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PROBLEMS PROPOSED IN THIS ISSUE 

H-570 Proposed by H.-J. Seiffert, Berlin? Germany 
Show that, for all positive integers n: 

2n-l 

(a) ?-%„_,= £ i-V[\2\ 
5j(2n-k-l 

(b) ?-%„= t (-Ht\ 
k=0 

5\2n-k 

Two closely related identities were given in H-518. 
H-571 Proposed by D. Tsedenbayar, Mongolian Pedagogical University, Warsaw, Poland 

Prove: If (Taf)(t) = talt
Qf(s)ds with a e R, then 

(3?/)(0 = 7^ f V + 1 -^x+lT~lf(s)ds> for a * - l , 

and 

<xm=i^wX HTf(s)ds'for a=-1-
Remark: If a = - 1 , then T_x is a Cesaro operator; if a = 0, then T0 is a Volterra operator. 

A Correction: 
H-568 Proposed by N. Gauthier, Royal Military College of Canada, Kingston, Ontario 

The following was inspired by Paul S. Brackman's Problem B-871 (Vol. 37, no. 1, February 
1999; solved Vol. 38, no. 1, February 2000). 

"For integers n,m>l, prove or disprove that 

^ • ^ j ! ^ 1 " - ^ 1 

is the ratio of two polynomials with integer coefficients, 

2001] 91 



ADVANCED PROBLEMS AND SOLUTIONS 

fm{n) = Pm{n)IQM, 
where Pm(n) is of degree [^f J in n and Qm(n) is of degree [_f J; determine Pm(ri) and Qm(n) for 
l<w<5 . " 

SOLUTIONS 
A Piece of Pi 

H-558 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 37, no. 4, November 1999) 

Prove the following: 

* = Z(-1)w{6^iow+i-6^1ow+3-4^ow+5-6^1o+7 + 6^0„+9}, where £m = a~m/m. (*) 

Solution by the proposer 
Looking at the form of the series expression, it is evidently composed of decisections of the 

logarithmic series. We begin with the definitions: 

Fr{z)^fJzw"^l{\0n+r), r = 1,2,...,10, \z\ < 1. (1) 
/?=0 

Note that Fr(0) = 0 and Fr'(z) = Zto ^°"+r~l = ^ ' (l ~ ̂ °) - Luting 0 = exp(/> / 5) (a tenth root 
of unity), we find, using residue theory (or otherwise), that Fr'(z) = l / 1 0 Z J t i i ^ ( r " 1 ) ( l - ^ ) " 1 ; 
then, by integration, 

10 
Fr(z) = -l/loY,0~krlog(l-x0k). (2) 

k=\ 

The following transformation is implemented, valid for all complex z = re1*: 
Logz = logr+i<f>. (3) 

Here, "Log" designates the "principal" logarithm, with -n<<h<n\ r = \z\, <f> = Argz. We also 
note that 2cos(;r/5) = a, 2cos(2/r/5) = -fi = l/a, and we let Sj denote sin(JK/5), j = 1,2. We 
readily find that 2sx = (V5 / a)112 and 2s2 = (aj5)m = 2asx. After a trite but straightforward com-
putation, we obtain the following expressions: 

Fx{z) = aA(x, a) + fiA(x, fi) + B(x) + ̂ C(x) + «%£>(*), (4) 
where 

A(x,c) = l/20log{(l + cx + xz)/(l-cx + x1)}, 5(x) = l/101og{(l + x ) / ( l -x )} , 
C(x) = l/5tnn~l{2xsl/(l-x2)}, D(x) = l/5tm~1{2xs2/(l-x2)}; 

F2(x) = aP(x, a) + fiP(x, fi) + Q(x) + ̂ ( x ) + ̂ ( x ) , (5) 
where 

P(x, c) = l/201og(l + cx2 + x4), Q(x) = - 1 / 101og(l-x2), 
U(x) = l/5tan"1{2x251 /(2 + ax2)}, V(x) = II 5t^nl{2x2s2 1(2+fix2)}; 

F3(z) = fiA(x9 a) + a A(x, fi) + B(x) + s2C(x) - sxD(x); (6) 

F4(x) = fiP(x, a) + aP(x, fi) + Q(x) -s2U(x) + SlV(x); (7) 
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F5(z) = -2A(x,a)-2A(x,B) + B(x) = V10\og{(l + x5)/(l-x5)}; (8) 
F6(x) = fiP(x, a) + aP(x, B) + Q(x) + s2U(x) - SlV(x); (9) 
F7(z) = BA(x, a) + aA(x,B) + B(x)-s2C(x) + slD(x); (10) 
Fs(x) = aP(x, a) + BP{x, B) + Q(x) - SlU(x) - s^(x); (11) 
F9(z) = aA(x, a) + BA(x, B) + B(x) - ^C(x) - %D(x); (12) 
Fw(x) = -2P(x, a)-2P(x, B) + Q(x) = -1 / 101og(l - x10). (13) 

Next, we note the following: Fl(x) + F3(x) + F1(x) + F9(x)=2A(x, a)+2A(x,B) + 4B(x). Then, 
using (8): 

G(x) = 6{F!(JC) + F3(x) + F7(x) + F9(x)} - 4F5(x) 
= 12A(x, a) + l2A(x, B) + 24B(x) + SA(x, a) + SA(x, B) - 4B(x) 
= 20{A{x, a) + A(x, B)+B(x)} 
= log{ {(1 + ax + x2)(l+j3x + x2)(l + x)2} I {(1 - ax + x2)(l - Bx + x2){\ - x)2}} 
= log{{(l + x + x2 +x3 + x4)(l + x)2}/ {(l-x + x2 + x3 -x4)/(l-x)2}} 
= log{(l-x5)(l + x)3/[(l-x5)(l-x)3]}. 

Thus, G(ix) = -\og{(\+ix5)/(l-ix5)} + 3\og{(l+ix)/(l-ix)}, i.e., 

SiF^ix) + F3(ix) + F,(ix) + F9(ix)} - 4F5(ix) = -2 / tan-1 x5 + 6/ tan-1 x. (14) 

The left side of (14), employing the series definitions, becomes 
oo 

' Z (-WitelOn+lix) ~ 6£10n+3 (X) ~ ^Hto+sOO + 6*10«+7 (*) " 6e 1Qn+9 (x)}, 

where em(x) -xm Im. We see that, in order to prove the desired identity (*), it suffices to show: 
-\m'\a'5) + 3wr\a"1) = nil. (15) 

If> = tan"1^- 1), then 
tan(3p) = (3 tan<p - tan3 <p) I (1 - 3 tan2 q>) = (3a2 -1) / (a3 - 3a) = (3a + 2) / (1 - a) = -a 5 . 

Thus, 3<p - n- tan_1(a5) = zr-(^/2-tan-1(a"5))? which is (15). Q.E.D. 

Also solved by R Martin amdH.-J. Seiffert 

SUM Formulae 

H-559 Proposed by K Gauthier, Royal Military College of Canada 
(Vol 38, no. 1, February 2000) 

Let n and q be nonnegative integers and show that: 

„ f v = f 1 H)q+1nLq„. 
a ' *"W- fc412cos(2^/») + (-ir1Z2 ( ? SF2qFqn ' 

n | 

^ 0 . 8 s i n 2 ( 2 ; * / ^ + i ^ 

Z,„ and F„ are Lucas and Fibonacci numbers. 

lq 

"kg, -, wodd, 
FlqLlqFqnLqn ' 

nL„„ 
n even. {FlqLvqFqn ' 
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Solution by K-J. Seiffert, Berlin, Germany 
Let n be a positive integer. Differentiating the known identity [ see I.S. Gradshteyn & I. M. 

Ryzhik, Table of Integrals, Series, and Products, 5th ed., p. 41, eqn. 1.394 (New York: Acad. 
Press, 1994)] 

J\(x2 +l-2xcos{27tk In)) ={xn -If 
k=l 

logarithmically gives 
y 2x - 2 cos(2;zfc / n) = 2nxn~l 

t?lx2 + \-2xcos(2nkln) xn-l ' 

Multiplying by x and then subtracting n from both sides of the resulting equation yields 
^ x2-l xn + l 
> —= -n . 
^ x 2 + l-2xcos(2;z&//2) xn - 1 

It now easily follows that 
y 1 = nxQf + 1) m 
^l2cos(27rk/n)-x-l/x (1 -x2)(xn-1)? V ; 

valid for all real numbers x such that x ^ 0 and x ^ 1. 
Taking x = (a I@)q, q eZ, and q * 0, and using the known Binet forms of the Fibonacci and 

the Lucas numbers, we easily obtain the desired equation of the first part. 
Replacing x by —x in (1) and subtracting the so obtained identity from (1) gives 

^ 2x + 2/x nx [ V + l [ {-x)n + i\ 
^lAco^(27ikln)-{x + llx)2~ l-x2\xn-l ( - x ) w - l / 

Since cos2(2^fcIn) - 1- sin2(2;r&In), after some simple manipulations, we find that 

T(xV=f I = ™* (jf+i c-xy+i) 
nK }' £t0.8sin2(2^//i) + 0.2(x-l/x)2 0.4(x4-l)l,xw-l ( - x ) " - l / 

valid for all real numbers x such that x ^ 0 and x ^ 1. Hence: 

rpf x nx2(x2" + l) .~ . , , rpf v /ix2(xw + l) .~ . 
m ) = — , A w ?„—r if^isodd; Z,m = — , , v

 w / — - if» is even. nX J 0.2(x4-l)(x2w-l) "K J 02(x4-l)(xn-l) 
Taking x = (-al fi)q, q eZ, and q^O, one easily deduces the requested equations of the 

second part. Q.E.D. 
Also solved by P. Bruckman and the proposer, 

A Complex Problem 

H-560 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 38, no. 1, February 2000) 

Define the sequences of Fibonacci and Lucas polynomials by 
F0(x) = 0, Fl(x) = l, Fn+l(x) = xFn(x) + Fn_l(x), neN, 

and 
L0(x) = 2, Ll(x) = x, Ln+1(x) = xLn(x) + Ln_1(x), neN, 
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respectively. Show that, for all complex numbers x and all positive integers n, 
[it/2] 

k=0 
and 

[nil] / _ , x 

Solution by Paul S. Bruckman, Berkeley, CA 
We begin with the following well-known explicit expressions for Fn(x) and Ln(x), namely, 

FH(x) = (aH-n/(<z-fi), LjLx) = a»+fi», « = 0,1,2,..., (1) 
where 

a = a(x) = (x + 6)l2, fi = fi(x) = (x - 0) 12, (2) 
6=0(x) = (x2 + 4)1/2 = a-/3. (3) 

Next, we make the following definitions: 
[n/2] 

Gn{y)=YJr,l(n-kyn_kCk-yk, (4) 

where rCs is the combinatorial symbol commonly known as V choose 5," i.e., (£). 
Then, if C/M(x) and Fw(x) denote the first and second sum expressions, respectively, given in 

the statement of the problem, we obtain 
[n/2] 

U„(x) = d-lYdn/(n-k).„_kCk-xk(a3k-f}3k),or 

U„(x) = e-\Gn(a3x) - G„(J33x)). (5) 
Similarly, 

V„(x) = G„(a3x) + G„(P3x), (6) 

where we also make the following definitions: U0(x) = 0, V0(x) = 2. 
Next, we form the following generating functions: 

R(z,x) = ftU„(xy, S(*,x) = i X ( * y , (7) 

nz,y) = fjG„(y)z". (8) 

We see that 
R(z, x) = (Tl{T(z, xa3) - T(z, xfi3)}, 
S(z, x) = T(z, xa3) + T(z, xfi3). 

We obtain a closed form expression for T{z, y) as follows: 

T(z,y)= fd{n + 2k)l{n + k)n¥kCiz^7ky* 
n,k=0 

= t r,+kCkz"(z2yf + f) £ ^Ct.ftfyf 
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= 0+*V) I n+kCkz\z2y)k = (\+z2y) I-„-iQz"(-zV)fc 

w, Ar=0 n, k=0 

= {\+z2y)^(\-z2yr-l = (\ + z2y)(\-z2yr\\-zl(\-z2y)Y\ 
n=0 

or 
T(z,y) = (l + z2y)/(l-z-z2y). (10) 

Then 
7(z,a3x) = (l + z 2 a 3 x) / ( l -z-z 2 a 3 x) ; (11) 

T(z, 03x) = (1 + z2/?3*) / (1 - z - z2p2x). (12) 

We now note that (1 -za2)( l + zax) -1 + za(x-a)-z2a3x = 1+zafi-z2a3x = 1 - z - z 2 a 3 x . 
Similarly, we find that (1 - zj32)(\ + z/?x) = 1 - z - z2/33x. We may also verify the following: 

T{z,a2z) = -\ + {\-za2yl + {\ + zaxTl; (13) 

T{z,p2z) = -1 + 0-z/?2)-1 +(l+zyfo)-1. (14) 

Then, by expansion in (13) and (14): 

T(z, a3x) = 1 + X ("2" + (-x)"a")z"; 
n=l 

7(z, y93x) = 1 + £ (yf?2" + (-xy/}")z". 

Now, using (9), we see that R(z, x) = 0~l Y?n^zn{a2n -J32" + (-x)"(a" -0")}, or 

R(z,x) = fiz"{F2n + (-x)"Fn}. (15) 
n=0 

Likewise, S(z, x) = 2 + 2 £ , z"{a2n ->02" + (-x)"(a" +/?")}, or 

S(z,x) = 2 + fjz"{L2„ + (-xyLn}. (16) 

Comparing the coefficients of z" in (15) and (16) with those in (7) yields the desired results: 

U„(x) = F2n+(-xyF„, Vn(x) = L2n + (-xyL„, 71 = 1,2,... Q.E.D. (17) 

Note: The Fibonacci polynomials are defined provided x 2 + 4 ^ 0 , i.e., x^+2i. However, we 
may extend the definition of these polynomials to such exceptional values using continuity, i.e., by 
defining F„(2i) = ni"-1, Fn{-2i) = n{-if-1. We also obtain Ln(2i) = 2i", Ln(-2i) = 2{-i)n. With 
such definitions, we find that the results of the problem are indeed true for all complex x, includ-
ing these exceptional values. 
Also solved by A. J. Stam and the proposer. 

•!• • ! • • ! • 
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