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1. INTRODUCTION 

In this paper we will consider geometric representations of the iteration of quadratic polyno-
mials modulo p. This is a discrete analog of the classical quadratic Mia sets which have been the 
subject of much study (e.g., [3], [4]). In particular let fdw(u(jt)) denote the function digraph 
which has Xm as vertices and edges of the form (x, u(x)), where x is an element of Zw. This 
digraph geometrically represents the function u(x) and paths correspond to iteration of u(x). 
The function digraphs resulting from squaring mod m, fdOT(x2), have been studied when m is 
prime or has a primitive root (see [1], [2], [5], [10]). In particular, the cycle and tree structures 
have been classified. In [8], these results were generalized from £dp(x2\ to fdp(x^) and a corre-
spondence between geometric subsets of the function digraph and subgroups of the group of units 
was established. Subsequently, most of the results were generalized to general moduli in [12]. 

The aim of our paper is to explore these same ideas for the iteration of general quadratic 
functions instead of powers. In other words, we will consider £d p(aQ •}• atx s-a2x2), where a0, 
ax e Z p and a 2 eZ* . It is easy to enumerate the four function digraphs for p = 29 so we will 
study the case when p is an odd prime. Although these digraphs do not contain nearly as much 
symmetry as the previously studied cases, it is possible to observe some aspects of their structure. 
Consider Figure 1 which shows the digraphs resulting from the iteration of x2 and x2 +1 mod 13. 
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FIGURE 1. The Function Digraphs for x2 smdx2 + 1 Modulo 13 
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Each of those digraphs breaks into three components. In reading the digraphs, note that the cycle 
contained in each component appears at the left and the cycles progress clockwise; that is, u(x) 
appears below x, except for the lowest cycle element where u(x) appears at the top. For 
noncycle elements, u(x) appears to the left of x in accordance with the indicated tree structure. 
Notice that the trees associated with each cycle element are uniform for x2 but not for x2 + l. 
While it seems very difficult to completely determine the tree and cycle structure without enumer-
ating the entire digraph, we can determine various things about the structure. 

In particular, basic results for general function digraphs are given in Section 2. There it is 
established that, from the p2(p-l) function digraphs there are at mostp digraphs distinct up to 
isomorphism. In Section 3 we investigate what appear to be tight bounds on number of cycles of 
a given length. The occurrence of cycles containing exactly one and two elements is completely 
classified. In Section 4 we empirically compare these quadratic digraphs to "random" digraphs 
and this motivates our conjecture that there are exactly p distinct quadratic digraphs mod p 
except, remarkably, for p = 17. The quadratic function x2 - 2 plays a special role in real dyna-
mics [4] and in the theory of Mersenne primes [7], [9]. In Section 5 we investigate the corre-
sponding family of function digraphs fdp(x2 - 2 ) . The geometric form of these digraphs is very 
structured. We will see there are remarkable identities involving geometric position, addition, and 
multiplication for these digraphs that lead to that rich structure. 

2. BASIC RESULTS 

We begin by discussing properties that are common to function digraphs on Zm, and then 
turn to our quadratic function digraphs. 

Proposition 1: Let u:Zm -> Zm be a function. 
(a) The out-degree of any vertex fdm(u(x)) is exactly one. 
(h) The path in fdTO(u(x)) resulting from repeated iteration of any given element will eventually 
lead to a cycle. 
(c) Every component of fdw(u(x)) contains exactly one cycle. 

Proof: 
(a) This follows from the fact that u(x) is a function. 
(b) Since the function maps points in a finite set, any path must eventually return to a pre-

viously visited vertex. 
(c) If a component has more than one cycle, then somewhere on the undirected path 

connecting two cycles there would need to be a vertex with out-degree 2, contradicting (a). D 

Theorem 2: The function digraphs fdm(u(x)) and fdm(v(x)) are isomorphic if and only if there 
exists a permutation r such that r"1 o u o r = v mod m. 

Proof: (=>) Let r denote an isomorphism between fdw(v(x)) and fdw(u(x)); r gives a bi-
jection between the vertices. The isomorphism of edges implies that, for all x eZ m , the edge 
(x, v(x)) in fdw(v(x)) is mapped by r to the edge (r(x),u(r(x))) in fdm(u(x)); hence, u(r(x)) = 
r(v(x)) mod m, which gives r"1 o u o r = v. 
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(<=) Let r denote a permutation such that r_1ouor = v. Now r gives a bijection between 
the vertices; hence, we need to check this bijection respects the edges. Since r"1 o u o r(x) = v(x) 
for all x e Z w , we have u(r(x)) = r(v(x)), which implies that the edge (x, v(x)) in fdm(v(x)) is 
mapped to the edge (r(x), u(r(x))) in fdw(u(x)) as required. D 

Theorem 3: Let m > 3 be odd, and gcd(a2, m) = 1. The quadratic function digraph fdw(a0 + 
ap+ajyp) is isomorphic to the function digraph of the canonical form quadratic f&m(x2+y), 
where y = a^ + 2~1a1 - 2~2a2. 

Proof: First note that since m is odd, 2"1 exists and hence y is well defined. Let u(x) = 
dQ+ciiX+fyx2, v(x) = x2+y, and x{x)-a^x-2~laxa^. Note that a^1 is well defined since 
gcd(a2, rn) = l. By direct computation, we can check r"1 ouQr(x) = v{x) mod m as required. • 

Corollary 4: Let m > 3 be odd. There are, up to isomorphism, at most m quadratic function 
digraphs mod m with leading coefficient relatively prime to m. 

Proof: By Theorem 3, every quadratic function digraph with gcd(a2, m) = 1 in Zm is isomor-
phic to that of a quadratic in the canonical form x2+y. Since there are m distinct quadratics in 
the canonical form, up to isomorphism, there are no more than m quadratic function digraphs mod 
m with leading coefficient relatively prime to m. D 

The proviso on leading coefficients is necessary. For example, when m = 4, the eight poly-
nomials x2, x2 + l, 2x2, 2x2 + x, 2x2+2x, 2x2+3x, 2x2+x + l, 2x2+3x + l all have non-
isomorphic function digraphs. Our interest lies primarily with odd prime moduli. Of course, 
Theorem 3 and Corollary 4 hold for odd prime moduli, p. Hereafter in the paper, we will let p 
denote an odd prime. 

There is a situation when, up to isomorphism, there are fewer than p quadratic function 
digraphs mod p. Figure 2 shows two canonical form function digraphs that are isomorphic mod 
17. However, we conjecture that this is the only example where there are fewer than/? quadratic 
function digraphs; this will be discussed further in Section 4 after we have established certain facts 
about arbitrary digraphs that satisfy the conclusion of the next theorem. This theorem is the first 
that requires the modulus to be an odd prime. 
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FIGURE 2, The Function Digraph fd17(*2 +11) Is Isomorphic to fd17(*2 +14) 
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Theorem 5: Let u(x) be a quadratic function modulo p. In the function digraph fd (u(x)), there 
are exactly ( p - l ) / 2 vertices of in-degree 0, one vertex of in-degree 1, and ( p - l ) / 2 vertices of 
in-degree 2. 

Prtoof: There are (/?-!)/2 quadratic residues and nonresidues mod/?. Note that we need 
only consider the digraphs of quadratics in canonical form. In order to determine the in-degree of 
a vertex y we need to know the number of solutions to y = x2 + y. Note that a vertex has in-
degree 2 if and only \fy-y is a quadratic residue, it has in-degree 0 if and only if y - y is a quad-
ratic nonresidue, and it has in-degree 1 if and only if y - y = 0. Thus, there are exactly (p -1) / 2 
vertices of in-degree 0, 1 vertex of in-degree 1, and (p-l)/2 vertices of in-degree 2. D 

3. CYCLES 

Notice that each element in an w-cycle of fdp(u(x)) must be a solution to the congruence 
uw(x) = x modp, where uw(x) denotes the composition of the function u(x) with itself n times. 
In contrast, we will use u(x)w to denote the w* power of the function u(x). Since the congruence 
un(x) = x has degree 2n when u(x) is quadratic, it is a standard result that there can be at most 
2n solutions since the modulus is prime [11]. Thus, there are at most 2n In cycles of length n. It 
turns out that we can establish a better bound on the number of cycles of length n when n = pe as 
we will see in Corollary 8. A heuristic argument suggests this bound works for general n, and 
empirical evidence indicates the bound is tight. In order to establish the bound, we use the follow-
ing lemma and theorem. We will then consider our heuristic and empirical evidence and finish this 
section by classifying the number of one and two cycles that appear. 

Lemma 6: Let v(x) = x 2 +^ , y G R , and P„(x) = vM(x)-x. Then Pw(x) divides P^(x) as a 
polynomial in R[x]. Moreover, the quotient is in Z[x] if y e Z. 

Proof: Since both Pw(x) and P^(x) are monic, it suffices to show that every complex root of 
P„(x) is also a root of P^x ) with at least as high a multiplicity. Note that if x0 is a root of P„(x) 
then vn(x0) = x0, and hence vkn(x0) = x0, which implies that x0 is a root of P^(x); this takes care 
of the single roots. Note that x0 is a root of P„(x) of multiplicity m if and only if it is a root of 
i^(x)and a root of the derivative of Pw(x) with mul-tiplicity m-l. Using the chain rule repeat-
edly and the fact that v'(x) = 2x, we see that 

Yn(x) = 2nvn"1(x)vw-2(x) ... v(x)x - 1 , 
and hence, 

Pj^(x) = 2knvkn-l(x)vkn-2(x) ...v(x)x-l. 

Now we want to consider the derivative P^Cx) modulo P„(x). Note that by definition vw(x) = x 
mod P„(x)> and hence vjn+i(x) = v'(x) mod P„(x), so that 

P^(x) HE (2nvn-l(x)vn~2(x)... v(x)x)* - 1 mod Pw(x). 

If we let w(x) = 2*vw-1(x)vw-2(x)... v(x)x, then P„'(x) = w(x) - 1 and 

P£X*) s w(x)* - 1 = (w(x) - i)(w(xf-1 + w(x)*-2 + • • • + w(x) +1) 
= ¥&x)(w(x)k-1 + • • • +1) mod P„(x). 
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Now suppose x0 is a root of P„(x) of multiplicity m, and hence is also a root of P„'(#) of multi-
plicity i n - 1 . By the above, it is also a root of P^(x) of multiplicity m-1 and hence is a root of 
i^w(x) of multiplicity m. Thus, P„(x) divides P^OO-

To see that the quotient is in Z[x] if y e Z, consider the following. Since Pw(x) e Z[x] is 
monic of degree 2W, we can write Pw(x) = b0 + ftpr + • • • + i ^ * 2 " - 1 + xr, where 5 , G Z . Since 
PJfew(jc) G Z[x] is also monic, we can also write the quotient in the form 

f (x) = a0 +axx + • • • +aK„\Xlc~l + xK, 

where K = 2kn-2n is the degree of the quotient. Suppose f(x) gZ[x]. Let #J be the largest 
integer such that am g Z . Now the coefficient of x2"+m in the product P^(x) = Pw(x)f(x) is 
a finite sum of the form cim+am+]h2n_l+am^J)2n^2 + t" • This coefficient is an integer because 
P^(x) G Z[x] and each factor in the second and higher terms of the finite sum are integers; thus, 
am is also an integer that contradicts am <£ Z and proves the claim. D 

The elements x 0 e R such that vw(x0) = x0 are said to be cyclic of period n. Any root of 
Pw(x) which is of period n and not of any shorter period is said to be of prime period n. Any 
complex root with nonprime period n will be a root of some P^(x), where d divides n though it is 
possible that P„(x) does not have roots of prime period n. For example, when y = - 3 / 4 , then 
Pj(x) = (x +1 / 2)(x - 3 / 2 ) and P2(x) = (x +1 / 2)3(x - 3 /2) which has no new roots; hence, there 
are no points of prime period 2 for this y. 

The following theorem and conjecture involve a factorization similar to the classical 
factorization of x " - l in terms of cyclotomic polynomials [10], yet it is quite different in that 
P„(x) = vw(x) - x involves function iteration, not ordinary powers. 

Theorem 7: Let P„(x) = vw(x) - x be as above and let n = qk be a power of a prime. Also let 

Q&) = P,(x) and Q„(x) = ^ ( y ) . 
d\n,d<n 

then Qn(x) is a polynomial in R[x] for y e R and it is in Z[x] for y e Z . 

Proof: Since n - qk is a power of a prime, it is easy to check that 

Q„(*) = C>*(*) = -Qg*-,WQgt-2(x)...Q9(x)Q1(x) P9 t , (x) ' 

which is a polynomial by Lemma 6. The remark about the quotient being in Z[x] for y e Z fol-
lows as in the previous Lemma. D 

We conjecture that this property holds for general n. 

Conjecture A: Let P„(x) = vw(x) - x be as above and let 

Q1(x) = P1(x) andQ„(*)= ^ ( y ) , 
d\n,d<n 

then Q„(x) is a polynomial in R[x] for y G R and it is in Z[x] for y e Z. 
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Consider the following heuristic argument in favor of the conjecture. Solving for Pw(x), we 
see that Pw(x) = n^|„ Qd(x)- We can obtain a sum over the divisors of n by taking logarithms and 
then we can apply the Mobius inversion formula. On rewriting the result as a product, we see that 
Qn(x) = Hd\n ¥d(x)M(n/d), where //(n) is the Mobius function. In the case when n = q^lq2

2 is the 
product of powers of two primes, this amounts to 

Now, if ¥n/q (x) and ¥n/q (x) have no roots in common, then all their roots with all their multi-
plicity are also roots of Pw(x), and hence Q„(x) is a polynomial. If they have a common root x0 

and it is a single root of at least one factor of the denominator, then the factor with the higher 
multiplicity divides Pw(x) by Lemma 6. Since xQ is a root of Pw/g (x) and Pn/q (x), it has period 
n/ql and also has period n lq2; hence, it has period 

(n_ n\_ n gcd 

That is, it is a root of ¥„, (x). Thus, the factors arising from the root x0 will cancel except 
possibly some factors in the numerator. As long as common roots of factors appearing in the 
denominator do not have common multiplicity over 1, this argument would generalize to any 
number of prime factors. We expect that, for a generic choice of y, the roots of P„(x) would all 
be single roots. Thus, common multiplicity would be one, so the above argument would work. 
However, once the result is true for some generic y, it should be true for the formal parameter y 
as well. 

We can formally compute Q„(x) for small n. Notice that these are polynomials in x and y. 

Ql(x) = x2 -x + y, 
Q2(x) = x2 + x + y + l, 
Q3(x) = x6 + x5 + (1 + 3y)x4 + (1 + 2^)x3 + (1 + 3y + 3y2)x2 + (1 + yfx + y3 +2y2+y + l, 
Q4(x) = x12 + 6yx10 + x9 + (15y2 + 3y)x% 

+ °- + (2y + y2 + 2y3 + y4)x + (l + 2y2 + 3y3 + 3y4 + 3y5 + y6). 

Using symbolic manipulation software, we have verified that Q6(x) is a formal polynomial in x 
and y. 

Corollary 8: Let u(x) be a quadratic function and n = qk be a power of a prime. In fdp(u(x)), 
the number of cycles of length n is less than or equal to 

ideg(Qn(x)) = l | 2 " - X deg(Qd(x))|. 
V d\n,d<n J 

Proof: The number of elements with prime period n is less than or equal to the degree of 
Q„(x), which can be computed recursively from its definition given in Theorem 7. D 

Of course, if Conjecture A is true, we would have also established Corollary 8 for general n. 
Hence, we have the following conjecture. 
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Conjecture B: Let u(x) be a quadratic function and n be a positive integer. In fdp(u(jt)), the 
number of cycles of length n is less than or equal to 

Ideg(Q„(x)) = I | 2 " - £ deg(Q.W)| 
V d\n,d<n J 

Note that the bounds given in the corollary and conjecture may be ugly in the sense that they 
are recursively defined, but they are easy to compute. Table 1 gives some examples illustrating 
primes where these bounds are achieved. Notice the bounds seem to be tight even though they 
get large. It seems remarkable that the theoretic bound on 11-cycles is 186 occurrences and this 
happens for a relatively small prime. The fact that these bounds are indeed the maximal number 
of occurrences we found for some additional cases where n is not a prime power provides 
additional evidence for the correctness of Conjectures A and B. It is also interesting to compare 
these bounds which are computed algebraically here with the number of orbits of prime period 
arising from the genealogy of periodic points in classical real dynamics [3]. The next theorems 
allow us to determine when there are 1-cycles and 2-cycles. 

TABLE 1. Minimal Odd Prime p Such that the Function Digraph 
fdpCx2) Achieves the Maximal Repetition of Cycle Lengths 

Cycle 
Length 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Bound on 
Repetitions 

2 
1 
2 
3 
6 
9 

18 
30 
56 
99 

186 
335 

Odd Prime 
P 

3 
7 

29 
31 

311 
127 
509 

1,021 
3,067 
4,093 

36,847 
8,191 

Theorem 9: The number of 1-cycles in fdp(x2 + y) is 1 + P rY 

Proof: Recall that since/? is an odd prime, 2"1 exists modulo/?. By completing the square of 
Qj(x) = x2 - x + y = 0, we have (x - 2"1)2 = 2"2 - y. Thus, fdp(x2 + y) has two, one, or zero 1-
cycles if and only if 2"2 - y is a quadratic residue, 0, or a nonresidue, respectively. • 

Theorem 10: There is exactly one 2-cycle in fd^x2 +y) if and only if r I ) = 1. 

Proof: Notice that if Q2(x) has a repeated root mod/?, the root is a 1-cycle; moreover, if 
Qj(x) and Q2(x) have a shared root, then Q2(x)-Q1(x) = 2x + 1 = 0, from which we see that 
x = -2"1 is the only possible shared root. In such a case, the other root of Q2(x) must be a 
1-cycle, hence both roots must be -2"1. Thus, the function digraph fdp(x2 +y) has exactly one 
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2-cycle if and only if Q2(x) = x2 + x + y +1 = 0 has two distinct solutions in Zp. Completing the 
square in that congruence yields (x + 2-1)2 = 2~2 -y - which has two distinct solutions in Zp if 
and only if 2 ~ 2 - y - l is a quadratic residue mod/?. • . 

4. RANDOM QUASIQFADMATIC DIGRAPHS 

We have seen that it is difficult to predict the structure of fd/7(u(x)) for quadratic functions 
u(x), yet we have been able to give some restrictions on the behavior of these function digraphs. 
In this section we will compare the structure of the quadratic function digraphs fdp(u(x)) with 
those of "random" functions whose function digraphs have the same number of vertices with in-
degree 0, 1, and 2 as have the quadratic function digraphs. In particular, we will call a function 
q:Zp ->Z p quasi-quadratic if it is 2-to-l for all of its domain except that it is 1-to-l for one 
element in its domain; e.g., Figure 3 shows a randomly chosen quasiquadatic function digraph on 
Z17. Notice it has the same random appearance of the quadratic function digraphs modulo 17 but 
it has two 2-cycles, which is impossible for a quadratic function digraph by Corollary 8. 
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FIGURE 3e A Random Quasiquadratic Function and Its Digraph 
Which Contains Two 2-Cydes 

We begin our investigation by counting the number of quasiquadratic functions. 

Theorem 11: Given a prime modulus p > 3, 
(a) the number of quasiquadratic functions is ̂ ((^+1)72X2 2.̂ 2 21) anc^ 
(b) the number of quasiquadratic digraphs that are nonisomorphic is ((/7^)/2). 

Proof: (a) There are ((P+iy2) waYs to choose the ^ - range elements of the quasiquadratic 
functions and there are -^-(22.^221) permutations what would result in distinct rearrangements 
since the multinomial (22.̂ 221) IPves t n e number of ways to partition p elements into classes of 
size 2, 2, ..., 2, 1 and there are ^ ~ ways to position the 1. 

(b) An isomorphism between quasiquadratic digraphs must map each pair of the range of the 
first digraph to a pair in the range of the second digraph; the isomorphism must also map the 
singleton of the range of the first digraph to the singleton in the range of the second digraph. 
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Since the re a re (22.^221) w a y s t o pick the pairs and singleton and -^- w a y s t o p lace t h e single-
ton , the re a re -^-(22.^221) s u c h permutat ions . Dividing into this total n u m b e r o f quas iquadra t ic 
d igraphs , w e see t he n u m b e r o f quasiquadrat ic digraphs that a re nonisomorphic is ((P+iy2)-

Notice that we really only used the fact that the modulus is odd, not that it is prime. D 

We can easily generate random quasiquadratic digraphs and compare their structure with the 
structure of quadratic digraphs. Figure 4 shows the frequency that cycles of specified length 
appear in 10,000 random choices of quasiquadratic digraphs modulo 1009. These quasiquadratic 
frequencies are shown with the connected lines. The isolated points show the same information 
for the 1009 quadratic function digraphs. Likewise, Figure 5 shows the average frequency that 
specified numbers of components occur for quasiquadratic and quadratic function digraphs mod-
ulo 1009. While the fits are not perfect, they are remarkably good and this provides empirical 
support for the heuristic view that the quadratic function digraphs are nearly "random." 
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FIGURE 4. The Average Frequency of Cycle Lengths for Quadratic 
and Quasiquadratic Digraphs Modulo 1009 
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FIGURE 5. The Average Number of Components for Quadratic 
and Quasiquadratic Digraphs Modulo 1009 
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In Section 2 we noted an example of quadratic function digraphs in canonical form that are 
isomorphic: fd17(x2 + 11) = fd17(x2 +14). If we assume that the/? quadratic function digraphs are 
randomly distributed over the quasiquadratic function digraphs, then we can estimate the expected 
number of pairs of quadratic function digraphs that will be isomorphic by multiplying the number 
of pairs (£) by the reciprocal of the number of distinct quasiquadratic function digraphs. Table 2 
shows the expected number of isomorphic pairs implied by that estimate. One might choose to 
use (P22) instead of (£) since fdp(x2) and fdp(x2-2) are special; see [8] and Section 5, respec-
tively, for how those digraphs are special. Using (P22) would reduce the expected numbers, 
especially for small p. However, the main point is that these expected numbers approach 0 very 
quickly since the number of pairs is quadratic but the number of quasiquadratic functions is expo-
nential in p. Hence, we make the following conjecture. 

TABLE 2. The Expected Number of Isomorphic Quadratic Function 
Digraphs for Small Odd Primes 

p 

3 
5 
7 
11 
13 
17 
19 
23 
29 

j 31 

Expected 
Isomorphisms 

10 
1.0 
0.6 | 
0.119 
0.0455 
0.00559 
0.00185 j 
0.000187 
0.00000523 | 
0.00000154 

Conjecture C-Quadratic Digraph Isomorphism Conjecture: The only occurrence of isomor-
phic quadratic function digraphs in canonical form is fd17(x2 + 11) = fd17(x2 +14). 

In addition to the heuristic argument in favor of this conjecture given above, we have compu-
tationally verified the conjecture for all primes up to 1009. 

5. FUNCTION DIGRAPHS fdp(x2 - 2) 

In classical dynamics, the dynamics of the function x2 - 2 are special (see [4]) because the 
Julia set is unusually simple. A similar statement can be made in the theory of numbers where 
iteration of this function plays a role in whether Mersenne numbers p = 2q~l - 1 are prime (see 
[7] and [9]). We investigate the family of function digraphs fdp(x2-2) for general odd prime 
modulus which has far more structure than typical quadratic function digraphs. This structure 
seems to be as deep as, but more complicated than, the structure of fdp(x2). Indeed, we will see 
that the identities we use involve both multiplication and addition. Figure 6 shows fd239(x2 - 2 ) . 
This example is rather large but serves to illustrate all the properties that we want to observe 
without requiring several examples. We see that all the cycle elements have one leaf or a binary 
tree attached. The nonleaf trees all have the same depth and are isomorphic except for one vertex 
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of in-degree one. Our goal in this section is to show that those claims are true in general. Also 
notice that the cycle lengths seem to have some coherence. Readers who would like to see exam-
ples of the remarkable arithmetic/structure identities before considering the general theory may 
preview the examples that follow Theorem 19. 
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FIGURE 6. The Function Digraph fd239(x2 - 2) 

In this section we will let s(x) = x2 - 2. The level of a vertex x measured from its cycle is 
given by the smallest k such that sk(x) is a cycle element. Thus, cycle elements are at level 0. 
Components with at least one vertex at level 2 are called branched components. Other compo-
nents are called stumpy components. We say that two distinct vertices M and N are k-ancestors if 
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k is the smallest positive integer such that $k(M) = sk(N). For example, M and N are 1-ancestors 
if and only if M = -N and they are 2-ancestors if and only if s(M) = -s(JV); namely, M2 -2 = 
2-N2. ' 

Our first lemma in this section shows that multiplying two 2-ancestors gives a nearby vertex. 
We think of this theorem as giving enough structure to the digraphs so that we can establish a 
base case for our eventual induction. It also establishes enough structure so that in the subse-
quent lemma we can discuss leaves and cycles and distinguish two fundamentally different types 
of digraph components: those that reach level two and those that do not. 

Lemma 12: IfMandiV are 2-ancestors in fdp(s(x)), then MN and s(M) are 2-ancestors andMV 
and $(N) are 2-ancestors as well. 

Proof: Since M and N are 2-ancestors, s(M) = -s(JV) so M2 - 2 = 2 - N2 and, therefore, 
N2=4-M2. Now 

s2(M) = M4 -AM2 +2 = 2-M2(4-M2) = 2-{MN)2 = -s(MN). 

Thus, MN and s(M) are 2-ancestors and by symmetry so are MN and s(N). • 

As an aside, we notice that if we try to generalize this to v(x) = x2 + y, we see that M and N 
are 2-ancestors means M2 + y = -y - N2, and hence -2y - N2 + M2. Thus, 

v2(M) = M4 + 2yM2 + y2 + y = M4 + (-N2 - M2)M2 +y2 +y =-v(MN) + y2 + 2y, 

and hence, v2(M) = -v{MN) if and only if y2 + 2y = 0. This gives the special cases y = 0 and 
y = -2 mentioned in Section 4. 

We will refer to Figure 6 to provide an illustration of Lemma 12 in fd239(s(x)). Notice that 
M = 230 and N = 65 are 2-ancestors appearing in the component of fd239(s(x)) that has a 4-
cycle. We see that s(Af) = s(230) = 79 while MN = 230*65 = 132 mod 239. We can observe 
that 79 and 132 are also 2-ancestors. 

If x is a noncycle element, we define the tree leading to x to be the union of all paths leading 
to x. More precisely, the tree leading to x is {y e Zp \sP(y) = x for some k > 0}. Notice that, for 
each/?, the function digraph fdp(s(x)) contains a component where 0 maps to -2 which maps to 
2 and where 2 maps back onto itself The vertex x = -2 is the single vertex of in-degree 1 and it 
is at level one. Therefore, all cycle elements have in-degree 2. Thus, each cycle element has a 
unique noncycle parent. If c is a cycle element, we define the tree associated with c to be the tree 
leading to the noncycle parent of c. In particular, x is an element of the tree leading to x but c is 
not an element of the tree associated with c. 

A vertex x * -2 has parents if and only if there are two solutions y to y1 - 2 = x, and this 
occurs exactly when the Legendre symbol (%&) = 1. In particular, the tree leading to 0 contains 
more than the vertex 0 if and only if p = 1, 7 mod 8, since those are the cases when 2 is a quad-
ratic residue. We call this component the 0-component. Eventually, we will see that the existence 
and depth of the three leading to 0 influences the structure of the branched components. 

We say a tree is a complete binary tree up to level k if the tree has a root and each vertex at 
level less than k from the root has exactly two parents. 

The next lemma describes the structure of the components up to level 2 which gives a 
starting point for our structure theorem. 
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Lemma 13: In fdp(s(jc)): 
(a) the tree associated with a cycle element in a stumpy component consists of one leaf at level 
one; 
(b) the tree associated with a cycle element in a branched component, except the vertex 2, is a 
tree structure that is a complete binary tree up to level 2. 

Proof: Recall that -2 is the only vertex of in-degree one and it is not a cycle element. Thus, 
every cycle element has in-degree 2. 

(a) By definition, stumpy components cannot have any elements at level 2 or higher and we 
have noted every cycle element in a stumpy component will have in-degree 2; this gives the result. 

(h) We know that each cycle element has a single noncycle parent. By definition, in every 
branched component there is some vertex M at level 2. Let N be the cycle element such that M 
and N are 2-ancestors. Lemma 12 implies that A ^ i s at level 2 leading to the cycle element after 
s2(M). Repeating the process on MN and proceeding around the entire cycle implies there is a 
vertex at level 2 in the tree associated with every cycle element. Since the in-degree of all the 
level 1 vertices must be 2, except for at -2 in the 0-component, we see the trees associated with 
such a cycle element from a branched component must be a complete binary tree up to level 2. D 

We now show that, in the branched components, any vertex has parents if and only if its 
additive inverse has parents. We already noted that ±2 both have parents. 

Lemma 14: If x is a vertex other than ±2 in a branched component, then x has parents if and 
only if -x has parents. That is, if {^f) = {*f). 

Proof: We have seen that this is true for levels 0 and 1 since all such vertices have parents 
[Lemma 13(b)], and it is trivially true for x = 0. Suppose that this lemma is not true in general. 
Assume x is a vertex at the lowest level such that (—-) ̂  i^y-\ Now 

2 + x\{2-x\ (4-x2^ f 2 - S ( J C ) 

Since s(x) is at a lower level, the result it true for s(x); hence, 

i^rHTHih 
Therefore, (^r) = (2LJL), which contradicts the supposition and completes the proof. D 

Note that, if any vertex x appears at level 3 or higher, then s(x) and -s(x) will both have 
parents; hence, we get at least four vertices at the level of x. 

We already know that 2 is a 1-cycle element and -2 is a nonleaf leading to that cycle. Thus, 
±2 are nonleaves in a branched component. The next theorem shows that we can use the two 
Legendre symbols from Lemma 14 to classify all the other vertices into four geometric classes. 

Theorem 15: Suppose x is a vertex other than ±2 in fdp(s(x)). 
(a) If (~r) = 1 and ( ^ ) = 1, then x is a nonleaf in a branched component. 
(b) If (^~) = 1 and (2jL) = - 1 , then x is a cycle element in a stumpy component. 
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(c) If (^jp) = -1 and (~^) = 1, then x is a leaf in a stumpy component. 
(d) If (^r) = -1 and ( ^ ) = - 1 , then x is a leaf in a branched component. 

Proof: Lemma 14 showed that the vertices in the branched components have equal Legendre 
symbols. We saw that, for x * - 2 , ( ^ ) = if and only if x has parents; hence, ( ^ ) = -1 if and 
only if x is a leaf. Checking the Legendre symbol values for the leaf and nonleaf positions gives 
the results. • 

To count the actual number of vertices in each of the geometric classes, we use the following 
results on sums of the Jacobi symbol on quadratic forms. 

Lemma 16: 
(a) Let p > 2 and a2 -4b * 0 mod/?, then If^^f^) = -I 

(b) L e t p > 2 , t h e n Z £ B l ( ^ ) = - l ( f ) . 

Proof: Part (a) is Theorem 8.2 in [6] and (b) is (-y) times a special case. D 

Theorem 17: In the function digraph fd/7(s(x)): 
(a) the total number of nonleaf vertices in the branched components is 1 + \ [p - (-y)); 
(b) the total number of cycle vertices in the stumpy components is \{p - 2 + (^)); 
(c) the total number of leaf vertices in the stumpy components is -J (p - 2 + (^)); 
(d) the total number of leaf vertices in the branched components is j{p - (^)). 

Proof: First consider (d). The total number of leaf vertices in the branched components is 

where we take care to notice that the terms are zero for x = ±2 and those vertices are not leaves. 
Expanding, we see 

where we use Theorem 16(b) and the fact that ZJU(-f) = 0. Next consider (a). The total number 
of nonleaf vertices in the branched components is 

where we take care to notice that the terms of the sum are 2 for x = ±2 and those vertices are not 
leaves, hence we need to add 1 to get the correct count. Expanding as above gives the desired 
result. We can handle (b) and (c) in a similar way or note that we already know from Lemma 
13(a) that these numbers must be equal and thus are half of the vertices not accounted for in (a) 
and(d). D 

For example, consider p = 239. Since ( ^ ) = - 1 , we see that by Theorem 17(d) the number 
of leaves in the branched components is ̂ [239 - (-1)] = 60 
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The next lemma gives a technical identity that provides the key inductive step in the theorem 
that follows the lemma. Informally speaking, it shows that we can follow a chain of sums of paths 
multiplied by inverses of elements in the tree leading to 0 to get a path in the "next" tree of the 
appropriate size. 

Lemma 18: Suppose r, s(r), and s2(r) are nonzero elements in fdp(s(x)). If ^ ( s ( M ) + s(W)) 
is aparent of ^(s 2 (M)+s 2 (JV)) , then either }(M+N) or }(M-N) is a parent of ^-(s(M) + 
s(N)). 

Proof: Notice that a vertex x is a parent ofy if and only if s(x) - y is zero. Direct computa-
tion verifies that 

r 4 ^ ± ( M + A 0 ) - ^ ( s ( A ^ + s ( ; ^ 

is 
4(M2 + 2MN + N2-4r2- MNr2 + r 4)(Af -2MN+N2-4r2+ MNr2 + r4) 

<r)2 

which is identical to 

-2s2(r)[s^(s(M) + S(N))y^(s2(M)W(N))^ 

Now the last expression is zero by the hypothesis; hence, one of the factors of the first expression 
is zero. This gives the claim. D 

Lemma 12 gave a multiplicative relationship between vertices that were 2-ancestors. The fol-
lowing result involves both addition of ^-ancestors and multiplication by inverses of tree elements 
in the 0-component. This connects the existence of tree elements in the 0-component to the exis-
tence of vertices with higher ancestry. 

Theorem 19: If M and N are ^-ancestors in fd/7(s(x)) for some k > 2 and if r is a predecessor of 
0 such that s*-1(r) = 0, then M and something of the form j{M + Nf) are k + 1-ancestors, where 
N' is a vertex such that N' and M are ^-ancestors. Moreover, if M is at level k + 2 or higher, 
then there are 2k vertices that are k + 1-ancestors withM 

Proof: Proceed by induction on k. When k = 2, we claim that }(M + N) is a 3-ancestor of 
M. We are assuming s(r) = 0 and hence r2 = 2; from Lemma 12, we saw that MN is a 2-ancestor 
of s(M) and hence we need only show s(j(M+N)) = MN. Notice that 

s(i(M + A0) = 4 ( M 2 + 2 ^ 
where the last equality holds since M and N are 2-ancestors implies that M2 + N2 = 4. Also, if M 
is at level 4 or higher, we know that j(M + N) is also at level 4 or higher since s3(M) is not a 
cycle element. Therefore, j(M + N) is its own "0-ancestor," it has one 1-ancestor (its additive 
inverse) and two 2-ancestors from the reasoning in the remark after Lemma 14. All of those are 
3-ancestors of M; hence, we have four 3-ancestors of M. 
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When k = 3, we know that Ad and N are 3-ancestors means s(M) and s(N) are 2-ancestors. 
By the k = 2 induction step, we can assume that s(M) has a 3-ancestor of the form ^~-(s(M) + 
s(N)). Now we need to show that 

s(^(M + A 0 ) ~ ( s ( M ) + s(A0) or s ( £ ( M - ^ ) = ̂ ( s ( J t f ) + s(JV)). 

First, note that M and N are 3-ancestors if and only if s2(M) = -s2(iV), which is true if and only if 
M4 - AM2 + 4 - 4N2 + N4 = 0. Now direct computation using the fact that r4 = 4r2 - 2 gives 

j^ s [ l ( M + ^ 

r s(r)z 

which is zero since M and JV are 3-ancestors. Hence, one of the two conditions required must 
hold. Thus, we have found a 4-ancestor A = j(M±N) of M and we can rename N if desired to 
avoid the minus sign. Now suppose Mis at level at least k + 2. We see that A must be at the same 
level since sk+l(A4) is not a cycle element. We know that A is its own "0-ancestor," it has one 1-
ancestor, two 2-ancestors, and four 3-ancestors by induction. All of those are 4-ancestors of M, 
and hence M has eight 4-ancestors. 

Now suppose we have shown the theorem up to k-\ and want to show it for k. By renam-
ing N if need be (to avoid minus signs), we can assume that s(M) and ~r(s(M) + s(N)) are k-
ancestors and s2(M) and •^z(s2(M)-\-s2(N)) are k - 1-ancestors with 

{ ^ ) ( S ( M ) + S(N))) = J^{*2(M) + S' {N))' 
We can now apply Lemma 18 to get a k + 1-ancestor of M of the desired form. When M is at 
level at least k + 2, using the induction steps to complete the tree surrounding this new vertex 
gives the desired 2k vertices which are k + 1-ancestors withM. D 

We will refer to Figure 6 to provide some illustrations of this theorem in fd239(s(x)). Notice 
that s(99) = 0 and the multiplicative inverse of r = 99 is 169. Now M = 112 and N = 102 are 
2-ancestors appearing at level 4 in the branched component containing a 4-cycle. Note that 
}(M + N) = 169(112 + 102) = 77, which is a 3-ancestor withM Also, 65, which appears at level 
2 and 230, which is a cycle element, are 2-ancestors. Note that }(M+N) = 169(230 + 65) = 143 
is at level 3 in the next tree; hence, 65 and 143 are 3-ancestors. Also,, s2(36) = 0 and the multi-
plicative inverse of r = 36 is 166. Therefore, we are now able to lift to level 4 via j(M + N) = 
166(230 + 143) = 17; hence, 17 and 143 are 4-ancestors. 

Observe that we are able to use Theorem 19 to find elements at the same level in a tree asso-
ciated with a cycle element and we are also able to use the theorem to find elements at a higher 
level in the next tree associated with a cycle element having more distant ancestry. Thus, it can be 
used both to complete trees and to lift levels. We put these ideas together in our main theorem 
about the tree structure in fdp(s(x)). 
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Theorem 20: The tree leading to any vertex at level 2 in fd/?(s(x)) is a complete binary tree and 
is isomorphic to the tree leading to the vertex 0. 

Proof: Suppose the leaves in the 0-component reach level d. Then, if r is such a leaf in that 
component, $d~2(r) = 0. Now, if d> 3, we can use Theorem 19 on vertices at height 2 with a 
cycle element that gives a 2-ancestor to produce a 3-ancestor at level 3. If d > 4, we can use this 
vertex and a cycle vertex to get a vertex at level 4. We can repeat this d-2 times resulting in a 
vertex at height d. We can then use Theorem 19 and the vertices at height d to see that all the 
trees in the branched components are complete binary trees from level 2 up to height d. 

Lastly, we need to show that, if any component has reached level d + 1, then we can reverse 
the identity used to raise to level d +1 (in Lemma 18) to solve for an r that leads to 0 in one more 
step, contradicting our choice of d. In particular, we can assume that r is at level d in the tree 
leading to 0 and that there is a vertex R at level d +1 in some other branched component. By the 
induction to level d, we know the trees to level d are complete; in fact, trees rooted to depth d or 
less from any vertex are complete. Now s(i?) is at level d and the trees are complete to that level. 
Thus, s(i?) must be obtainable from the process of lifting described in Theorem 19. In particular, 
we can find a cycle vertex M and a vertex N at level d so that s(M) and s(N) are ^-ancestors lift-
ing to s(i?). That is, 

^(s(M) + s(A0) = s(i?) (*) 

and 
-±r)(s2(M) + s2(N)) = s2(R), 

from which it follows that 

s^(s(M)+s(A0)) = ̂ ( s 2 ( A * ) + s2 (JV)). 

We need only show that s(±(M+N)) = r or s(j(M-N)) = r to show that the tree leading to 0 
rises to level d +1. Now an identity similar to that appearing in Lemma 18 is 

s ^ C s C ^ H - s C ^ j - ^ C s ^ A ^ + s 2 ^ ) ) 

= ^^(4-M2-N2-rMN-r2)(-4 + M2 + N2-rMN^r2y 
rls(r) 

We noted above that the left-hand side must be zero. If we assume the first factor of the right-
hand side is zero and simplify using (*), we get s(j(M + N)) = r and the other possibility arises 
from the other factor. In this way, we see that all the trees in branched components have the same 
height; this completes the proof. D 

Notice that knowing the trees are uniform complete binary trees, along with the knowledge 
of the number of leaves in the branched components, now allows us to compute the number of 
branched cycle elements, c, and the depth, d, of the trees. For example, when p = 239, we 
checked that there are 60 leaves in the branched components. Since there are 2c -1 trees asso-
ciated with level 2 vertices each of which will have 2d~2 leaves, we see that 

(2c-l)2*-2 = 60 = 15(22); 
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by equating the odd factors and powers of two, we see that 2c-1 = 15 and 2d~2 = 22, so c = 8 
and d = 4, which is correct. 
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