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1. INTRODUCTION 

Following the notation in [3], we consider the sequence {Wn} = {Wn(a, b; p, q)} defined, for 
all integers n, by 

Wn = PK-x-<lWn-2, W0=a, W1 = b. (1.1) 

Throughout this paper we take a, b, p, and q to be arbitrary integers with q ^ 0. 
Distinguished among all the sequences generated by the recurrence in (1.1) is the pair 

Un = Wn(0,1; p, q) and Vn = Wn(2, p; p, q), whose importance was first recognized by Lucas [4]. 
The sequences {Un} and {Vn} are often referred to as the fundamental and primordial sequences, 
respectively [13]. Because of their special properties, {Un} and {Vn} continue to be the focus of 
much attention [2], [5], [9], [12]. Our interest in this paper is in a property of {Un} which, 
according to Dickson ([1], p. 409), was first observed by D'Ocagne. D'Ocagne observed that 
there exist integers cQ and ch independent of % such that 

W^^+cfJ^, »eZ. (1.2) 

Indeed, it can be proved by induction that 

W„ = (Wi-pWQ)Un + WJJ^, T I G Z . (1.3) 

In this sense {Un} can be regarded as a "basis'8 for the sequences generated by the recurrence in 
(1.1). In fact, as stated in the reference of Dickson mentioned above, D'Ocagne observed this 
property for the higher-order analogs of {Un}. 

It is natural to ask if there are other sequences generated by the recurrence in (1.1) which 
also possess this property of {UJ. To be more precise, we make the following definition. 

Property of D'Ocagne: An integer sequence {Sn} = {Wn(S0, Sx; /?, q)} is said to have the property 
of D'Ocagne if there exist integers c0 and cx, independent of w, such that W„ = c0Sn + clSn+l, n e Z. 

For q = ±l we have characterized all sequences which have the property of D'Ocagne. The 
object of this paper is to present our results. 

2, PRELIMINARY RESULTS 

For the remainder of the paper we take {SJ = {Wn(S0, Sx; p, q)} to be an integer sequence. In 
order to make the paper self-contained, we now list several known results which will be required 
in the sequel. 

Lemma 1: Z) = 
K 
wx 
% 

s„ 
Si 
So 

$n+l 

s2 
Si 

= 0, 
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Lemma 2: The points with integer coordinates on the conies y2 - 3xy + x2 - ±1 are precisely the 
pairs (x,y) = ±(Fn,Fn+2). 

Lemma 3: In (1.1) suppose p * 0 and q = - 1 . Then the points with integer coordinates on the 
conies y1 - pxy - x2 = ±1 are precisely the pairs (x, y) = ±(Un, Un+l). 

Lemma 4: In (1.1) suppose |/?| > 2 and g = 1. Then the points with integer coordinates on the 
conic y2 -pxy + x2 = 1 are precisely the pairs (x, y) =±(Un, Un+l). 

Lemma 1 is a special case of Theorem 1 in [7]. Lemmas 2, 3, and 4 are special cases of Theorems 
1, 2, and 5, respectively, in [6]. 

We also require several well-known theorems concerning the integer solutions of the Pell 
equation 

x2-dy2 = l, (2.1) 
and its generalization 

x2-dy2 = N. (2.2) 

Here we assume that d is a positive integer that is not a perfect square and N is an integer. 

Theorem 1 (see Theorem 11,5 In [11]): Let hm/km denote the mih convergent of the simple 
continued fraction of yfd-, m = 0,1,2,..., and let / be the period length of this continued fraction. 
If / is even, then (x, y) - (AM, £M) is a solution of (2.1). 

Theorem 2 (see Theorem 11.3 in [11]): Suppose |N\ < 4d . If (x, y), with x and y positive, is a 
solution of (2.2), then xly is a convergent of the simple continued fraction of 4d . 

Theorem 3 (see Theorem 33, p. 128, in [10]): If (2.2) has a solution, then it has infinitely many 
solutions. At least one of these solutions satisfies 

0.<x<V((*b + 1)IW), 
where (x0, y0) is the fundamental solution of (2.1). 

Finally, we require the following lemma. For part (a), see page 389 of [11]. Indeed, both 
parts can be established with the use of the standard method for developing a surd as a continued 
fraction. See, for example, page 176 of [8]. 

Lemma 5: Let d be a positive integer. 
(a) If d > 3 is odd, the simple continued fraction of IS 

[d-1; l ,(rf-3)/2,2,(rf-3)/2,l,2rf-2]. 

(b) If d > 4 is even, the simple continued fraction of 4d2 - 4 is 

[d-1; l ,(rf-4)/2,l,2rf-2]. 

3* THE MAIN RESULTS 

Our first theorem gives necessary and sufficient conditions for the sequence {£„} to have the 
property of D'Ocagne. 
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Theorem 4: Suppose Sf-SQS2 ^ 0 . Then {SJ has the property of D'Ocagne if and only if 

Proof: From Lemma 1 we have 

(S?-S0S2Wn = (SlWl-S2W0)S„ + (SlW^ n eZ. (3.1) 

Hence, if 5f - S0S2 = ±1, then {SJ has the property of D'Ocagne. 
Conversely, suppose {S„} has the property of D'Ocagne. Then there exist integers c0 and q 

such that 
^ = ̂ + ^ i , w e Z . (3.2) 

Putting fi = 0 and w = 1, we see from Cramer's rule that c0 and q are unique. Now, by (3.1), we 
have 

U"=^WSn--T\-Stl+1, neZ. (3.3). 

But, by the uniqueness of c0 and cx we have 

- - — ^ and c,=- ^ — 
oi -S0S2 SI -S0S2 

which means that iSf -S0S2 divides Sn, n>0. Consequently, putting n = 1 in (3.2), we see that 
Si - S0S2 divides 1, and this completes the proof. D 

Our next theorem characterizes those sequences {Sn} = Wn(S0, Sx; p,-l)} that have the 
property of D'Ocagne. 

Theorem 5: If p ̂  0, then {SJ - {Wn(S0, Sx; p, -1)} has the property of D'Ocagne if and only if 
(So, -Si) = ±(Um, Um+l) for some integer m. 

Proof: We first prove that S* - S0S2 ̂  0. On the contrary, suppose S? - S0S2 = 0. If one of 
S0, Sl9 or S2 is zero, one of the others must be zero, which means that {Sn} is the zero sequence. 
So we can assume that SQS^ & 0. Now 

Sl _ ^ 2 „PSl+$0 _ 
'• p+ , 

SQ SX iSj i j 

and this implies that 
Sl^p±^7^A 
S0 2 " 

But since p2-h4 is not a perfect square, S1/S0 is irrational, which is a contradiction. Hence, 
Si - S0S2 & 0. Then, by Theorem 4, {SJ has the property of D'Ocagne if and only if S? - S0S2 = 
iŜ  - p^iSi - £o = ±1. Theorem 5 now follows from Lemma 3. D 

Our final theorem characterizes those sequences {Sn} = {Wn(S0, S{, p, 1)} that have the prop-
erty of D'Ocagne. 

Theorem 6: Let \p\ > 2 and let {Sn} = {^(£0, Sx; p, 1)}. 
fa) If p = 3, then {£„} has the property of D'Ocagne if and only if (S0, Sx) = ±(Fm, Fm+2) for 

some integer m. 
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(b) If p = - 3 , then {SJ has the property of D'Ocagne if and only if (S0, Sx) = ±{Fm, -Fm+2) for 
some integer m. 

(c) If \p\ > 3, then {£„} has the property of DfOcagne if and only if (S0, Sx) = ±(Um, Um+l) for 
some integer m. 

Proof: As in the proof of Theorem 5, it is straightforward to prove that S2 - S0S2 * 0. Since 
$i ~ ̂ 0^2 ~ $\ ~ P$osi + ̂ o, we see from Theorem 4 that {$„} has the property of D'Ocagne if and 
only if 

S2-pS0Sl + S2 = ±l. (3.4) 

Now part (a) follows immediately from Lemma 2. Writing 5? + 3S0S{ + SQ as (-*S\)2 - 3S0(-Sl) + 
SQ , we see that part (b) also follows from Lemma 2. 

To prove part (c), we consider first the equation 

S2-pS0Sl + S2 = X \P\>3. (3.5) 
By Lemma 4, the solutions of (3.5) are precisely the pairs (S09SX) = ±(Um, Um+l). Next we con-
sider the equation 

S?-pS0S1 + SZ = -\, \p\>3, (3.6) 
and solve for Sx to obtain 

Si = p^MEMH, |J>I>3. (37) 

To complete the proof of (c), it is enough to prove that (3.7) yields no integer pairs (SQ, Sx). We 
accomplish this by proving that the generalized Pell equation 

x2-(p2-4)y2 = -4, \p\>3, (3.8) 

has no solutions. It suffices to consider only p > 3. 
To begin we assume that/? is odd. Using Lemma 5, part (a), we find the convergents hmlkm, 

0<m<5, of the continued fraction expansion of -y/?2 - 4 from the following table. In the table, 
the am are the partial quotients. 

TABLE 1 

m 
0 
1 
2 
3 
4 
5 

am 

p-\ 
1 

(p-3)/2 
2 

(p-3)/2 
1 

K 
P-I 

p 
(p2-p-2)/2 

p*-2 
(p3-2p2-3p + 4)/2 

(p3-3p)/2 

K 
i 
i 

(p- l ) /2 
P 

(p2-2p-l)/2 
(p2-l)/2 

Now by Theorem 1 and Lemma 5, part (a), and as is easily verified by substitution, (h5, k5) is 
a solution of x2-(p2- 4)y2 = 1. For integers x0 > 3, (x0 -1)2 > 3. This implies x2 > 2(xQ 4-1) 
which in turn implies x0 > ^2(x0 +1). Consequently, taking x0 = (p3 - 3/?) / 2 > 3, we can replace 
the inequality in Theorem 3 by the more generous inequality 0 < x < xQ. But by trial we find that 
none of the pairs (hm,km), 0<m<4, is a solution of (3.8). Hence, by Theorems 2 and 3, (3.8) 
has no solutions. 
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To complete the proof, we consider (3.8) for p>4, p even. For p = 4 , equation (3.8) has 
no solutions since it has no solutions modulo 3. For p>4,p even, we use Lemma 5, part (b), to 
construct the following table for the continued fraction expansion of y p2 - 4. 

TABLE 2 

m 
0 
1 
2 
3 

am 

p-i 
i 

(p-4)/2 
1 

K 
P-I 

p 
(p2-2p-2)/2 

(p2-2)/2 

K 
1 
1 

(p-2)/2 
pll 

Now (A3, k3) is a solution of x2 - (p2 -4)y2 = 1, but, as is easily verified, none of the pairs 
(hm,km), 0 < m < 2 , is a solution of (3.8). Hence, by the same reasoning as before, (3.8) has no 
solutions for p > 4, p even. This completes the proof of Theorem 6. • 

Our attempts to obtain analogs of Theorems 5 and 6 for q*±\ have, to this point, been 
unsuccessful. This will continue to be the subject of our endeavors. 
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