ON PALINDROMIC SEQUENCES FROM IRRATIONAL NUMBERS

Takao Komatsu

Faculty of Education, Mie University, Tsu, Mie 514-8507 Japan e-mail: komatsu@edu.mie-u.ac.jp (Submitted January 1999-Final Revision May 1999)

INTRODUCTION

A *palindrome* is a finite sequence $(x_1, x_2, ..., x_n)$ of numbers satisfying

$$(x_1, x_2, ..., x_n) = (x_n, x_{n-1}, ..., x_1).$$

Let $\Delta_n = \lfloor n\alpha \rfloor - \lfloor (n-1)\alpha \rfloor$ for some positive irrational α , and n = 1, 2, ... In [2], Kimberling shows that there are infinitely many palindromes $(\Delta_1, ..., \Delta_l)$ in the infinite Δ -sequence (or the *characteristic* word of the *Beatty sequence*). For example, for $\alpha = (1 + \sqrt{5})/2$, the Δ -sequence begins 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, ... So $(\Delta_1, ..., \Delta_l)$ is a palindrome for

$$l \in \{1, 3, 8, 21, 55, 144, 377, 987, \dots\},\$$

and $(\Delta_2, ..., \Delta_{l-1})$ is a palindrome for

 $l \in \{3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...\}$

(The examples in [2] only partly match this observation.) In [1] Droubay proves that, if $\alpha = (1+\sqrt{5})/2$, the number of palindromes of length *n* is exactly 1 if *n* is even, and 2 if *n* is odd (see also [3], e.g.). Then, how can we describe all the palindromes in the Δ -sequence? This paper gives an answer to this question.

MAIN RESULTS

As usual, we denote the continued fraction expansion of α by $\alpha = [a_0; a_1, a_2, ...]$. Then its n^{th} (total) convergent $p_n / q_n = [a_0; a_1, ..., a_n]$ is given by the recurrence relations

$$p_n = a_n p_{n-1} + p_{n-2}$$
 (n = 0, 1, ...), $p_{-2} = 0$, $p_{-1} = 1$,
 $q_n = a_n q_{n-1} + q_{n-2}$ (n = 0, 1, ...), $q_{-2} = 1$, $q_{-1} = 0$.

Define the nth intermediate (or partial) convergents by $p_{n,r}/q_{n,r}$ ($r = 0, 1, 2, ..., a_n - 1$), where $p_{n,r} = rp_{n+1} + p_n$ and $q_{n,r} = rq_{n+1} + q_n$ ([3], cf. [5]). So, $p_{n,a_{n+2}} = p_{n+2}$ and $q_{n,a_{n+2}} = q_{n+2}$.

We define the fractional part of x by $\{x\} = x - \lfloor x \rfloor$.

Lemma 1: Let l and m be integers satisfying $l \ge 2m-1$. Then $(\Delta_m, \Delta_{m+1}, ..., \Delta_{l-m+1})$ is a palindrome if and only if $\{k\alpha\} + \{(l-k)\alpha\}$ is invariant of k for $k = m-1, m, ..., \lfloor (l+1)/2 \rfloor$.

Proof: By definition, $(\Delta_m, \Delta_{m+1}, ..., \Delta_{l-m+1})$ is a palindrome if and only if, for k = m-1, m, ..., |(l+1)/2|,

$$\lfloor (k+1)\alpha \rfloor + \lfloor (l-k-1)\alpha \rfloor = \lfloor k\alpha \rfloor + \lfloor (l-k)\alpha \rfloor,$$

or

$$\{(k+1)\alpha\}+\{(l-k-1)\alpha\}=\{k\alpha\}+\{(l-k)\alpha\}.$$

Of course, this also holds for k = |(l+1)/2| + 1, |(l+1)/2| + 2, ..., l - m.

FEB.

Lemma 2 (cf. Theorem 1, [2]): Let q be an integer with $q > q_1$. There are integers n and r with n = 0, 1, ... and $r = 1, 2, ..., a_{n+2}$ such that $q = q_{n,r}$ if and only if, for k = 1, 2, ..., q-1, the sum $\{k\alpha\} + \{(q-k)\alpha\}$ is invariant of k, that is,

$$\{k\alpha\} + \{(q-k)\alpha\} = \begin{cases} \{q\alpha\} + 1 & \text{if } n \text{ is even,} \\ \{q\alpha\} & \text{if } n \text{ is odd.} \end{cases}$$

Sublemma (Theorem 3.3, [5]): Let q = 1, 2, ..., N-1. If $q_{n,r-1} < N \le q_{n,r}$ $(2 \le r \le a_{n+2}, n \ge 0)$, then

 $\{q_{n,r-1}\alpha\} \le \{q\alpha\} \le \{q_{n+1}\alpha\}$ if *n* is even, $\{q_{n+1}\alpha\} \le \{q\alpha\} \le \{q_{n,r-1}\alpha\}$ if *n* is odd.

If $q_{n+1} < N \le q_{n,1}$ ($n \ge 0$), then

$$\{q_n\alpha\} \le \{q\alpha\} \le \{q_{n+1}\alpha\} \quad \text{if } n \text{ is even,} \\ \{q_{n+1}\alpha\} \le \{q\alpha\} \le \{q_n\alpha\} \quad \text{if } n \text{ is odd.} \end{cases}$$

If $N \leq q_1$, then $\{\alpha\} < \{2\alpha\} < \cdots < \{(N-1)\alpha\}$.

Proof of Lemma 2: If $q = q_{n,r}$ for some integers n and r, then by the Sublemma for k = 1, 2, ..., q-1,

$$\{k\alpha\} > \{q\alpha\}$$
 if *n* is even,
 $\{k\alpha\} < \{q\alpha\}$ if *n* is odd.

Thus, for k = 1, 2, ..., q - 1,

$$\{k\alpha\} + \{(q-k)\alpha\} > \{q\alpha\}$$
 if *n* is even,
$$\{k\alpha\} + \{(q-k)\alpha\} < \{q\alpha\} + 1$$
 if *n* is odd.

Therefore, for k = 1, 2, ..., q - 1,

$$\{k\alpha\} + \{(q-k)\alpha\} = \begin{cases} \{q\alpha\} + 1 & \text{if } n \text{ is even,} \\ \{q\alpha\} & \text{if } n \text{ is odd.} \end{cases}$$

Because $\{k\alpha\} + \{(q-k)\alpha\}$ takes only the values $\{q\alpha\}$ or $\{q\alpha\} + 1$, the sum $\{k\alpha\} + \{(q-k)\alpha\}$ is invariant of k.

On the other hand, if $q \neq q_{n,r}$ for some integers *n* and *r*, then there exist integers k' and k'' with $k' \neq k''$ and 0 < k', k'' < q such that $\{k'\alpha\} < \{q\alpha\} < \{k''\alpha\}$. Hence,

$$\{k'\alpha\} + \{(q-k')\alpha\} < \{q\alpha\} + 1 \text{ and } \{k''\alpha\} + \{(q-k'')\alpha\} > \{q\alpha\}$$

Since $\{k\alpha\} + \{(q-k)\alpha\}$ takes only the values $\{q\alpha\}$ or $\{q\alpha\} + 1$, the sum is not invariant of k for k = 1, 2, ..., q-1.

When m = 2, we have the first main theorem by using Lemmas 1 and 2.

Theorem 1: Let the continued fraction expansion of an irrational α be

$$\alpha = [a_0; a_1, a_2, \dots, a_n, \dots]$$

Then $(\Delta_2, ..., \Delta_{l-1})$ is a palindrome only for

$$l \in \{\underbrace{1, 2, \dots, q_{1}}_{a_{1}}, \underbrace{q_{1}+1, 2q_{1}+1, \dots, q_{2}}_{a_{2}}, \underbrace{q_{2}+q_{1}, 2q_{2}+q_{1}, \dots, q_{3}}_{a_{3}}, \dots, \underbrace{q_{n-1}+q_{n-2}, 2q_{n-1}+q_{n-2}, \dots, q_{n}}_{a_{n-1}}, \dots\} - \{1, 2\}.$$

Proof: Since $1/(a_1+1) < \{\alpha\} = [0; a_1, a_2, \dots] < 1/a_1$, we have, for $a_1 \ge 2$, $\Delta_2 + \dots + \Delta_{a_1} = \lfloor a_1 \alpha \rfloor - \lfloor \alpha \rfloor = a_1 \lfloor \alpha \rfloor - \lfloor \alpha \rfloor = (a_1 - 1) \lfloor \alpha \rfloor,$

yielding $\Delta_2 = \dots = \Delta_{q_1} = \lfloor \alpha \rfloor$ because $\Delta_n = \lfloor \alpha \rfloor$ or $\lfloor \alpha \rfloor + 1$. Hence, $(\Delta_2, \dots, \Delta_{l-1})$ is a palindrome for $l = 3, 4, \dots, q_1 + 1$. For $a_1 = 1$, it is trivial that l = 3.

Set
$$n = 0, 1, 2, ...$$
 By Lemma 2 for $k = 1, 2, ..., q_{n,r} - 2$ $(r = 1, 2, ..., a_{n+2}),$
 $\{(k+1)\alpha\} + \{(q_{n,r} - (k+1))\alpha\} = \{k\alpha\} + \{(q_{n,r} - k)\alpha\}.$

Thus, by Lemma 1, $(\Delta_2, ..., \Delta_{l-1})$ is a palindrome for $l = q_{n,r}$ $(r = 1, 2, ..., a_{n+2})$. Lemma 2 also shows that there is no other possibility for l.

Example 1: Let $\alpha = e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, ...]$. Then the denominators of its convergents are

 $(q_1, q_2, q_3, \dots, q_{10}, \dots) = (1, 3, 4, 7, 32, 39, 71, 465, 536, 1001, \dots).$

Hence, $(\Delta_2, ..., \Delta_{l-1})$ is a palindrome for

$$l \in \{\underbrace{1}_{1}, \underbrace{2}_{2}, \underbrace{3}_{1}, \underbrace{4}_{1}, \underbrace{7}_{1}, \underbrace{11, 18, 25, 32}_{4}, \underbrace{39}_{1}, \\\underbrace{71}_{1}, \underbrace{110, 181, 252, 323, 394, 465}_{6}, \underbrace{536}_{1}, \underbrace{1001}_{1}, \ldots\} - \{1, 2\}$$
$$= \{3, 4, 7, 11, 18, 25, 32, 39, 71, 110, 181, 252, 323, 394, 465, 536, 1001, \ldots\}.$$

In fact, Δ begins with 2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,... One can see the palindromes between \sim and \sim (included).

Next, we put m = 1 to obtain the following result.

Theorem 2: $(\Delta_1, ..., \Delta_l)$ is a palindrome only for

$$l \in \{\underbrace{1, 2, \dots, q_{1}}_{a_{1}}, \underbrace{q_{2} + q_{1}, 2q_{2} + q_{1}, \dots, q_{3}}_{a_{3}}, \underbrace{q_{4} + q_{3}, 2q_{4} + q_{3}, \dots, q_{5}}_{a_{5}}, \dots, \underbrace{q_{2n} + q_{2n-1}, 2q_{2n} + q_{2n-1}, \dots, q_{2n+1}}_{a_{2n+1}}, \dot{s}\}.$$

Proof: Since $\Delta_1 = \Delta_2 = \dots = \Delta_{q_1} = \lfloor \alpha \rfloor$, $(\Delta_1, \dots, \Delta_l)$ is a palindrome for $l = 1, 2, \dots, q_1$. Set $n = 0, 1, 2, \dots$ By Lemma 2 for $k = 2, 3, \dots, q_{n,r} - 1$ $(r = 1, 2, \dots, a_{n+2})$,

$$\{k\alpha\} + \{(q_{n,r} - k)\alpha\} = \{(k-1)\alpha\} + \{(q_{n,r} - k + 1)\alpha\}.$$

And for k = 1, $\{\alpha\} + \{(q_{n,r} - 1)\alpha\} = \{q_{n,r}\alpha\}$ is true only when *n* is odd. Therefore, $(\Delta_2, ..., \Delta_{l-1})$ is a palindrome for $l = q_{2n-1,r}$ $(r = 1, 2, ..., a_{2n+1}; n = 1, 2, ...)$. By Lemma 2, all the possibilities for *l* appear here.

FEB.

MORE PALINDROMES

There are infinitely many palindromes that do not start from Δ_1 or Δ_2 in the Δ -sequence. In other words, for any integer m, there exist infinitely many integers l with $l \ge 2m-1$ such that

$$(\Delta_m, \Delta_{m+1}, \ldots, \Delta_{l-m+1})$$

is palindromic. Defining $\Delta_0 = \lfloor 0\alpha \rfloor - \lfloor -\alpha \rfloor$, we have the following theorem.

Theorem 3: $(\Delta_0, \Delta_1, ..., \Delta_{l+1})$ is a palindrome only for

$$l \in \{q_1, \underbrace{q_2 + q_1, 2q_2 + q_1, \dots, q_3}_{a_3}, \underbrace{q_4 + q_3, 2q_4 + q_3, \dots, q_5}_{a_5}, \dots, \underbrace{q_{2n} + q_{2n-1}, 2q_{2n} + q_{2n-1}, \dots, q_{2n+1}}_{a_5}, \dots\}$$

Proof: Since $\Delta_0 = -\lfloor -\alpha \rfloor = \lfloor \alpha \rfloor + 1 = \Delta_{q_1+1}$ and $\Delta_1 = \Delta_2 = \cdots = \Delta_{q_1} = \lfloor \alpha \rfloor$, $(\Delta_0, \dots, \Delta_{l+1})$ is a palindrome for $l = q_1$. By Lemma 2,

$$\{(k-1)\alpha\} + \{(q_{n,r}-k+1)\alpha\} = \{(k-2)\alpha\} + \{(q_{n,r}-k+2)\alpha\}$$

holds for $k = 3, 4, \dots, q_{n,r} - 1$. For k = 2, $\{\alpha\} + \{(q_{n,r} - 1)\alpha\} = \{q_{n,r}\alpha\}$ is true only when n is odd. Consider the case k = 1. When *n* is odd,

$$\{q_{n,r}\alpha\} + \{\alpha\} = q_{n,r}\alpha - \lfloor q_{n,r}\alpha \rfloor + \{\alpha\}$$

= 1 + {\alpha} - (p_{n,r} - q_{n,r}\alpha) > 1 + \frac{1}{a_1 + 1} - \frac{1}{q_{n+1}} \ge 1.

Therefore, $\{q_{n,r}\alpha\} + \{\alpha\} = \{(q_{n,r}+1)\alpha\} + 1 \text{ or } \{q_{n,r}\alpha\} = \{-\alpha\} + \{(q_{n,r}+1)\alpha\}$. Of course, there are no other possibilities for l.

Next, we shall consider the cases where $m \ge 3$. From Theorem 1, we immediately obtain the following.

Corollary: For $m = 3, 4, ..., (\Delta_m, \Delta_{m+1}, ..., \Delta_{l-m+1})$ is a palindrome for

$$l \in \{\underbrace{1, 2, \dots, q_{1}}_{a_{1}}, \underbrace{q_{1}+1, 2q_{1}+1, \dots, q_{2}}_{a_{2}}, \underbrace{q_{2}+q_{1}, 2q_{2}+q_{1}, \dots, q_{3}}_{a_{3}}, \dots, \underbrace{q_{n-1}+q_{n-2}, 2q_{n-1}+q_{n-2}, \dots, q_{n}}_{a_{3}}, \dots\}$$

with $l \ge 2m - 1$.

However, this does not necessarily show all the palindromes. If $\{k\alpha\} + \{(l-k)\alpha\}$ is invariant of k just for $k = m-1, m, \dots, \lfloor (l+1)/2 \rfloor, (\Delta_m, \Delta_{m+1}, \dots, \Delta_{l-m+1})$ already becomes a palindrome. For example, when m = 3, all the palindromes are described as follows.

Theorem 4: $(\Delta_3, \Delta_4, ..., \Delta_{l-2})$ is a palindrome only for

$$l \in \{\underbrace{1, 2, \dots, q_{1}}_{a_{1}}, \underbrace{q_{1}+1, 2q_{1}+1, \dots, q_{2}}_{a_{2}}, \underbrace{q_{2}+q_{1}, 2q_{2}+q_{1}, \dots, q_{3}}_{a_{3}}, \dots, \underbrace{q_{n-1}+q_{n-2}, 2q_{n-1}+q_{n-2}, \dots, q_{n}}_{a_{3}}, \dots\}$$

with $l \ge 5$, or

$$l = q_1 + 2$$
 if $a_1 \ge 3$; $l = q_2 + 2$ if $a_1 = 1$ and $a_2 \le 2$.

Proof: Let *n* be even. By Lemma 2, if $\{\alpha\} + \{(q-1)\alpha\} = \{q\alpha\}$ and, for k = 2, 3, ..., q-2, $\{k\alpha\} + \{(q-k)\alpha\} = \{q\alpha\} + 1$, then $(\Delta_3, \Delta_4, ..., \Delta_{q-2})$ is a palindrome. Therefore, $\{\alpha\} < \{q\alpha\}$ or $\{(q-1)\alpha\} < \{q\alpha\}$, and $\{k\alpha\} > \{q\alpha\}$ (k = 2, 3, ..., q-2).

If $q < q_1$, this is clearly impossible.

If $q_{n+1} < q < q_{n,1}$, then, by the Sublemma, $\{q_n\alpha\} < \{q\alpha\} < \{q_{n+1}\alpha\}$. So, $q_n = 1$ or $q_n = q - 1$. But $q_n = 1$ is impossible because $q \ge 5$. The case $q = q_n + 1$ does not satisfy $q > q_{n+1}$.

If $q_{n,r-1} < q < q_{n,r}$ for some integers *n* and $r \ge 2$, then, by the Sublemma, $\{q_{n,r-1}\alpha\} < \{q\alpha\} < \{q_{n,r}\alpha\}$. So, $q_{n,r-1} = 1$ or $q_{n,r-1} = q-1$. But $q_{n,r-1} = 1$ is impossible because $q \ge 5$. Suppose that $q_{n,r-1} = q-1$. Since

$$\{q_{n,r-1}\alpha\} < \{((r-2)q_{n+1}+q_n)\alpha\} < \{(q_{n,r-1}+1)\alpha\} = \{q\alpha\},\$$

we must have $(r-2)q_{n+1}+q_n = 1$, yielding r = 2. Hence, n = 0. Similarly, we have n = 1 and $a_1 = 1$ when *n* is odd. Therefore, $q = q_{0,1} + 1 = q_1 + 2$ if $a_1 \ge 3$; $q = q_{1,1} + 1 = q_2 + 2$ if $a_1 = 1$ and $a_2 \ge 2$.

But it is not so easy to describe all the palindromes for general $m \ge 3$. It is convenient to use the following Lemma to find the extra palindromes in addition to those appearing in the Corollary.

Lemma 3: Let $q \neq q_{n,r}$ for any integers *n* and *r*. Suppose that the sequence $\{\alpha\}, \{2\alpha\}, ..., \{q\alpha\}$ is sorted as

$$\{u_1\alpha\} < \{u_2\alpha\} < \dots < \{u_k\alpha\} < \{q\alpha\} < \{u_{k+1}\alpha\} < \dots < \{u_{a-1}\alpha\}, \dots < \{u_{a$$

where $\{u_1, u_2, ..., u_k, u_{k+1}, ..., u_{q-1}\} = \{1, 2, ..., q-1\}$. Put

$$M = \max_{i \le j \le k} \min(u_j, q - u_j)$$
 and $M' = \max_{k+1 \le j \le q-1} \min(u_j, q - u_j)$.

If $q \ge 2M+3$, then $(\Delta_m, ..., \Delta_{q-m+1})$ is palindromic with m = M+2, M+3, ..., $\lfloor (q+1)/2 \rfloor$. If $q \ge 2M'+3$, then $(\Delta_m, ..., \Delta_{q-m+1})$ is palindromic with m = M'+2, M'+3, ..., $\lfloor (q+1)/2 \rfloor$.

Remark: The conditions $q \ge 2M+3$ and $q \ge 2M'+3$ do not hold simultaneously. For, either M = q/2 or M' = q/2 when q is even; either M = (q-1)/2 or M' = (q-1)/2 when q is odd. It is possible that both conditions fail for some q's.

Proof: First of all, notice that $\{k\alpha\}$ and $\{(q-k)\alpha\}$ lie on the same side of $\{q\alpha\}$. If $\{k\alpha\} < \{q\alpha\} < \{(q-k)\alpha\}$, then $\{q\alpha\} < \{k\alpha\} + \{(q-k)\alpha\} < \{q\alpha\} + 1$, yielding a contradiction because $\{k\alpha\} + \{(q-k)\alpha\}$ must be either $\{q\alpha\}$ or $\{q\alpha\} + 1$. Now, since $\{M\alpha\} < \{q\alpha\} < \{k\alpha\}$ $(k = M + 1, M + 2, ..., \lfloor (q+1)/2 \rfloor$, we have

$$\{M\alpha\} + \{(q-M)\alpha\} < \{q\alpha\} + 1 \text{ and} \\ \{k\alpha\} + \{(q-k)\alpha\} > \{q\alpha\} \ (k = M+1, M+2, \dots, \lfloor (q+1)/2 \rfloor),\$$

yielding

$$\{M\alpha\} + \{(q-M)\alpha\} = \{q\alpha\}$$
 and
 $\{k\alpha\} + \{(q-k)\alpha\} = \{q\alpha\} + 1 \ (k = M+1, M+2, ..., \lfloor (q+1)/2 \rfloor).$

FEB.

Together with Lemma 1 we have the desired result. The proof for M' is similar and is omitted here.

Example 2: Let $\alpha = (\sqrt{29} + 5)/2 = [5, 5, 5, ...]$. Then the sequence $\{\alpha\}, \{2\alpha\}, ..., \{483\alpha\}$ is sorted as

$$\{431\alpha\} < \{290\alpha\} < \{101\alpha\} < \{20\alpha\} < \{457\alpha\} < \{322\alpha\} < \{187\alpha\} < \{52\alpha\} < \{483\alpha\} < \underbrace{\dots,\dots,\dots}_{all the others} < \{327\alpha\} < \{192\alpha\} < \{57\alpha\} < \{353\alpha\} < \{218\alpha\} < \{83\alpha\} < \{379\alpha\} < \{244\alpha\} < \{109\alpha\} < \{405\alpha\} < \{270\alpha\} < 135\alpha\}.$$

When q = 483, $M = \max(52, 187, 161, 26) = 187$, and $q \ge 2M + 3$. By Lemma 3, $(\Delta_m, \Delta_{m+1}, \Delta_{q-m+1})$ is palindromic for q = 483 with $m = 189, 190, \dots, 242$ only. Of course, M' = 241 does not satisfy the condition $q \ge 2M' + 3$.

When q = 462, $M = \max(135, 192, 57, 109, 218, 83) = 218$, and $q \ge 2M + 3$. By Lemma 3, $(\Delta_m, \Delta_{m+1}, \Delta_{q-m+1})$ is palindromic only for q = 462 with m = 220, 221, ..., 231.

HOW TO FIND M OR M' IN LEMMA 3

Lemma 3 shows that once M or M' is given for an arbitrary positive integer q with $q \neq q_{n,r}$, all the palindromes $(\Delta_m, ..., \Delta_{q-m+1})$ can be discovered without omission. It is, however, tiresome to sort the sequence $\{\alpha\}, \{2\alpha\}, ..., \{q\alpha\}$ as seen in Example 2. In fact, M or M' can be determined without any real sorting.

Consider the general integer q with $q \neq q_{n,i}$ for arbitrary integers n and i. For example, put $q = rq_{n+1} + jq_n$ $(r = 1, 2, ..., a_{n+2}; j = 2, 3, ..., a_{n+1})$. Then, since

$$\{ (rq_{n+1}+q_n)\alpha \} < \dots < \{ (q_{n+1}+q_n)\alpha \} < \{q_n\alpha \} \\ < \{ (rq_{n+1}+2q_n)\alpha \} < \dots < \{ (q_{n+1}+2q_n)\alpha \} < \{2q_n\alpha \} < \dots \\ < \{ (rq_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \{jq_n\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \{jq_n\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \{jq_n\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \{jq_n\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \{jq_n\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \{jq_n\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \{ (q_{n+1}+jq_n)\alpha \} < \{ (q_{n+1}+jq_n)\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots < \{ (q_{n+1}+jq_n)\alpha \} < \dots \\ < (q_{n+1}+jq_n)\alpha \} < \dots \\ < \{ (q_{n+1}+jq_n)\alpha \} < \dots \\ < (q_{n+1}+jq_n)\alpha \} < \dots$$

when n is even (the order is reversed, and M' replaces M, when n is odd; cf. [5]). M in Lemma 3 can be determined by

$$M = \begin{cases} (r-1)q_{n+1}/2 + (j-1)q_n & \text{if } r \text{ is odd,} \\ (rq_{n+1} + (j-1)q_n)/2 & \text{if } r \text{ is even and } j \text{ is odd,} \\ (rq_{n+1} + jq_n)/2 & \text{if } r \text{ is even and } j \text{ is even} \end{cases}$$

The condition in Lemma 3, $q \ge 2M+3$, is satisfied if $q_{n+1} \ge (j-2)q_n+3$ (r: odd); $q_n \ge 3$ (r: even, j: odd). But this condition is never satisfied if r is even and j is even.

Similarly, for $q = rq_{n+1} + jq_n - iq_{n-1}$ $(r = 1, 2, ..., a_{n-2}; j = 2, 3, ..., a_{n+1}; i = 1, 2, ..., a_n)$, we have

 $M = \begin{cases} (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 0 \pmod{2}, i: \text{ even;} \\ (rq_{n+1} + jq_n - iq_{n-1})/2 & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 0 \pmod{2}, i: \text{ odd;} \\ (rq_{n+1} + (j-1)q_n - q_{n-1})/2 & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 1 \pmod{2}; \\ (rq_{n+1} + (j-1)q_n)/2 & \text{if } r: \text{ even, } j: \text{ odd;} \\ (rq_{n+1} + jq_n - iq_{n-1})/2 & \text{if } r: \text{ even, } j: \text{ odd;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even, } j: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even, } j: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even, } j: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} + jq_n - (i+1)q_{n-1})/2 & \text{if } r: \text{ even;} \\ (rq_{n+1} +$

And the condition $q \ge 2M + 3$ is satisfied when

$$\begin{cases} q_{n-1} \ge 3 & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 0 \pmod{2}, i: \text{ even;} \\ \text{never satisfied} & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 0 \pmod{2}, i: \text{ odd;} \\ q_n \ge (i-1)q_{n-1} + 3 & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 1 \pmod{2}; \\ q_n \ge iq_{n-1} + 3 & \text{if } r: \text{ even, } j: \text{ odd;} \\ \text{never satisfied} & \text{if } r: \text{ even, } j: \text{ odd;} \\ never satisfied} & \text{if } r: \text{ even, } j: \text{ even;} i: \text{ even;} \\ q_{n-1} \ge 3 & \text{if } r: \text{ even, } j: \text{ odd.} \end{cases}$$

Next, put $q = rq_{n+1} - jq_n$ $(r = 1, 2, ..., a_{n+2} + 1; j = 0, 1, ..., a_{n+1})$. Then M in Lemma 3 can be determined by

$$M = \begin{cases} (r-1)q_{n+1}/2 & \text{if } r \text{ is odd,} \\ (rq_{n+1} - (j+1)q_n)/2 & \text{if } r \text{ is even and } j \text{ is odd,} \\ (rq_{n+1} - jq_n)/2 & \text{if } r \text{ is even and } j \text{ is even,} \end{cases}$$

because

$$\{q_{n+1}\alpha\} < \{2q_{n+1}\alpha\} < \dots < \{rq_{n+1}\alpha\} < \{(q_{n+1}-q_n)\alpha\} < \{(2q_{n+1}-q_n)\alpha\} < \dots < \{(rq_{n+1}-q_n)\alpha\} < \{(q_{n+1}-2q_n)\alpha\} < \{(2q_{n+1}-2q_n)\alpha\} < \dots < \{(rq_{n+1}-2q_n)\alpha\} < \dots < \{(q_{n+1}-jq_n)\alpha\} < \{(2q_{n+1}-jq_n)\alpha\} < \dots < \{(rq_{n+1}-jq_n)\alpha\} < \dots$$

when n is odd (the order is reversed, and M' replaces M, when n is even).

The condition $q \ge 2M + 3$ is satisfied when

$$\begin{cases} q_{n+1} \ge jq_n + 3 & \text{if } r \text{ is odd,} \\ q_n \ge 3 & \text{if } r \text{ is even and } j \text{ is odd,} \\ \text{never satisfied} & \text{if } r \text{ is even and } j \text{ is even.} \end{cases}$$

Similarly, for $q = rq_{n+1} - jq_n + iq_{n-1}$ $(r = 1, 2, ..., a_{n+2} + 1; j = 0, 1, ..., a_{n+1}; i = 0, 1, ..., a_n)$, we have

$$M = \begin{cases} (rq_{n+1} - jq_n + (i-1)q_{n-1})/2 & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 0 \pmod{2}, i: \text{ even;} \\ (rq_{n+1} - jq_n + iq_{n-1})/2 & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 0 \pmod{2}, i: \text{ odd;} \\ (rq_{n+1} - (j+1)q_n + (2i-1)q_{n-1})/2 & \text{if } r: \text{ odd, } j + a_{n+1} \equiv 1 \pmod{2}; \\ (rq_{n+1} - (j+1)q_n + 2iq_{n-1})/2 & \text{if } r: \text{ even, } j: \text{ odd;} \\ (rq_{n+1} - jq_n + iq_{n-1})/2 & \text{if } r: \text{ even, } j: \text{ even; } i: \text{ even;} \\ (rq_{n+1} - jq_n + (i-1)q_{n-1})/2 & \text{if } r: \text{ even; } j: \text{ even; } i: \text{ even;} \end{cases}$$

The condition $q \ge 2M + 3$ is satisfied when

 $\begin{cases} q_{n-1} \ge 3 & \text{if } r: \text{ even, } j + a_{n+1} \equiv 0 \pmod{2}, i: \text{ even;} \\ \text{never satisfied} & \text{if } r: \text{ even, } j + a_{n+1} \equiv 0 \pmod{2}, i: \text{ odd;} \\ q_n \ge (i-1)q_{n-1} + 3 & \text{if } r: \text{ even, } j + a_{n+1} \equiv 1 \pmod{2}; \\ q_n \ge iq_{n-1} + 3 & \text{if } r: \text{ odd, } j: \text{ odd;} \\ \text{never satisfied} & \text{if } r: \text{ odd, } j: \text{ even; } i: \text{ even;} \\ q_{n-1} \ge 3 & \text{if } r: \text{ odd, } j: \text{ even, } i: \text{ odd.} \end{cases}$

Generally speaking, M (or M') in Lemma 3 can be determined as follows.

Lemma 4: If
$$M = (\dots - uq_{N+1} + (s-1)q_N)/2$$
 for $q = \dots - uq_{N+1} + sq_N$, then $M = (\dots - uq_{N+1} + (s-1)q_N)/2$ for $q = \dots - uq_{N+1} + sq_N - tq_{N-1}$ ($t = 1, 2, \dots, a_N$).
If $M = (\dots - uq_{N+1} + sq_N)/2$ for $q = \dots - uq_{N+1} + sq_N$, then

$$M = \begin{cases} (\dots - uq_{N+1} + sq_N - tq_{N-1})/2 & \text{if } t \text{ is even,} \\ (\dots - uq_{N+1} + sq_N - (t+1)q_{N-1})/2 & \text{if } t \text{ is odd,} \end{cases}$$

for $q = \dots - uq_{N+1} + sq_N - tq_{N-1}$. If $M = (\dots - (u+1)q_{N+1} + (2s-1)q_N)/2$ for $q = \dots - uq_{N+1} + sq_N$, then $M = \begin{cases} (\dots - uq_{N+1} + sq_N - tq_{N-1})/2 & \text{if } s + a_{N+1} \equiv 1 \pmod{2} \text{ and } t \text{ is odd,} \\ (\dots - uq_{N+1} + sq_N - (t+1)q_{N-1})/2 & \text{if } s + a_{N+1} \equiv 1 \pmod{2} \text{ and } t \text{ is even,} \\ (\dots - uq_{N+1} + (s-1)q_N - q_{N-1})/2 & \text{if } s + a_{N+1} \equiv 0 \pmod{2}, \end{cases}$

for $q = \cdots - uq_{N+1} + sq_N - tq_{N-1}$.

If $M = (\dots - (u+1)q_{N+1} + 2sq_N)/2$ for $q = \dots - uq_{N+1} + sq_N$, then

$$M = \begin{cases} (\dots - uq_{N+1} + sq_N - tq_{N-1})/2 & \text{if } s + a_{N+1} \equiv 0 \pmod{2} \text{ and } t \text{ is odd,} \\ (\dots - uq_{N+1} + sq_N - (t+1)q_{N-1})/2 & \text{if } s + a_{N+1} \equiv 0 \pmod{2} \text{ and } t \text{ is even,} \\ (\dots - uq_{N+1} + (s-1)q_N - q_{N-1})/2 & \text{if } s + a_{N+1} \equiv 1 \pmod{2}, \end{cases}$$

for $q = \dots - uq_{N+1} + sq_N - tq_{N-1}$.

Lemma 4': If $M = (\dots + uq_{N+1} - (s+1)q_N)/2$ for $q = \dots + uq_{N+1} - sq_N$, then $M = (\dots + uq_{N+1} - (s+1)q_N + 2tq_{N-1})/2$ for $q = \dots + uq_{N+1} - sq_N + tq_{N-1}$ $(t = 1, 2, \dots, a_N)$. If $M = (\dots + uq_{N-1} - sq_N)/2$ for $q = \dots + uq_{N-1} - sq_N$ then

If $M = (\dots + uq_{N+1} - sq_N)/2$ for $q = \dots + uq_{N+1} - sq_N$, then

$$M = \begin{cases} (\dots + uq_{N+1} - sq_N + tq_{N-1})/2 & \text{if } t \text{ is even,} \\ (\dots + uq_{N+1} - sq_N + (t-1)q_{N-1})/2 & \text{if } t \text{ is odd,} \end{cases}$$

for $q = \dots + uq_{N+1} - sq_N + tq_{N-1}$. If $M = (\dots + (u-1)q_{N+1} - q_N)/2$ for $q = \dots + uq_{N+1} - sq_N$, then $M = \begin{cases} (\dots + uq_{N+1} - sq_N + tq_{N-1})/2 & \text{if } s + a_{N+1} \equiv 1 \pmod{2} \text{ and } t \text{ is odd,} \\ (\dots + uq_{N+1} - sq_N + (t-1)q_{N-1})/2 & \text{if } s + a_{N+1} \equiv 1 \pmod{2} \text{ and } t \text{ is even,} \\ (\dots + uq_{N+1} - (s+1)q_N + (2t-1)q_{N-1})/2 & \text{if } s + a_{N+1} \equiv 0 \pmod{2}, \end{cases}$

for $q = \dots + uq_{N+1} - sq_N + tq_{N-1}$. If $M = (\dots + (u-1)q_{N+1})/2$ for $q = \dots + uq_{N+1} - sq_N$, then

$$M = \begin{cases} (\dots + uq_{N+1} - sq_N + tq_{N-1})/2 & \text{if } s + a_{N+1} \equiv 0 \pmod{2} \text{ and } t \text{ is odd,} \\ (\dots + uq_{N+1} - sq_N + (t-1)q_{N-1})/2 & \text{if } s + a_{N+1} \equiv 0 \pmod{2} \text{ and } t \text{ is even,} \\ (\dots + uq_{N+1} - (s+1)q_N + (2t-1)q_{N-1})/2 & \text{if } s + a_{N+1} \equiv 1 \pmod{2}, \end{cases}$$

for $q = \cdots + uq_{N+1} - sq_N + tq_{N-1}$.

Example 3: There is a reason for our providing two alternative expressions for each integer q. For instance, let

$$\alpha = \frac{\sqrt{29} + 5}{2} = [5; 5, 5, 5, \dots].$$

For $q = 3q_2 - q_1 + 4q_0 = 3 \cdot 26 - 5 + 4 \cdot 1 = 77$, we have $M = (3q_2 - q_1 + 3q_0)/2 = 38$, not satisfying $q \ge 2M + 3$. However, for $q = 2q_2 + 5q_1 = 77$, we obtain $M' = (2q_2 + 4q_1)/2 = 36$, satisfying $q \ge 2M' + 3$ and leading to the conclusion that $(\Delta_m, \dots, \Delta_{q-m+1})$ is palindromic for q = 77 with m = 38 and 39.

SUMMARY

When $q = q_{n,r}$, the palindromic sequences $(\Delta_m, ..., \Delta_{q-m+1})$ can be found by Theorem 1, 2, 3, 4, or the Corollary. When $q \neq q_{n,r}$, all the other palindromes can be discovered by Lemma 3 with Lemma 4 and Lemma 4'.

REFERENCES

- 1. X. Droubay. "Palindromes in the Fibonacci Word." Inform. Process. Lett. 55 (1995):217-221.
- 2. C. Kimberling. "Palindromic Sequences from Irrational Numbers." *The Fibonacci Quarterly* **36.2** (1998):171-73.
- 3. S. Lang. Introduction to Diophantine Approximations. New expanded ed. New York: Springer-Verlag, 1995.
- 4. A. de Luca & F. Mignosi. "Some Combinatorial Properties of Sturmian Word." *Theoret.* Comp. Sci. 136:361-85.
- 5. T. van Ravenstein. "The Three Gap Theorem (Steinhaus Conjecture)." J. Austral. Math. Soc. (Ser. A) 45 (1988):360-70.

AMS Classification Numbers: 11J70, 11B39

74