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INTRODUCTION 

A palindrome is a finite sequence (xh x2,...,xn) of numbers satisfying 

\Xl> X2> • • • 9 Xn) ~ \Xn> Xn-\y • • • > Xl)' 

Let A„ = \jiaj-\_(n-l)aj for some positive irrational a, and # = 1,2,.... In [2], Kimberling 
shows that there are infinitely many palindromes (A1?..., Az) in the infinite A-sequence (or the 
characteristic word of the Beatty sequence). For example, for a = (l + V5)/2, the A-sequence 
begins 1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,2,2,1,2,.... So (A1?..., A,) is a palindrome 
for 

/ e {1,3,8,21,55,144,377,987,...}, 
and (A2,..., AM) is a palindrome for 

/ e {3,5,8,13,21,34,55,89,144,233,377,610,987,...}. 

(The examples in [2] only partly match this observation.) In [1] Droubay proves that, if a = 
(1 +V5)/2, the number of palindromes of length n is exactly 1 if n is even, and 2 if n is odd (see 
also [3], e.g.). Then, how can we describe all the palindromes in the A-sequence? This paper 
gives an answer to this question. 

MAIN RESULTS 

As usual, we denote the continued fraction expansion of a by a = [a0;ax,a2,...]. Then its 
w* (total) convergent p„/qn= [a0; ah..., an] is given by the recurrence relations 

Pn=<*»Pn-l+Pn-2 (" = 0,1,...), f_2 = 0, P_x = l, 
<ln=a

n<ln-i+<ln-2 (" = 0,1,...), q_2 = l, q.x = 0. 

Define the /2th intermediate (or partial) convergents by pnrr/q„tr (r = 0,1,2, . . . ,a„-l) , where 
Pn,r =rpn+l + pn and qn,r=rqn+l + qn ([3], cf [5]). So, pn^ = pn+2 and qn^ =qn+2. 

We define the fractional part of x by {x} = x-\_xj. 

Lemma 1: Let / and m be integers satisfying l>2m-l. Then (Am, AOT+1,..., A^^+j) is a palin-
drome if and only if {ka} + {(/ - k)a} is invariant of £ for k = m -1, m,..., |J7 +1) / 2 J. 

Proof: By definition, (Aw, Aw+1,..., A/-w+1) is a palindrome if and only if, for k = m-l, m, 
...,L(/+i)/2j, 

[(* + l)aJ+LC - * -1)«J = LteJ + LC - * ) a J> 
or 

{(^ + l)a} + { ( / -* - l ) a} = {to} + {(/-Jt)a}. 

Of course, this also holds for k = |_(/ + l ) /2j + l, [(/ + l ) /2 j + 2, . . . , / - /«. 
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Lemma 2 (cf. Theorem 1, [2]): Let q be an integer with q > ql. There are integers n and r with 
n = 0,l,... and r = 1,2, ...,a„+2 such that # = ?„,. if and only if, for A: = 1,2, . . . , # - 1 , the sum 
{ka} + {(q - k)a) is invariant of k, that is, 

iir x^tt v\ x \^a) + l if" is even, {ka] + {(q-k)a} = \ . . . . . 
{{qa} if n is odd. 

Sublemma (Theorem 3.3, [5]): Let q = 1,2,..., N - 1 . If qnr_x<N <qnr (2<r< a„+2, n > 0), 
then 

{9n,r-i«}^{9a}^ {?„+!«} ifwiseven, 
(9„+ia} * {?«} * {?„,,-!«} if" is odd. 

I f 9 „ + 1 <^< ? „ ; 1 (»>0) , then 

{q„a\ < {qa} < {q„+la} if n is even, 
{9„+ia} ̂  (?«} £ {?»«} if " is odd. 

If tf <qly then {«}<{2a}<•••<{(#-l)a}. 

Proof of Lemma 2: If 9 = </„ r for some integers n and r, then by the Sublemma for k = 1, 2, 
...,<7-l, 

{&a} > {qa} if ft is even, 
{ka} < {qa} if ft is odd. 

Thus, for * = 1,2,...,0-1, 
{ka} + {(q - k)a} > {qa} if n is even, 
{ka} + {(q-k)a}<{qa} + l iff? is odd. 

Therefore, for k = 1,2,..., q -1, 

f{ga} + l if ft is even, 
{ka} + {(q - k)a} . ^ .„ . i f 

[{ga} if ft is odd. 
Because {&a} + {(#-£)a} takes only the values {qa} or {ga} + l, the sum {ka} + {{q - k)a) is 
invariant of k. 

On the other hand, if q * qnr for some integers ft and r, then there exist integers k' and k" 
with *' * k" and 0 < £', k" < q such that {k'a} < {qa} < {k"a}. Hence, 

{k'a} + {(q-kf)a}<{qa} + \ and {&"a} + {(9-£")a}> {^}-

Since {ka} + {(# - k)a} takes only the values {qa} or {^a} +1, the sum is not invariant of* for 
& = 1,2,...,#-!,. 

When m = 2, we have the first main theorem by using Lemmas 1 and 2. 

Theorem 1: Let the continued fraction expansion of an irrational a be 
a = [a0;al5a2?...,aw,...]. 

Then (A2,..., A^ ) is a palindrome only for 
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/e{1,2,.••,?!, ql + \2ql+\...yq2, q2 + qi,2q2 + ql9:..,q3,...9 

?»-i + &-2> 2g„_i + gH_2, • • •, q„,...} - {1,2}. 
an 

Proof: Since 1/(^ + 1) < {a} = [0;aha2, . . . ]< ! /% we have, for ax >2, 

yielding A2 = ••• = A^ = [aJ because Aw = [aJ or \_a} +1. Hence, (A2,..., A ^ ) is a palindrome 
for I = 3949...9ql + l. For ̂  = 1, it is trivial that / = 3 . 

Set n = 0,1,2,.... By Lemma 2 for & = 1,2,..., ̂ r - 2 (r = 1,2, ...,aw+2), 

{(* + l)a} + { ( ^ r - ( * + l))a} = {te} + { ( ^ r - * ) a } -
Thus, by Lemma 1, (A2,..., AM) is a palindrome for l = qnr (r = 1,2,..., aw+2). Lemma 2 also 
shows that there is no other possibility for /. 
Example 1: Let a = e - [2; 1,2,1,1,4,1,1,6,1,1,8,1,...]. Then the denominators of its conver-
gents are 

( ^ 9 2 ^ 3 ? - ^ i o ? - . ) = a3,4,7,32,39,71,465,536,1001,...). 

Hence, (A2,..., AM) is a palindrome for 

/ e { 1 ,2,3, 4 , 7,11,18,25,32, 39, 
1 2 1 1 4 1 

71,110,181,252,323,394,465, 536, 1001,...}-{1,2} 

= {3,4, 7,11,18,25,32,39, 71,110,181,252,323,394,465,536,1001,...}. 

In fact, A begins with 2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,.... One 
can see the palindromes between v and * (included). 

Next, we put m = 1 to obtain the following result. 

Theorem 2: (A1?..., A7) is a palindrome only for 
/ G { 1 , 2 , . . . , 9 1 ? q2+ql,2q2+ql,...,q3, q4+q3,2q4 + q3,...,q5,...y 

v v ' v v ' N v ' 
a\ «3 a5 

gin + *72w-l? 2ff2„ + qin-h • • • > ff2w+l? •*} • 
a2/i+l 

Proof: Since A2 = A2 = • • • = Agi = \jxJ, (A1?..., A7) is a palindrome for / = 1,2,..., qx. Set 
w = 0,1,2,.... By Lemma 2 for £ = 2,3,..., #w r - 1 (r = 1,2, ...,aw+2), 

{ka} + {(qntr-k)a} = {(k-l)a} + {(qnir-k^l)a}. 

And for & = 1, {a} + {(#„ r - l)a} = {q^ra} is true only when n is odd. Therefore, (A2,..., AM) 
is a palindrome for / = qln_u (r = 1,2, ..., a2/l+1; w = 1,2,...). By Lemma 2, all the possibilities for 
/ appear here. 
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MORE PALINDROMES 

There are infinitely many palindromes that do not start from Ax or A2 in the A-sequence. In 
other words, for any integer in, there exist infinitely many integers / with l>2tn-l such that 

is palindromic. Defining A0 = [OaJ - [-aJ, we have the following theorem. 

Theorem 3: (A0, A1?..., A/+1) is a palindrome only for 

/ £{?!> % +ffl , 2 g 2 +ffl> ••> %; ?4 + %> 2 ? 4 +?3> •••> %>>•••> 

*?2n + ?2w-b 2?2w + ?2»-b • • • > *?2w+b - } • 
<*2/i+l 

JRTYWJ/: Since A0 = - |_-a] = [ a j +1 = Agi+1 and Ax = A2 = • • • = A^ = [aJ, (A0,..., A/+1) is a 
palindrome for / = qv By Lemma 2, 

{(*-l)a} + { ( ^ r - * + l)a} = {(*-2)a} + { ( ^ r - * + 2)a} 

holds for k = 3,4,..., gw r - 1 . For k = 2, {a} + {(?„ r - l)a} = {qn^ra} is true only when n is odd. 
Consider the case k = 1. When TI is odd, 

Therefore, {q„t ra) + {a} = { (q„9 r + l)a} +1 or {gw ra} = {-a} + {{qUi r + l)a}. Of course, there are 
no other possibilities for /. 

Next, we shall consider the cases where m > 3. From Theorem 1, we immediately obtain the 
following. 

Corollary: For m = 3,4,..., (Aw, Am+1,..., A ^ ^ ) is a palindrome for 
le{ly2,...,ql,ql + l,2ql + l,...,q2,q2+ql,2q2+ql,...,q3r.., 

V ^ / V : . ^ * V : Y— ' 

Vn-1 + ?*-2> 2%n-\ +<ln-2, - > g y - } 

with/>2/w-l . 
However, this does not necessarily show all the palindromes. If {ka} + {(/ - k)a} is invari-

ant of Jtjust for k = m-l ,m,. . . , L(/+1)/2J, ( A ^ A ^ , . . . ^ . ^ ) already becomes a palindrome. ' 
For example, when m = 3, all the palindromes are described as follows. 

Theorem 4: (A3, A4,..., A M ) is a palindrome only for 
/e{l,2,... ,ft,ft + l,2^1 + l,...,ft,g2+ft,2g2+ft,...,ft,..., 

V „ / V — : „ / > : ^ ^ 

ax a2 «3 

qn.X + g„_ 2 , 2 g w - l + g»-2> • • • > &f> •) 
V v 

On 
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with / > 5, or 
l = qx+2 if ax>3; l = q2+2ifax = lmda2<2. 

Proof: Let n be even. By Lemma 2, if {a} + {{q-l)a} = {qa} and, for k=2,3,...,q-2, 
{ka} + {{q- k)a} = {qa} + \, then (A3, A4,..., Aq_2) is a palindrome. Therefore, {a} < {qa} or 
{{q-\)a} < {qa}, and {ha} > {qa} (k == 2,3,..., ? - 2 ) . 

If ^ < qu this is clearly impossible. 
If <ln+\ <<1<9n,i> then> by t h e Sublemma, {#„a}<{qa} <{qn+la}. So, ?w = l o r ? M = q-l. 

But #„ = 1 is impossible because q > 5. The case # = qn +1 does not satisfy # > #w+1. 
If #*, r-\<cl< Qn, r f°r s o m e integers w and r > 2, then, by the Sublemma, {#w r_i<z} < {qa} < 

{qn ra]. So, qn r_x = 1 or qn(M = 9 - 1 . But #w r_j = 1 is impossible because q > 5. Suppose that 

?*r-i = 0 - l . S i n c e 

{<ln,r-ia} <{((r-2)qn+l+qn)a} <{{qn^x + \)a} = {qa}, 

we must have (r-2)qn+l + qn = 1, yielding r = 2. Hence, « = 0. Similarly, we have n = l and 
ax = 1 when n is odd. Therefore, q = qox +1 = qx + 2 if ax > 3; 9 = ̂  r +1 = q2 + 2 if ^ = 1 and 
a 2 >2 . 

But it is not so easy to describe all the palindromes for general m > 3. It is convenient to use 
the following Lemma to find the extra palindromes in addition to those appearing in the Corollary. 

Lemma 3: Let q^q„tr for any integers n and r. Suppose that the sequence {a}, {2a}, ..., {qa} 
is sorted as 

{uxa} < {u2a} < • - • < {uka} < {qa} < {uk+xa} < • < {uq_xa}, 

where {ux,u2,...,uk,uk+x,...,uq_x} = {l,2,...,q-l}. Put 

M= max min(w;,q-uf) and M '= max mm(u^q-u)). 
i<j<k J J k+l<j<q-l J J 

Ifq> 2M + 3, then (Am,..., A _̂OT+1) is palindromic with m = M + 2, M + 3, ...,L(tf + 1) / 2J-
If q > 2M' + 3, then (AOT,..., A^ ,^ ) is palindromic with w = M' + 2, M' + 3,..., \_{q +1) / 2j. 

Remark: The conditions q>2M + 3 and q>2Mf + 3 do not hold simultaneously. For, either 
M-ql2 or M'-ql2 when 9 is even; either M = (q-l)/2 or M' = {q-\)l2 when 9 is odd. 
It is possible that both conditions fail for some #'s. 

Proof: First of all, notice that {ka} and {{q-k)a} lie on the same side of {qa}. If {&a} < 
{qa} <{(q- k)a}, then {qa} < {ka} + {(q- k)a} < {qa} +1, yielding a contradiction because 
{ka} + {(# - k)a) must be either {qa} or {#a} +1. Now, since {Ma} < {qa} < {ka} (k = M + l, 
M + 2,...,|_(? + 1)/2J, we have 

{Ma} + {(q-M)a}<{qa} + l and 
{ka} + {(q-k)a} > {qa} (k = M+l , M + 2,..., [(? + l)/2j) , 

yielding 
{Ma} + {(#-M)a} = {#a} and 

{*a} + {to-*)a} = tea} + l ( * = A/+l,A/+2,...,Lfe + l) /2j) . 
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Together with Lemma 1 we have the desired result. The proof for M' is similar and is omitted 
here. 

Example 2: Let a = (V29+5)/2 = [5;5,5,5,...]. Then the sequence {a}, {2a}, ..., {483a} is 
sorted as 

{43 la} < {296a} < {161a} < {26a} < {457a} < {322a} 
< {187a} < {52a} < {483a} < <{462a} 

v- v * 
all the others 

< {327a} < {192a} < {57a} < {353a} < {218a} < {83a} 
< {379a} < {244a} < {109a} < {405a} < {270a} < 135a}. 

When q = 483, M = max(52,187,161,26) = 187, and q > 2M + 3. By Lemma 3, (Affl, Am+1, 
Ag_m+1) is palindromic for # = 483 with zn = 189,190, ...,242 only. Of course, M' = 241 does 
not satisfy the condition q > 2M' + 3. 

When g = 462, M = max(135,192,57,109,218,83) = 218, and q>2M + 3. By Lemma 3, 
(Am, Am+1, Ag_m+1) is palindromic only for q = 462 with m = 220,221,..., 231. 

HOW TO FIND M OR M' IN LEMMA 3 

Lemma 3 shows that once M or M' is given for an arbitrary positive integer q with q^q„r, 
all the palindromes (Am,..., Aq_m+l) can be discovered without omission. It is, however, tiresome 
to sort the sequence {a},{2a},..., {qa} as seen in Example 2. In fact, M or M' can be deter-
mined without any real sorting. 

Consider the general integer q with q*q„yi for arbitrary integers n and /'. For example, put 
? = ̂ „+i + fan (r = l,2,...,an+2; j = 2,3,...,an+l). Then, since 

{fa**+fc» < • • • < {(?„+i+qn)a) <{q„a} 
< {(rq„+1 + 2q„)a} <• • • < {(q„+1 + 2q„)a} < {2q„a} <••• 
< {(rq„+i+fan)a) <•••< {(?»+i+fan)a) < Uqna} <•• 

when n is even (the order is reversed, and M' replaces M, when « is odd; cf. [5]). M in Lemma 3 
can be determined by 

[(>'-%,+i/2 + 0'-l)tf„ if r is odd, 
M = \ (rq„+i + (J~ Ofti) / 2 if r is even andy is odd, 

[(rqn+i + jq„) / 2 if r is even andy is even. 

The condition in Lemma 3, q > 2M + 3, is satisfied if q„+l > (J-2)q„ + 3 (r: odd); q„ > 3 
(r: even, j : odd). But this condition is never satisfied if r is even andy is even. 

Similarly, for q = rq„+l + jq„ -iq„_x (r = 1,2,...,a„_2; j = 2,3,...,an+l; i = 1,2,...,a„), we have , 

f(rq^i + far, ~ (f + !)^-i) / 2 if r: odd, j+a„+l = 0 (mod 2), /': even; 
(rqn+1 + fa„ - iq„-i) / 2 if r: odd, j+a„+1 = 0 (mod 2), i: odd; 

| (rqn+l + (j- l)q„ - ?„_,) / 2 if r: odd, y +a„+1 S 1 (mod 2); 
(^«+i + 0' ~ 1)?„) / 2 if r: even, y: odd; 
(r<l»+i + ./'?„ - *?„-i) / 2 if r: even, j : even, /: even; 

[(r<ln+i + fan ~ 0' + l)«i-i) / 2 if r: even, y: even, /': odd. 
And the condition q £ 2M + 3 is satisfied when 

M = 
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never satisfied 
^ ( ' ' - l ) ? w - i + 3 

never satisfied 
#1-1 >3 

Next, put q = rqn+l-jqn (r = 1,2, 
determined by 

if r: odd, j+an+l = 0 (mod 2), /: even; 
if r: odd, y+an+l = 0 (mod 2), /: odd; 
if r: odd, 7 + an+l = 1 (mod 2); 
ifr: even, y: odd; 
ifr: even, j : even, /: even; 
ifr: even, j : even, /: odd. 

• • > a«+2 +1• 7 = 0> 1> • • • > a«+i)- Then M in Lemma 3 can be 

Af = 
(r-l)^w+1/2 if r is odd, 

if r is even and 7 is odd, 
if r is even and 7 is even, 

because 
tan-itf} < {2?w+i#} < • • • < frw*} 

< (fe+i ~ *,>*} < {(2?w+i - q„)a} < • • • < {(r#„+1 - gw)a} 
< (fe+i ~ 2ft,)a} < {(2#„+1 - 2qn)a) < • • • < {(r#„+1 - 2 ? , » < • • • 
< {(«H-I ~ 7 £ » < {(2?w+i - jq„)a) < • • • < {(r?M+1 - 7?„)a} < • • • 

when «is odd (the order is reversed, and M9 replaces M> when n is even). 
The condition q > 2M + 3 is satisfied when 

fan+i*J4n+3 iff is odd, 
< #w > 3 if r is even andy* is odd, 
[never satisfied if r is even andy is even. 

Similarly, for q = rqn+x-jqn+iqn_x (r = l,2,...,aw+2 +1; 7 = 0, l,...,aw+1; 1 = 0, l,...,aw), we have 

[(^*+i - 7?« + (f ~ tyfn-i) / 2 if r: odd, y + a„+1 = 0 (mod 2), /: even; 
( ^ w + i - 7 ^ + % - i ) / 2 ifr: odd,y+aw+1 = 0(mod2), 1: odd; 

) faa+i" (7 + ton + (2* - l)?w-i) / 2 if r: odd, y + an+l = 1 (mod 2); 
( ^ + i - ( 7 + l )^+2/^_i) /2 
(^w +i-7ft,+^»-i)/2 

l ( ^ + i - 7 ^ + 0 ' - l ) ^ - i ) / 2 

The condition q > 2M + 3 is satisfied when 

M = 
if r: even, y: odd; 
ifr: even, y": even, /: 
ifr: even, y': even, /': 

even; 
odd. 

<7„-i^3 
never satisfied 
qn>(i-1)4^ + 3 
ft.^^+3 
never satisfied 

l ^ - i ^ 3 

if r: even, y + an+l = 0 (mod 2), 1: 
if r: even, j+an+1 = 0 (mod 2), /: 
if r: even, j+an+1 = 1 (mod 2); 
if r: odd,y': odd; 
if r: odd,y': even, /: even; 
ifr: odd,y': even, /: odd. 

even; 
odd; 

Generally speaking, M (or M') in Lemma 3 can be determined as follows. 

Lemma 4: If M = ( tiqN+l-h(s-l)qN)/2 for q = tiqN+l+sqN, then M = ( uqN+l + 
(s-l)qN)/2forq = ---uqN+l+$qN-tqN„l(t = l,2,...,aN). 

If M = ( t4qN+l+sqN)/2 for q = uqN+l + sqN, then 
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M 
-%--

uqN+l + sqN - tqN_x) / 2 if t is even, 
'U<1N+I + S9N ~(f + Oftsr-i) l2 i f ^ i s odd> 

forqr = — - w ^ ^ + 5 ^ - ^ . ! . 
I f M = (---(*/ + l ) ^ + 1 + ( 2 s - ^ 

f( uqN+1 + sqN - tqN_x) / 2 if s 4- <%+1 = 1 (mod 2) and t is odd, 
M = < ( w ^ + 1 + 5 ^ - (t + l ) ^ _ i ) / 2 if s+aN+l = 1 (mod 2) and f is even, 

[ ( - - U$N+I + 0 ~ 1)% - 4W-i) / 2 if J+a N + l s 0 (mod 2), 

for g = - - - - ^ + 1 + ^ - % , _ ! . 
If M = ( . . . - (u + 1 ) ^ + 1 + 2 5 ^ ) /2 for gr = • • • - wg^+1 + sg^, then 

M = 
(• • • - wg^+i+ S4N ~ t(lN~i) 12 if ^ + %+i = 0 ( m o d 2) and f is odd, 
( uqN+l + sqN -(t + l)qN-i) / 2 if s + % + 1 = 0 (mod 2) and f is even, 

[(•••- uqN+l + ($- l)qN - qN_x) / 2 tts + aN+l = l (mod 2), 

Lemma 49: Tf M = (*--+uqN+l-(s + l)qN)/2 for q = -- + uqN+l-$qN, then M = ('-+uqN+l-
(s + l)qN + 2tqN_l)/2 for g = — + uqN+l-sqN +tqN_x (t = 1,2,...,a^). 

If M = (--+uqN+1-sqN)/2 for q = --- + uqN+1-sqN, then 

[(•••+ w ^ + 1 - ^ + ty^) / 2 if r is even, 
Af = (• • • + i / ^ + 1 - ^ + (* - 1 ) ^ - 0 / 2 if r is odd, 

forg = — + w ^ + 1 - 5 ^ + ^ J V _ 1 . 
If M = (--- + (u-l)qN+l~qN)/2 for q = -- + uqN+l-sqN, thm 

f(• • • + uqN+l - sqN + ^JV-I) / 2 if s + % + 1 = 1 (mod 2) and t is odd, 
M = < (• • • + uqN+l - sqN + (t- l)qN-X) 12 Mfs + aN+1 = 1 (mod 2) and t is even, 

[(•••+ uqN+l - (s + 1 ) ^ + (2/ - 1 ) ^ ) / 2 if 5 + aN+l s 0 (mod 2), 

for g = - + ^ + 1 - ^ + % , _ ! . 
If M = ( • • •+ ( ! / - l ) ^+ i ) /2 for q = ~- + uqN+l-sqN> then 

((•••+ W4W+i "" ^ t f + *?AM) / 2 if $ + %+i = 0 (mod 2) and f is odd, 
(• • • + uqN+l - sqN +(t- l)qN_i) 12 ifs+aN+l = 0 (mod 2) and t is even, 

[ ( - + mN+i ~is + 1)9N + (2t - lteto-i) / 2 if 5 + aN+l = 1 (mod 2), 
M = 

forq = — + uqN+l-sqN+tqN_v 

Example 3: There is a reason for our providing two alternative expressions for each integer q. 
For instance, let 

V29+5 
« = — j — = [5;5>5A...]. 

For ^ = 3 ^ 2 - ^ 1 + 4 ^ 0 = 3 -26-5 + 4-l = 77, we have M = (3q2-ql + 3q0)/2 = 3&, not satisfying 
q>2M + 3. However, for q = 2q2 + 5q1 = 77, we obtain M' = (2q2+4q1)/2 = 36, satisfying 
q>2M' + 3 and leading to the conclusion that (Am,...,Aq_m+l) is palindromic for ^ = 77 with 
w = 38 and 39. 
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ON PALINDROMIC SEQUENCES FROM IRRATIONAL NUMBERS 

SUMMARY 

When q = qnr, the palindromic sequences (Am,..., Aq_m+l) can be found by Theorem 1, 2, 3, 
4, or the Corollary! When q^qnr, all the other palindromes can be discovered by Lemma 3 with 
Lemma 4 and Lemma 4'. 
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