1. \Box

Note that this corollary contains part (b) of Theorem 8 of [5].

Theorem 4.6: Let $j = \sum_{i=1}^{k-2} s_i F_{i+1}$, where $s_i \in \{0, 1\}$ $(1 \le i \le k-2)$ and $k \ge 3$, then

$$S^{j}f = F(w(s_{1}s_{2}...s_{k-2}), w(s_{1}s_{2}...s_{k-2}1)).$$

Proof: If j = 0, then the result is contained in Theorem 4.5. Now let $j \ge 1$ and let $\langle r_1 r_2 ... r_n \rangle$ be the maximal code of j. Clearly, $n \le k - 2$. Define $r_i = 0$ if $n < i \le k - 2$. Then

$$j = \sum_{i=1}^{k-2} r_i F_{i+1} = \sum_{i=1}^{k-2} s_i F_{i+1},$$

$$j + F_k = \sum_{i=1}^{k-2} r_i F_{i+1} + F_k = \sum_{i=1}^{k-2} s_i F_{i+1} + F_k.$$

Hence,

2000]

$$(u_{jk}, v_{jk}) = (w(r_1r_2 \dots r_{k-2}), w(r_1r_2 \dots r_{k-2}1)) \text{ [by Theorem 4.5]}$$
$$= (w(s_1s_2 \dots s_{k-2}), w(s_1s_2 \dots s_{k-2}1)) \text{ [by part (c) of Lemma 4.1]}.$$

This completes the proof. \Box

For example, since $3 = F_2 + F_3 = F_4$, we have $u_{36} = w(1100) = w(0010)$ and $v_{36} = w(11001) = w(00101)$. It also follows from Theorem 4.6 that the Fibonacci word pattern generated by a pair of Fibonacci words of the form $w(r_1r_2...r_n)$, $w(r_1r_2...r_n)$ is a suffix of f.

Corollary: For every binary sequence $r_1, r_2, ..., r_n$, the Fibonacci word pattern $F(w(r_1r_2...r_n), w(r_1r_2,...r_n))$ is a suffix of f. More precisely,

$$F(w(r_1r_2...r_n), w(r_1r_2,...r_n1)) = S^j f$$
,

where $j = \sum_{i=1}^{n} r_i F_{i+1}$.

We remark that Theorem 4.6 is a special case of Corollary 3.3 of [9], which was proved by a general representation theorem. In our proof given here, only elementary properties of Fibonacci word patterns and Fibonacci words are used.

Seed words of the Fibonacci word pattern F(0, 1) can also be obtained easily. Let $w_1 = 0$, $w_2 = 1$, and for $n \ge 3$, let $w_n = w_{n-2}w_{n-1}$ if *n* is odd and $w_n = w_{n-1}w_{n-2}$ if *n* is even [that is, $w_n = w(r_1r_2...r_{n-2})$, where r_i equals 1 if *n* is odd and equals 0 if *n* is even $(n \ge 3)$]. It follows immediately from part (d) of Lemma 4.2 that $F(0, 1) = F(w_{2n-1}, w_{2n}) \in \mathcal{F}^{F_{2n-1}, f_{2n}}$ $(n \ge 1)$. Since w_{2n-1} and the suffix of w_{2n} having length $|w_{2n-1}| (= F_{2n-1})$ have different first letters (see [6]), it follows that $F(0, 1) \notin \mathcal{F}^{F_{2n}, F_{2n+1}}$ $(n \ge 1)$, according to part (c) of Theorem 2.2.

ACKNOWLEDGMENT

The first author gratefully acknowledges that this research was supported in part by Grant 86-2115-M-033-002-M, National Science Council, Republic of China.

REFERENCES

- 1. J. Brown, Jr. "A New Characterization of the Fibonacci Numbers." *The Fibonacci Quarterly* **3.1** (1965):1-8.
- 2. T. C. Brown & A. R. Freedman. "Some Sequences Associated with the Golden Ratio." *The Fibonacci Quarterly* **29.2** (1991):157-59.
- 3. M. Bunder & K. Tognetti. "The Zeckendorf Representation and the Golden Sequence." *The Fibonacci Quarterly* **29.3** (1991):217-19.
- 4. W. Chuan. "Fibonacci Words." The Fibonacci Quarterly 30.1 (1992):68-76.
- W. Chuan. "Embedding Fibonacci Words into Fibonacci Word Patterns." In Applications of Fibonacci Numbers 5:113-22. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1993.
- 6. W. Chuan. "Subwords of the Golden Sequence and the Fibonacci Words." In *Applications* of *Fibonacci Numbers* 6:73-84. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996.
- 7. W. Chuan. "Extraction Property of the Golden Sequence." *The Fibonacci Quarterly* **33.2** (1995):113-22.
- W. Chuan. "α-Words and Factors of Characteristic Sequences." Discrete Math. 177 (1997): 33-50.

SUFFIXES OF FIBONACCI WORD PATTERNS

- 9. W. Chuan. "A Representation Theorem of the Suffixes of Characteristic Sequences." *Discrete Applied Math.* **85** (1998):47-57.
- 10. A. de Luca. "A Combinatorial Property of the Fibonacci Words." Inform. Process. Lett. 12 (1981):193-95.
- 11. A. de Luca. "A Division Property of the Fibonacci Word." *Inform. Process. Lett.* **54** (1995): 307-12.
- 12. R. J. Hendel & S. A. Monteferrante. "Hofstadter's Extraction Conjecture." *The Fibonacci Quarterly* **32** (1994):98-107.
- 13. P. M. Higgins. "The Naming of Popes and a Fibonacci Sequence in Two Noncommuting Indeterminates." *The Fibonacci Quarterly* **25.1** (1987):57-61.
- 14. D. E. Knuth. *The Art of Computer Programming*. Vol. I. New York: Addison-Wesley, 1973.
- 15. M. Lothaire. Combinatorics on Words. Reading, MA: Addison-Wesley, 1983.
- K. Tognetti, G. Winley, & T. van Ravenstein. "The Fibonacci Tree, Hofstadter and the Golden String." In *Applications of Fibonacci Numbers* 3:325-34. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1990.
- 17. J. C. Turner. "Fibonacci Word Patterns and Binary Sequences." *The Fibonacci Quarterly* **26.3** (1988):233-46.
- 18. J. C. Turner. "The Alpha and the Omega of the Wythoff Pairs." *The Fibonacci Quarterly* **27.1** (1989):76-86.

AMS Classification Numbers: 11B83, 68R15

** *** ***

Author and Title Index

The TITLE, AUTHOR, ELEMENTARY PROBLEMS, ADVANCED PROBLEMS, and KEY-WORD indices for Volumes 1-38.3 (1963-July 2000) of *The Fibonacci Quarterly* have been completed by Dr. Charles K. Cook. It is planned that the indices will be available on The Fibonacci Web Page. Anyone wanting their own disc copy should send two 1.44 MB discs and a self-addressed stamped envelope with enough postage for two discs. PLEASE INDICATE WORDPERFECT 6.1 OR MS WORD 97.

Send your request to:

PROFESSOR CHARLES K. COOK DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA AT SUMTER 1 LOUISE CIRCLE SUMTER, SC 29150-2498