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1. INTRODUCTION 

Let R(N) be the number of representations of the natural number N as the sum of distinct 
Fibonacci numbers. The values of R(N) are well recognized as the coefficient of xN in the 
infinite product Titii1 + *F|) = 0 + *)(1 + *2)(1 + x3)(l + x5) — = 

l + lx1+x2+2x3+x4-f2x54-2x6+x7+3x8+2x9+2x1 0 + ---. (1) 

Combinatorially, each term R(N)xN counts the R(N) partitions of N into distinct Fibonacci 
numbers. Some of the recursion properties of this sequence are investigated in [2]. The diffi-
culties in producing this sequence are more computational than analytic in that usual generation 
methods quickly consume computer resources. 

Our major interest is in the related sequence 1, 3, 8, 16, 24, 37, ..., An^ whose rfi term is the 
least N such that n = R(N), emphasized in boldface in (1) above. The general term of this 
sequence (see [8]), designated A013583 in Sloane's' on-line database of sequences, is still 
unknown. The 330 terms found in this note almost triple the 112 terms reported by Shallit [8]. 
Carlitz [3, 4], Klamer [7], and Hoggatt [4, 6], among others, have studied the representation of 
integers as sums of Fibonacci numbers and particularly Zeckendorf representations. The Zecken-
dorf representation of a natural number N uses only positive-subscripted, distinct, and non-
consecutive Fibonacci numbers and is unique. We have used the Zeckendorf representation of N 
to write R(N) in [1] and [2]. 

2. APEEKATA013583FIRST 

Let us begin by listing the terms of A013583 that we have computed. We will note very 
quickly why this sequence is so intractable. Table 1 lists 46 complete rows with 10 entries per 
row. The first 33 rows have no missing sequence terms; hence, 330 complete sequence terms. 
The first missing entry appears in the 34th row as the yet unknown 331st term. While there are 
necessarily missing terms in at least some of the remaining rows, there are also many useful cal-
culated sequence terms. Our computer output concluded with a partial 47th row with 5 unknown 
entries followed by the 446th sequence term, 229971. 

OO 

3. SOME OBSERVED AND COMPUTATIONAL PROPERTIES OF J"](l +JCF') 

When n*L2(1 + x F 0 'ls expanded, the terms are partitioned according to sets of palindromi-
cally arranged, successive R(N) coefficients. For this reason, we refer to it as the palindromic 
sequence. The first few terms are given in (2) below. 
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TABLE 1, Terms of Sequence A013583 (Index 1 through 330 complete) 
1 

152 
440 
1160 
2736 
4511 
7218 
7310 
7925 
11724 
19154 
18905 
20701 
20730 
30529 
53712 
49502 
50002 
49387 
54555 
79481 
124506 
80971 
79646 
125132 
129551 
129242 
129347 
142877 
201306 
131182 
140531 
217174 

208524 
212323 
227107 

229696 

3 
160 
647 
1147 
1867 
3032 
4917 
7213 
11593 
12669 
12101 
18871 
30579 
30414 
30969 
30524 
33574 
49489 
49667 
51222 
81141 
54293 
80086 
79879 
87694 
82937 
87817 
87126 
129326 
140539 
140298 
134104 
129313 
212192 
209396 
208511 
209210 
212260 
231102 
226968 

217153 
230034 

8 
168 
1011 
1694 
2757 
6967 
4621 
7831 
18154 
12106 
20358 
46913 
18866 
30689 
30422 
49104 
49159 
53683 
53534 
56152 
79874 
81078 
131203 
54288 
82950 
128614 
128703 
87736 
128598 
129318 
142238 
141895 
211980 
209668 
142123 

217119 

217148 
230416 

16 
249 
673 
1155 
2744 
4456 
4854 
8187 
7912 
11661 
12711 
19557 
20832 
30359 
20735 
49201 
49112 
49366 
53670 
54521 
51264 
87927 
79942 
79984 
129538 
124417 
128831 
131177 
131190 
130025 
129305 
201314 
142225 
209087 
209634 
209299 
210396 
208519 
216881 

226942 
229992 

24 
257 
723 
1710 
2841 
3024 
4904 
7488 
11813 
12656 
12800 
19138 
21018 
30977 
30511 
33705 
31681 
49120 
53589 
51272 
79463 
80073 
82513 
79929 
86694 
130999 
129224 
87825 
134049 
140154 
140264 
134193 
142411 
140259 
209074 
212268 
227395 
217436 
210388 
226929 
230123 

229979 

37 
270 
715 
1702 
2990 
4477 
7179 
7205 
11682 
12093 
19099 
18858 
19578 
20743 
33176 
31689 
50091 
49222 
50107 
53581 
86241 
79476 
124433 
129221 
79921 
86686 
130004 
129216 
128873 
146927 
133494 
140251 
208244 
140971 
227408 
142136 
226777 
209257 
237867 

228107 

229971 

58 
406 
1066 
2647 
2752 
4616 
7166 
11614 
11653 
18151 
20756 
19476 
47434 
47418 
30694 
47523 
49358 
49408 
54178 
124519 
53573 
80366 

124378 
82840 
86749 
128593 
82945 
130910 
129208 
140243 
142848 
142094 
209058 
141856 

211985 

142128 
217114 

63 
401 
1058 
1846 
2854 
4451 
4896 
7480 
11619 
12648 
18761 
31134 
20463 
30503 
34684 
33108 
33278 
33553 
49400 
79607 
53848 
79853 
79913 
80361 
87131 
87673 
128606 
201246 
87838 
202466 
141861 
209286 
208037 
142089 
209121 
209676 
227345 
209401 
230958 
209231 
217161 
230136 

97 
435 
1050 
1765 
2985 
7349 
7200 
7815 
7920 
18795 
18850 
20502 
20696 
47507 
47795 
49405 
33616 
49497 
50989 
49392 
54327 
82856 
124522 
129292 
131897 
142699 
129546 
133499 
129352 
142882 
216776 
208414 
209252 

209236 

227112 

105 
448 
1092 
1854 
3019 
4629 
7247 
7857 
11669 
12792 
12813 
19565 
20777 
30702 
31676 
33286 
33561 
49434 
53615 
53856 
54225 
54280 
81073 
82882 
87681 
88016 
129402 
130012 
129250 
134185 
142780 
140958 
134206 
142170 
208079 
209409 
227010 
209218 
217195 
228094 

229704 

228099 
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[Ix1] + x2 + [2x3] + x4 + [2x5 + 2x6] + x7 + [3x8 + 2x9 + 2x10 + 3xl l] + x12 

+ [3x13 + 3x14 + 2x15 + 4x16 + 2x17 + 3x18 + 3x19] + x20 + [4x21 + 3x22 + 3x23 

+ 5x24 + 2x25 + 4x26 + 4x27 + 2x28 + 5x29 + 3x30 + 3x31 -l- 4x32] + x33 + [4x34 (2) 
+ 4x35 + 3x36 + 6x37 + 3x38 + 5x39 + 5x40 + 2x41 + 6x42 + 4x43 + 4x44 + 6x45 

+ 2x46 + 5x47 + 5x48 + 3x49 + 6x50 + 3x51 + 4x52 + 4x53] + x54 + [5x55 +. . . 

Throughout this paper, we use the floor symbol L*J to denote the greatest integer < x and 
the ceiling symbol [x] to denote the least integer > x. 

Square brackets identify coefficient palindromes. Palindromic sections share external boun-
daries of the form lxN, N = Fn-l9 consistent with R(Fn -1) = 1 given in [3]. For data-handling 
and computation, we omitted the overlapping terms with unit coefficients and partitioned the 
expansion into palindromic sections which we call ^-sections. The first term of a Ar-section is 
l(k + 2)/2jxN,N = Fk+2, and the last term is l(k + 2)/2]xN, N = Fk+3-2. In (2), observe 
coefficients [3 2 2 3] (for k = 4) starting with x8. 

Since the second half of a ^-section adds no new coefficients but merely repeats those of the 
first half in reverse order, we use yi-sections. If the number of terms is odd, we include the 
center term, which becomes the last term of the y^-section. The coefficient of the last term of the 
yA>section is always a power of 2. 

The value of these central coefficients can be established using identity (3), which can be 
proved using mathematical induction. 

IX-+1 = F3p+l + i v 2 + . - +F7 + F4 = (F3p+3 - 2 ) 12. (3) 

Thus, 

4t F*A = 2P~lR(F4) = 2P = R((F3P+3" 2 ) / 2 ) W 
by repeatedly applying R(Fn+3+K) = 2R(K), Fn<K< Fn+l, and R(F4) = 2 from [2]. 

Take k = 3p-l. The powers of x on the left and right internal boundaries of the ^-section 
become F3p+l and F3p+2-2, and the central term has exponent (F3p+l + F3p+2-2)/2 = (F3p+3-
2) / 2, which is an integer since 21 F3p, and the coefficient is 2P by (3) and (4). 

Next, take k = 3p. The central pair of terms have exponents of x given by (F3p+4 - 2 -1) / 2 
and (F3p+4 - 2 +1) / 2, which are integers since F3p+4 is odd. We can establish the values of A and 
B below by mathematical induction: 

^ + 2 + V l + ""+F^^5 = (i73p+4-3)/2=: Ĵ (5) 

V + V l + ,"+i78+f5+^2 = ( V 4 - 1 ) / 2 = 5 ' (6) 
By again applying R(Fn+3 + K) = 2R(K) and R(F4) = 2 to (5) and (6), 

R(A) = 2p~lR(F5) = 2^1(2) = 2P, (7) 
R(B) = 2pR(F2) = 2'(1) = 2p, (8) 

sothati?{^) = i?(5) = 2^. 
In the same way, when k = 3p + l, the two central terms have equal coefficients given by 2P. 

This establishes 2 ^ as the coefficient of the right boundary of a -j^-section for all k. 
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Also from [2], we can apply R(Fn) = [n/2] = R(Fn+1-2) to the first and last terms of the 
bracketed palindromic sequences, and R(Fn -1) = 1 explains the overlapping external boundaries 
of the ^-sections. 

The only practical way available at present to find the y* term of A013583 is to search for 
the first appearance of j as a coefficient in the palindromic sequence and to record the corre-
sponding exponent of x as the 7* term in A013583. Table 2 lists numerical properties of k-
sections useful for setting up and checking our computational procedures. 

TABLE 2, Numerical Parameters of Palindrome Sequence (1 < k < 26) 

m E H H H H m H H 10 11 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

4 
7 
12 
20 
33 
54 
88 
143 
232 
376 
609 
986 
1596 
2583 
4180 
6764 
10945 
17710 
28656 
46367 
75024 

1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 
11 
11 
12 
12 

2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 
2584 
4181 
6765 
10946 
17711 
28657 
46368 
75025 

1 
2 
2 
2 
4 
4 
4 
8 
8 
8 
16 
16 
16 
32 
32 
32 
64 
64 
64 
128 
128 
128 
256 

2 
3 
5 
9 
16 
26 
43 
71 

115 
187 
304 
492 
797 
1291 
2089 
3381 
5472 
8854 
14327 
23183 
37511 
60695 
98208 

1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 
11 
11 
12 
12 

2 
3 
6 
11 
19 
32 
53 
87 
142 
231 
375 
608 
985 
1595 
2582 
4179 
6763 
10944 
17709 
28655 
46366 
75023 
121391 

2 
4 
7 
12 
20 
33 
54 
88 
143 
232 
376 
609 
986 
1596 
2583 
4180 
6764 
10945 
17710 
28656 
46367 
75024 
121392 

0 
1 
2 
4 
7 
12 
20 
33 
54 
88 
143 
232 
376 
609 
986 
1596 
2583 
4180 
6764 
10945 
17710 
28656 
46367 

0 
1* 
1 
2 
4* 
6 
10 
17* 
27 
44 
72* 
166 
188 
305* 
493 
798 
1292* 
2090 
3382 
5973* 
8855 
14328 
23184* 

24 121392 13 121393 256 158904 13 196416 196417 75024 37512 
25 196417 13 196418 256 257113 13 317809 317810 121392 60696 
^6 317810 14 317811 512 416019 14 514227 514228 196417 98209 
J_ 
T 

Value of fc. k 
Power of x of left external boundary of k- or | ^-sections. F*+2 — 1 
Integer coefficient of left interior boundary of k- or | A;-sections. | _ ^ J 

10 

Power of x of left interior boundary of fc- or |&-sections. 
Integer coefficient of right boundary of |fc-section. 
Power of x of right interior boundary of |&-section. 
Integer coefficient of right interior boundary of fc-section. 
Power of x of right interior boundary of ^-section. 
Power of x of right exterior boundary of fc-section. 
Number of terms in fc-section. 

11 J Number of terms in |&-section. When I 10 I is odd, * indicates 
|fc-section ends with unique center term of the ^-section. 

Ffc+2 
2L^J 

F*+3 - 2 
F/t+3 — 1 
Ft+i - 1 
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4. SUCCESSIVELY BETTER WAYS OF GETTING DATA FROM J J (1 + xF*) 
i=2 

For small ^-sections we inspected each successive printout by hand to select the first occur-
rence of each coefficient value. We found the first 112 terms in computing for k < 18. 

For further reduction in data handling we described the entries of ^-sections as {coefficient, 
power of x) pairs. Since only the unique {coefficient, smallest power of x for that coefficient} 
pairs from each ^-section qualify as potential pairs for A013583, we eliminated all pairs with 
duplicate "coefficient" portions except that pair with the least power of x. At the same time, the 
surviving pairs per y^-section emerge sorted by increasing coefficient size. 

As an example, each line of (9) contains ^-section data, reduced and sorted as suggested. 
By suppressing the pairs that do not qualify, the highlighted {coefficient, powers of x} pairs for 
A013583 aire immediately evident. 

{ { M » , * = l 
«293}},£ = 2 
{{2,5}}, k = 3 
{{2,9}, {3,8}}, k = 4 
{{2,15},{3,13},{4916}},^5 (9) 
{{2,25},{3,22},{4,21},{5924}},* = 6 
{{2,41}, {3,36}, {4,34}, {5,39}, {6? 37} }, k = 7 
{{2, 67}, {3,59}, {4,56}, {5,55}, {6,60}, {75 58}? {% 63} }, k = 8 
{{2,109}, {3, 96}, {4, 91}, {5,89}, {6,98}, {7,94}, {8, 92}, |99 97}9 {10,105}}, k = 9 

Howerver, we were at the memory limit of our personal computer. We had to find new Fibo-
nacci approaches to continue. When we found a way to let the indices of the Fibonacci numbers 
guide the computations in place of the Fibonacci numbers themselves, we had a fresh start with 
tremendously reduced computational requirements. The interaction between the Fibonacci num-
bers and their integer indices here is not the same as the divisibility properties noted in the many 
past studies of Fibonacci entry points and their periods. We needed formulas developed in [2] 
relating R{N) to the Zeckendorf representation of N. By looking deeper into the structure of 
Fibonacci indices, we removed a core of redundancy to speed up and shorten our calculations and 
developed, an improved way of assembling data and discarding duplicate data. We proceeded to 
calculate the remainder of the 330 terms of A013583 that you see in this paper. Even with our 
best available computation techniques, described below, we found size and time requirements to 
be impracticable for calculations beyond k = 25. 

5. EXPLORING NEW WAYS TO FIND COEFFICIENTS OF ^-SECTIONS 

Since the combinatorial interpretation of the coefficients of the palindromic sequence is the 
number of partitions of the power of x into distinct Fibonacci members, we explore that point of 
view. We will use results of selected numerical examples to imply a general case. In the partial 
expansion of I I ^ O + xF0 'm (2)> w e observe the term 4x43, which tells us there are 4 partitions of 
43 into distinct Fibonacci numbers. As is well known, 43 has the unique Zeckendorf representa-
tion, 43 = F9 + F6 + F2 = 34 + 8 +1, where we rule out adjacent Fibonacci indices. As additional 
visual information, F9 = 34 is the power of x of the left boundary of the ^-section to which 43 
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34 
13 21 

5 8 21 
2 3 8 21 

Fn 
F5 F6 

F3 F4 F6 

F9 
F* 
Fs 
Fs 

7 
5 6 

3 4 6 

9 
8 
8 
8 

belongs, and Fk+2 =F9 = 34 is the only Fibonacci power of x in its ^-section, thus, k = 7. In 
general, we can represent any power in a ^-section by its Zeckendorf representation which starts 
withi^+2. 

In [5], Fielder developed new Mathematica-oriented algorithms and programs for calculating 
and tabulating Zeckendorf representations and calculated the first 12,000 representations. We im-
bedded the algorithms in our work where needed. Reference [5] and Mathematica programs are 
available from Daniel C. Fielder. The indices in the Zeckendorf representation of an integer N 
give formulas for finding R(N), as reported in [2]. We next describe how the indices are applied 
to our computer programs. 

We noted earlier that the power of x of the first term of a ^-section is not only a predictable 
Fibonacci number, but is the only power of x in that ^-section which is a Fibonacci number. 
Because of the Fibonacci recursion, Fn+2 = Fn+l+Fn, it is very easy to partition any Fibonacci 
number into distinct Fibonacci members. As an example, we represent the partition of F9 = 34 as 
successive triangular arrays in (10): 

(10) 

The first array consists of the partition integers, the second consists of the Fibonacci number sym-
bols with subscripts, and the third consists of Fibonacci indices only. 

The enumeration of sequence subscripts for powers in general involves interaction among the 
restricted partitions of the several Fibonacci numbers used in the Zeckendorf representation. 
Computations controlled by the indices of the right array have advantages of symmetry. For 
example, the left-descending diagonal will always consist of all the consecutive odd or even inte-
gers starting with the index of the Fibonacci number to be partitioned. (Recall that we do not 
admit a 1 index.) Once the diagonal of odd (or even) indices is in place, the remaining column 
lower entries are all one less than their diagonal entry. The number of restricted partitions is the 
floor of half the largest index. In the example, |_f J = 4 partitions. If the power of x were the 
single Fk+2, the number of partitions and, thereby, the coefficient would be [ ^ J -

When we consider our example 43 = F9+F6 + F2, we represent the individual partitions as 
three triangles of Fibonacci indices with the Zeckendorf Fibonacci indices as apexes. (The order 
from low to high is a computational preference.) 

2 6 9 
4 5 7 8 (11) 

2 3 5 5 6 8 u i ; 

3 4 6 8 
By distributing each set of rows over the others, 12 sets of indices are found as the Mathematica 
string: 

{9, 6,2}, {9,4,5,2}, {9,2,3,5,2}, {7,8,6,2}, {7, 8,4,5,2}, {7,8,2, 3,5,2}, 
{5,6,8,6,2}, {5,6,8,4,5,2}, {5,6,8,2,3,5,2}, {3,4,6,8,6,2}, (12) 
{3,4, 6,8,4,5,2}, {3,4,6,8,2,3,5,2}. 
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Each set of indices of (12) evokes a partition of 43 into Fibonacci numbers having those indices. 
There are 1x3x4 = 12 such partitions. Thus, we can use Zeckendorf representations both to 
count and to name partitions consisting solely of nonzero Fibonacci numbers. The results in (12) 
also suggest a very simple way to find the coefficients of the expansion n^ 2 t 1 / (1 - *^)]. 

Our first computational improvement over direct expansion of (1) is given by our Mathemat-
ica program 10229601.ma. This program accepts 43, the power of x, and returns the coefficient 
4 by using the equivalent of (11) to find (12) and then discarding sets with duplicate indices. The 
4 sets of indices counted by 10229601.ma in the example are: 

{2, 6, 9}, {2,4,5, 9}, {2, 6, 7,8}, {2,4,5, 7, 8} (13) 

By using 10229601.ma in a loop, selected ranges of powers can be probed for power-coefficient 
pairs. 

As the size of the powers increased, however, even 10229601.ma could not match the 
demands on it. This is because the distribution of indices in 10229601.ma takes place over all 
triangles, and memory is not released to be used again until the end of the computations. As an 
improvement, we distributed the index integers over the first two triangles on the right and elimi-
nated sets with repeated integers. We applied this result to the next triangle alone, make the 
reductions, and repeated the process over the remaining triangles one at a time. The memory and 
time savings were substantial. In spite of the new computational advantages, the distribution was 
still over all of each triangle. With full triangle distribution, however, it is possible that there may 
be partitions with arbitrary length runs of repeating index integers. Since we want to count parti-
tions with no repeating members, producing partitions through full distribution is not an optimum 
strategy. 

Our next improvement restricted repeating members to a fixed and predictable limit per parti-
tion. We retained our earlier size order of the index triangles and eliminated enough lower rows 
so that the smallest member of a higher-order triangle is either equal to or just greater than the 
largest (or apex) member of its immediate lower-order neighbor. For illustration, we show the set 
of'partial index triangles obtained from suitable modification of (11): 

2 6 9 
4 5 7 8 (14) 

2 3 5 
Now, when distribution is made over all partial triangles, triple or higher repeats of individual 

integers cannot occur. The only possibility of a repeated integer lies between the least integer of a 
triangle and the greatest integer of its immediate left neighbor. This means that when repeats 
occur, there is at most one pair of those integers per partition. In fact, if each Zeckendorf repre-
sentation index differed from the preceding index by an odd integer, there would be no repeating 
partition members, and the distribution operation on the partial triangles would immediately yield 
the integer indices of the desired set of Fibonacci partitions. 

As proved in [2], R(N) can be written immediately by repeatedly applying the formulas: 
R(Fn+2k+l+K) = (k + l)R(K), Fn<K<Fn^ (15) 

R(Fn+2k+K) = kRW + RiF^-K-l). (16) 

In our example, the distribution and reduction process yield integer sets {2,6}, {2,4,5} from 
the first two reduced triangles. The process continues to the third partial triangle and produces 
the final {2,6,9}, {2,4,5,9}, {2,6,7,8}, {2,4,5,7,8}. Our program 10229601 .ma incorporates 
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the concept of partial triangles along with previous improvements. It was the first sufficiently 
robust program for handling k values of 24 and especially 25, necessary to obtain coefficients 
from the palindromic sequence to complete the last of the 330 terms of A013 583. Next we study 
the 330 terms from Table 1. 

16 
17 
18 
19 
20 
21 
22 
23 

987 
1597 
2584 
4181 
6765 
10946 
17711 
28657 

8 
7 
12 
11 
19 
19 
28 
27 

23 
33 
37 
51 
53 
77 
83 
118 

32 
36 
50 
52 
76 
82 
112 
112 

34 
42 
55 
68 
89 
110 
144 
178 

1 
2 
3 
5 
7 
9 
15 
22 

6. THE 330 PAIRS {#f, AJ SORTED BY INTERVALS 

Returning to Table 1 which lists {n, An} and also gives all known values of An < F2S, we sort 
the data by intervals as given in our ^-sections. In Table 3 we select all {n, A„} such that Fm < 
Ai <Fm+\ anc^ sort by increasing index values. For consistency with the terminology of [1] and 
[2], we take m = k + 2. 

TABLE 3. Indices n for {#*, A^ Sorted by Intervals 
Fm<An<Fm+vU<m<27 

| T ] [ T ] [ T ] [ T ] [ T ] [ T ] \T] Missing values for n (partial list) 

33 
37,41 
51,53,54 
53, 59, 61, 66, 67 
77, 82, 83, 85-88 
83,97,99, 101, 103, 106-109 
113, 118, 122, 127, 132-135,137-143 
113,127,137, 139,149,151,153, 
154, 157, 159, 161, 163-164, 
166-167, 171-177 
197, 198, 201-203, 205, 206, 211, 213-219 
221-232 
197, 211, 223, 226, 227, 229, 236, 239, 241, 
244, 249, 251, 253-255, 257, 259, 261, 
263-266, 268-271, 274, 276-287 
278, 291, 298, 309, 314, 318, 319, 
321, 323, 326-329, 331-334, 339, 
341, 342, 344-355, 357-376 
331, 339, 347, 349, 353, 359, 367, 
371, 373, 379, 381, 383, 389, 391, 
394, 396, 397, 401, 402, 404, 406, 407, 
409-413, 415, 417, 419, 421-423, 425-431, 
433-439, 443, 444, 446-465 

Column descriptions: 
1 | Value of rn which defines the interval. 
2 ] Fm 

3 | Number of pairs of {n, An } in interval. 
4 | Smallest index n appearing in interval. 
5 | Every index n less than or equal to this number has appeared by interval's end. 
6 J Largest index n appearing in interval. 

[_7j Number of missing indices less than the largest n in the interval. 

24 

25 

46368 50 113 196 233 27 

75025 43 198 196 288 39 

26 121393 76 197 277 377 52 

27 196418 72 278 330 466 69 
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Notice that the largest index n in each interval is a Fibonacci number or twice a Fibonacci 
number. Ifm = 2p, the largest index is n = Fp+l; if m = 2p +1, n = 2F . 

In every ^-section that we computed beyond k = 12, some indices were missing and appear 
for the first time in a later ^-section. However, the "missing values" appear in an orderly way. 
The indices n = Fp+l -1 and n = 2Fp - 1 always are missing values for the respective intervals 
m = 2p and m = 2p-l. (We note in passing that n = 112 was the highest index available before 
the disclosures of this paper, and m = 20 is complete for n through 112.) 

Putting this all together, the first appearance of n = Fp+l is for An = Fp+i - 1 in the interval 
F2p <An< F2p+l, and the list of indices is complete for n<Fp. The first appearance of n = 2Fp is 
for An =^+3^V_l + (-l)/7+3 in the interval F2p+l < An<F2p+2, and the indices are complete for 
n < 2Fp_2. The first appearances of Fk and 2Fk are discussed in [1]. 

We notice that, if n is the largest index which appears for An in the interval Fm < A^ < Fm+l, 
then the indices n-1, n-2, n-3,...,/?-(Frmi_5-1) are missing values. 

The values for 4 a r e n o t a strictly increasing sequence if sorted by index, as can be seen 
from Table 1. However, if Fp < n < Fp+l, then F2p^ <An< F2p+4. If n is prime, then F2p <An< 
F2p+l or F2p+2 <An< F2p+3. In fact, if n is prime, the Fibonacci numbers used in the Zeckendorf 
representation of An are all even subscripted. 

We found palindromic subsequences and fractal-like recursions in tables of {n,An}. We 
developed many formulas relating R(N) and the Zeckendorf representation ofN, but we still can-
not describe a general term for {w, 4 1 - ^he formulas we developed and the programming data 
we generated each extended our knowledge while suggesting new approaches. Theory and appli-
cation worked hand-in-glove throughout this entire project. 

7. POSTSCRIPT AND AFTERMATH 

After all the 330 consecutive terms and many other nonconsecutive terms of A013583 were 
calculated and recorded, and much of the paper completed, we stumbled onto a very simple 
Ma^fe/waifica-implemented algorithm which uses the combinatorial principle of Inclusion-Exclu-
sion to find the coefficients of Uf=2(l + xF') for powers of x. While too late to help us gather data 
for the 330 terms, it provides a reassuring check on the work already completed, and should 
prove an invaluable aid in our continuing assault on sequence A013583. The Mathematica algo-
rithm implementation is many times faster than that used for getting the 330 terms of A013583. 
Would you believe that a preliminary trial program with the new algorithm verified the coefficient 
of 

961531714240472069833557386959154606040263 

as 147573952589676412928 in 2.62 seconds on a 133-Mhz PowerMac 7200 running Mathe-
matica, version 2.2? Table 2 verifies this result because the power of x is that of column [6] 
for k = 200, while the coefficient matches the known value in column [5] for k = 200 in Table 2. 
Our paper describing the algorithm and its application has been reviewed and accepted for 
presentation at, and inclusion in, the proceedings of SOCO'99, Genoa, Italy, June 1-4, 1999. 
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A short paper outlining the Fibonacci and Zeckendorf algorithms of [5] has been accepted for 
presentation at the Southeastern MAA annual regional meeting in Memphis, TN, March 12-13, 
1999. 

We are also very optimistic about the ongoing development of an algorithm, hopefully with 
Mathematica implementation, which will generate terms of A013583 directly. Preliminary results 
have been most encouraging. The algorithm is based on ideas gathered from this note and refer-
ence [2]. 
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