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1. INTRODUCTION 

A Lucas cube 3^ can be defined as the graph whose vertices are the binary strings of length 
n without either two consecutive l's or a 1 in the first and in the last position, and in which the 
vertices are adjacent when their Hamming distance is exactly 1. A Lucas cube 5E„ is very similar 
to the Fibonacci cube Tn which is the graph defined as 2J, except for the fact that the vertices are 
binary strings of length n without two consecutive ones. The Fibonacci cube has been introduced 
as a new topology for the interconnection of parallel multicomputers alternative to the classical 
one given by the Boolean cube [4]. An attractive property of the Lucas cube of order n is the 
decomposition, which can be carried out recursively into two disjoint subgraphs isomorphic to 
Fibonacci cubes of order n-\ and n-3; on the other hand, the Lucas cube of order n can be 
embedded in the Boolean cube of order n. This implies that certain topologies commonly used, as 
the linear array, particular types of meshes and trees and the Boolean cubes, directly embedded in 
the Fibonacci cube, can also be embedded in the Lucas cube. Thus, the Lucas cube can also be 
used as a topology for multiprocessor systems. 

Among many different interpretations, Fn+2 can be regarded as the cardinality of the set 
formed by the subsets of {1,...,«} which do not contain a pair of consecutive integers; i.e., the set 
of the binary strings of length n without two consecutive ones, the Fibonacci strings. 

If C„ is the set of the Fibonacci strings of order n, then Cn+2 = 0Cn+1 + \0Cn and \C„\ = Fn+2. 
A Lucas string is a Fibonacci string with the further condition that there is no 1 in the first 

and in the last position simultaneously. If C„ is the set of Lucas strings of order n, then \Cn\ = Ln, 
where Ln are the Lucas numbers for every n> 0. For n>\Ln can be regarded as the cardinality 
of the family of the subsets of {1, ...,n} without two consecutive integers and without the couple 
l,n. We have 

The Fibonacci cube Tn of order n is the bipartite graph whose vertices are the Fibonacci strings 
and two strings are adjacent when their Hamming distance is 1. Based on the decomposition of 
Cn9 a Fibonacci cube of order n can be decomposed into a subgraph F„_1? a subgraph Tn_2 and 
Fn_2 edges between the two subgraphs; this decomposition is represented by the relation Tn = 
Fw_! +TW_2. In a similar way, it is easy to decompose the set Cn+3 into the sum 0Cn+2 + 10Q0 
and, therefore, to write £„ = Tn_i +r„_3. 

In Figure 1, we draw £„ for the first values of n; the circled vertices denote the vertices in Yn 

that are not in <££,. 

12 [FEB. 



ON THE LUCAS CUBES 

FIGUME 1 

In this paper we determine structural and enumerative properties of the Lucas cubes such as 
the independence, numbers of edges and vertices, the radius, the center, the generating function of 
a sequence of numbers connected to the partite sets, the asymptotic behavior of the ratio of the 
numbers of edges and vertices. A consequence of the properties on the independence numbers is 
that Xn is not Hamiltonian. Moreover, we obtain some identities involving Fibonacci and Lucas 
numbers which seem to be new. Finally, we introduce the Lucas semilattice and found its char-
acteristic polynomial. 

2* GENERAL PROPERTIES 

The following identities hold: Ln = Fn+l + Fn_l = Fn+2 - Fn_2. For each of them there exists an 
immediate combinatorial interpretation in terms of Lucas cubes. The first says that the Lucas 
strings of length n beginning with 0 consist of the element 0 followed by any Fibonacci string of 
length n-1, while the Lucas strings beginning with 1 must start with the couple 10 and end with 
0, and haive any Fibonacci string of length (n- 3) between 10 and 0. 

The second equality says that the Lucas w-strings are merely the Fibonacci 71-strings not 
beginning and ending with the couple 10 and 01 simultaneously, and consisting of any Fibonacci 
(n - 4) -string between these two extremal couples. 

Using the first construction, we notice that the edges of Xn connecting pairs of vertices of 
Tn_t (resp. r„_3) are just the edges ofTn_l (resp. Tn_3); moreover, for any vertex v ofTw_3 there is 
exactly one edge connecting it to a vertex of T„_l5 i.e., the edge connecting lOvO to OOvO. Let fn 

and /„ denote the cardinalities of the edge sets of Tn and <££„, respectively. Thus, 
ln=fn-l+fn-3+Fn-l 

for n > 3; moreover, by direct computation we have lx = 0, /2 = 2. 
Since /„ = fn_x + fn_2 + F„, where n > 2, f0 = 0, fx = 1, we have immediately fn_x <!„</„. 
We will prove the following properties, analogous to the ones proved in [6] for the Fibonacci 

cubes. 
The eccentricity of a vertex v in a connected graph G is the maximum distance between v and 

the other vertices, i.e., the number 
e(v):= max d{%v)\ 

veV(G) 

the diameter of G is the maximal eccentricity when v runs in G, i.e., 
diam(G):= max e(v)= max d(u, v) 

ueV(G) u,veV(G) 

the radius of G is the minimum eccentricity of the vertices of G, i.e., 
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rad(G):= min e(v). 
ueV(G) 

A vertex v is central if e(y) = rad(G); the center Z(G) of G is the set of all central vertices; a 
string a = [al9..., an] is said to be symmetric if a, = an_t for i = 1,..., n. 

For every «, we have that the diameter of 9n if equal to n; it is easy to prove that 

,,. . [n for n even, 
diam(<g„) = ' 

\n-l for n odd. 
Moreover, we have the following proposition. 

Proposition 1: The number of pairs of vertices at distance equal to the diameter is 1 for n even, 
n -1 for n odd. 

Proof: Let n be even. The strings having 1 in all the odd or even positions are clearly at 
distance n and they are the only possible strings at distance n. 

Let n be odd. We partition the strings having - ^ ones into two sets A and B, depending on 
whether the first element is 1 or 0. Assume that a string starts with 1; then it is possible to 
decompose it into - ^ subsequences 10 and one 0. This element 0 can be put after a subsequence 
10 into - ^ ways. Clearly, similar considerations hold for the strings starting with 0. The differ-
ence now is that there are ^ subsequences 01 and one 0 and the 0 can be put after the sub-
sequences 01 in - ^ positions and also before the first 01, i.e., into - ^ positions. In any case, 
every string contains only one substring 00. A string of the first set has two strings of the second 
set at distance w-1 , according to the position of 1 in the subsequence corresponding to 00. 
Thus, we obtain 2 • - ^ pairs of vertices at distance n - 1 . 

Theorem 1: For n > 1, any Lucas cube Xn satisfies the following properties: 

fi) rad(^)=[fJ-
(ii) Z(%n)={0}. 

Proof: (i) The distance d(v, 6) is the number of the elements 1 in the string v; hence, 
e(b) = j if n is even and e(0) = ^ if n is odd. 

If v & 6, let k denote the number of the elements 1 in the string v. The set of the 0's (with the 
order induced by v) can be regarded as a Lucas string of length n-k and precisely as the 
6 G Xn_k . In order to prove that e(v) > [ f j , we consider the string v* obtained by replacing the k 
elements 1 with 0 and the set of the 0*s with a Lucas string of length n-k at maximal distance 
from 0. Then v* e X„ and we have 

:LfJ n-kevmP 

:[fj n-k odd. —L¥>R2 
(ii) The previous construction of v* shows that e(v) > e(0) for k > 1 or for n odd. If k = 1 

and n is even, we replace v* with the string v** defined in the following way: let h be the number 
of 0's on the left of the element 1 and / the number of 0's on the right. Without loss of generality, 
we can assume that h is even and / is odd. Let us replace the /-sequence of 0*s, regarded as 0 e r/? 
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by a Fibonacci string /3 with maximal distance from 6 and replace the /i-sequence of O's, regarded 
as 0 G Xh , by the Lucas string a obtained by concatenating j couples 01. 

The sequence v** = (a0j3) is again a Lucas string whose distance from v is greater than [f J. 
Indeed, 

7~ «*(v,v-) = ! + l + 2 2 2 2 

We have already noticed that the distance d(v, 6) is the number of the l's in the string v. 
Thus, the summands in equality (I) can be regarded as the cardinalities of the sets of the w-strings 
at distance k from 6. Now, if n is odd, in % there are - ^ strings starting with 1 and - ^ strings 
starting with 0 at maximum distance - ^ from 6. Hence, the number N of Lucas strings of order 
n odd having maximal eccentricity is 

Ar n-l , n + \ 
2 2 

Then, in equality (1), the summand for k = - ^ becomes 2 

\ 
n 2 

n-l 
V 2 J 

n±i~n 

2 

and we obtain a new combinatorial interpretation of the well-known identity 

n-l 9 
V 2 J L 

Theorem 2: The number of symmetric Lucas strings of Xn is sim Xn =EtL L ^ , ^ * • 

Proof: Let n be even. In this case, we will write n = 2m + 2, m>0. Any symmetric string 
must begin and end with 0 and have in its center a couple 00; hence, sim ^2m+2 ~ Fm+v Now let n 
be odd, n = 2m + 3, m>0. The symmetric strings having at the center 1 must have as center the 
triple 010 and two other O's as extremal. The symmetric strings having at the center 0 satisfy the 
only condition of having two O's as extremals; hence, simS2OT+3 =Fm+l + Fm+2 = Fm+3. In both 
cases, the statement holds. D 

3, ENUMERATIVE PROPERTIES 

In [6] we denoted by En and On the sets of Fibonacci strings having an even or odd number 
of l's, the partite sets of Tn, and by en, on their cardinalities. Now we use analogous notations. 
Thus, we denote by En and On the sets of vertices of Xn having an even or odd number of ones. 
Their cardinalities en and 6n are 

k>0 V 

n-2k\ n 
2k )n-2k 

and (2) 
A . in i V fn-2k-l\ n 

k>0 

where n > 2 and obviously en+6n = Ln. 
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Remark: The Lucas cubes !£n are defined properly only for n > 1; however, we shall define also 
(?0 as the set formed by the string of length 0, i.e., the empty set. Since in an empty string there 
are no l's, we set e0 = 1 and oQ = 0. 

Using the construction related to the equality Ln =Fn+1+Fn_1, we see that the even (odd) 
vertices of Tn_x remain even (resp. odd) also in !£n. In fact, by adjoining 0 before the strings of 
rw_j, the number of l's is not changed. On the contrary, the vertices of Tn_3 becoming vertices of 
Xn change parity, because one element 1 is adjoined to their strings. 

Furthermore, we have immediately the following relations: 
en = en_l + on_3 and dn = on_l + en_3. (3) 

In [6] it was proved that 

K+2 = 4+i ~K K+3 = ~K and hn+6 = hn. (4) 

Consider hn:=en-6n. From (3) and (4), it follows immediately that 4+3 = K+2 ~K= ~ 4 m& 
4 = K-i ~ K-3 - 4 - i " 4-2 • Moreover, we have the following theorem. 

Theorem 3: The sequence {hn} satisfies the properties: 
(i) hn+6 =hn,n>\, and the repeated values are 1, - 1 , - 2, -1,1,2. 
(ii) The generating function of nn is H(x) = l

 2 . 

Proof: (i) 4+6 = ~4+3 = 4 - % direct computation, we have: et = l, 6l = 0; thus, J\ - 1. 
e2 = 1, c*2 = 2; thus, h2=-l. e3 = 1, Oj = 3; thus, /% = -2 . Also, h4 = -hx = - 1 , h5 = -h2 = 1, and 
h6 =—«3 = 2. From the settings in the Remark, we have h0 = 1. 

(ii) LetH(x):=i:™=0h„x". We have 

xH(x) = £ 4 * " + 1 and x2H(x) = J^h„x"+2. 
«=0 «=0 

Then it follows that 
oo 

(i-x+x2)#(x) = 4 + ( 4 - 4 ^ a 
«=2 

The first values of these sequences are 

n 

k 4 
e» 
o„ 

4 

0 

(1) 

(0) 

(1) 

1 

1 

1 

1 

0 

1 

2 

1 

3 

1 

2 

-1 

3 

2 

4 

1 

3 

-2 

4 

3 

7 

3 

4 

-1 

5 

5 

11 

6 

5 

1 

6 

8 

18 

10 

8 

2 

7 

13 

29 

15 

14 

1 

8 

21 
47 

23 

24 

-1 

9 

34 

76 

37 

39 

-2 

10 

55 

123 

61 

62 

-1 

Remark: A standard argument enables us to obtain identities concerning positive integers starting 
from generating functions. In fact, we have, identically, 
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A +-B 
1-x + x2 I-ax ' 1-fix' 

where 

which implies 
a — _ , / > - - ^ - , ^ = ̂ — > 5 = — — 

1 = ^ ( l + m + a2x2 + '..) + ̂ ( l + ^ + ^ 2 + '4") l - x + x2 

= l + ( ^a + 5^)x + ( ^ a 2 + ^ 2 ) x 2 + --s 

hence, hn = Aan + Bj3n for all /i. Thus, for any w e N, we have 

^a6 w + 1 + 5/?6w+1 = l, Aaen^2+B^m¥2 = -\ Aa6m+3+B/fm+3 = -2, 
Aa6m+4 + Bj36m+4 = -l, Aa6m+5+Bfm+5 = l, Aa6m+B06m =2 

(in accord with the fact that a3 = ft3 = -1). Combining the equalities hn = en-6n and en +6n = Ln, 
we obtain 

"\Y (5) 
un 2 • 

From (2) and (5), we have immediately the following identities concerning the Lucas numbers. 

Proposition 2: 

In [6] it was proved that 
h„ = 2e„-Fn+2.* (6) 

Furthermore, from (4) and (6) we can obtain the following proposition. 

Proposition 3: 
r\ J7 ^ (n + 3-2k\ n + 3 v (n + 3-2k\, v (n + l-2k^ (l) F"+2 = LV 2k J^3=2F"4l 2k ) + £.[ 2* , 

Proof: Let 

v_ V (n-2k\n_ v , _v ffl-2£ -A ft 
S = 4 l 2* J^Z2T' L =4l 2* + l J^2F^i-

* Indeed in [6] this equality is written hn =2en-Fn because in [6] the Fibonacci numbers are defined by the 
recurrence F0 = 1, Fx = 2, Fw+2 = Fn+l + Fn. 
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We have A, = 2 S - ^ _ 1 + ^ _ 3 = 2E-2e„_1+F„+1+2e„_3-F„_1, 

and so the first statement is proved; moreover, we have L„ =2£'+/^_1-/^_3 = 21' + 2en_l-
Fn+1-2en_3 +F„_U thus we have 

17 - y . ^ a - V (n-2k-l\ n , ^ (n-2k\ v (n-2-2k\ 

hence the second statement is proved. D 

4. INDEPENDENCE NUMBERS 

Recall that in a connected graph the vertex independence number J30(G) is the maximum 
among all cardinalities of independent sets of vertices of G, the edge independence number fii(G) 
is the maximum among all cardinalities of independent sets of edges of G. We have the following 
theorem. 

Theorem 4: Let P\{&n) be the edge independence number of Xn. Then 

4-1 
2 

Proof: Let Ln be odd. Since Ln = Fn+l + Fn_u then Fn+l and Fn_x have different parities. In 
[5] it was proved that the Fibonacci cubes have a Hamiltonian cycle in the case of an even number 
of vertices and a cycle containing all the vertices but one in the odd case [5]. Thus, it is possible 
to determine ^ - independent edges; since this is the maximum, the result holds. 

When Zft is even, it follows from the sequences of Fibonacci and Lucas numbers that Fn+l 

and Fn_x are both odd. In this case, the Fibonacci cubes Tn_x and Tw_3 have cycles of length 
Fn+i-l and Fn_x-\, respectively, and we can find ^f^ independent edges. By Theorem 3, we 
have \en-on\-2 when L„ is even. Then the order of one of the partite sets is ^^- , which coin-
cides with the maximal number of independent edges. Thus, the maximum number of independent 
edges is exactly ^y^-. • 

We immediately have the following. 

Corollary 1: Xn is not Hamiltonian. 

Proof: It is obvious in the case of L„ odd. In the even case, it follows from Theorem 4 that 
the maximum number of independent edges is ^f^. This excludes that Xn is Hamiltonian. D 

Corollary 2: /?i(££w) = min(e„, 6n). 

Proof: From Theorem 3, it follows that \en - 6n | is equal to 1 or 2, depending on whether Ẑ  
is odd or even. Since Ln = e„+6n, \Jljr-] coincides with min(e„,<3„). The result follows from 
Theorem 4. • 

We are now able to prove the following theorem, analogous to the one in [6]. 
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Theorem 5: Let fiQ{X„) b e t h e vertex Independence number of Xn. Then J3Q(£n) = max(ew, 6n). 

Proof: By Theorem 3, en and on are always distinct. Without loss of generality, we can 
assume en < 6n. Thus, by Theorem 4 and Corollary 2, Xn contains en independent edges and 
every vertex v e En can be paired with a vertex v e O r This implies that a set A of independent 
vertices cannot have cardinality greater than o„, because both v and v cannot belong to A. D 

5. ASYMPTOTIC BEHAVIOR 

For the applications, it seems to be useful to consider the indices 

and their asymptotic behavior. In order to prove that l i m ^ ^ X ^ ) =+oo, it is convenient to 
express /„ and /„ in a direct way instead of by recurrence, for instance, by writing 

Proposition 4: The following equalities hold: 
(i) fn="Fn+l+2(n+i)F„ f o r ^ 2 ; 

(ii) ln = nFn__x for n > 3. 

Proof: (i) Indeed, 

Now assume by induction that 
, _{n-\)Fn+2nFn_l . _ (w-2)F„_l + 2(»- l ) iy 2 

Jn+l ~ 5 a n a /n-2 - 5 • 
Then 

f - / +/• | F - (»+4)F„+»F W _ 1 + (2H-2)(F„_1 + F„_2) _ (2n + 2)Fn+n(F„ + Fn_l) 
Jn - Jn-l + Jn-2 +rn ~ 5 - 5 • 

(») ln = fn-l+fn-l+Fn-l 

^(n- \)F„ + 2nFn.l + {n - 3)F„_2 + 2(» - 2)F„_3 + 5Fn_, 
5 

= (3n + 4)F„_! + (2» - 4)F„_2 + (2» - 4) j y 3 = ^ D 

Furthermore, we recall that 

Fn = ̂ f- wd L„ = f + f, (7) 

(where ^ = (1 + V5) / 2 and $ = (1 - V5) / 2). Then we have 

Theorem 6: 
(i) /(r„_1)</(S„)</(r„). 

(ii) limnHh00/(S„) = +oo. 
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Proof: (i) We have to prove that fn-iLn < l„Fn+l and l„Fn+2 < fnLn and that these inequalities 
are part of an increasing sequence of positive integers: 

Now let an : = f„Fn+l -f„-iF„+2. We begin by showing that an > 0. Indeed, by direct computation 
we have ax = fxF2-fQF^ = l,a2 = f2F3-fxF4 = 1, and for n > 3, 

an = JU*Wl + ^ + 1 ^ " A - A = fn-2Fn-l ~ fn-3Fn + Fn = ®n-2 + * ? > ^ - 2 • 

In order to prove the first inequality, we have 

4^+1 -fn-lLn = (A-l + fn-3 + Fn-l)Fn+\ ~ fn-\(Fn+\ + ^ - l ) 
= (/„_3 + i^_!)i^+1 - fn-iF

n-\ 

= (A_3 + ^ i X ^ + ^ l ) - 0 , -2 +A-3 + ^ - l ) ^ - l 
= (/w-3 + Fn-l)Fn " 7„-2^-l = <**-! > 0. 

The second inequality is immediate for w<4; for w>4 we have 

ftAi - 4̂ w+2 ~ ~fn-\Fn-2 + /«-2 (^«+l + ̂ - l ) " fn-3Fn+2 + Fn+lFn-2 

= - 0 , - 2 +f„-3+Fn-iK-2 + / ^ 2 ( 3 ^ - i + ^ - 2 ) - A - 3 ( 3 ^ - i +2FW_2) + FW+1FW_2 

= (-3fn-3Fn-2 " ^fn-3Fn-\) + 3fn-2Fn-l + Fn+lFn-2 " Fn-\Fn-2 

= l(fn-2Fn-l-fn-3Fn)+F
n
Fn-2 = ̂ n-2 + FnFn-2 > 0-

fi# From (7) it follows that 

6. LUCAS SEMILATTICES 

In [3] we studied a poset connected to Tn. In a similar way, the set of Lucas strings can be 
partially ordered with respect to the relation < defined by [% . . . , a j < [bh..., bn] if and only if 
ai <bt for / = 1,..., n for all Lucas strings [al9..., an], [bu..., 5J. Moreover, 

[a1 , . . . ,ajv[61, . . . ,*j = [c1,...,cj, 

where q = max(a/,A/) for i = l,...,n if [c1?...,c„] exists. The minimal element is 6 = [0,...,0]. 
The poset (C„, <) is closed under inf, where [au ..., an] A [bl7..., 5J = [min(a1? Aj),..., min(aw, £„)] 
and 6 = [0,..., 0]. Thus, (Q, <) is a meet-semilattice Z„. 

By Theorem 1, the height of Z„, i.e., the maximum number of l's in a Lucas string of length n 
isLfJ-

Recall that in a semilattice # an atom is an element covering 0; the set of atoms is denoted by 
Atom(S). A semilattice is atomic if for each xeS there exists a subset A c Atom(5) such that 
x = vA; it is strictly atomic when for each element xeS there exists a unique 4̂ c: Atom(*S) such 
that x = vA. 

A semilattice is simplicial where every interval is isomorphic to a Boolean lattice. In [3] we 
proved that a finite semilattice S with 6 is strictly atomic if and only if it is simplicial. Moreover, 
every finite strictly atomic semilattice S is ranked, where the rank is the function r: S -> N 
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defined by r(x) = \A\ if and only ifx = vA. Finally, we proved that the characteristic polynomial 
of a finite strictly atomic semilattice S is%(S, x) = T(-l)kWk(S)'Xh^~k, where Wk is a Whitney 
number of the second kind (i.e., the number of elements of S of rank k) and h(S) is the height of 
S. All the properties of the Fibonacci semilattices also hold in this case. The difference concerns 
Wk and the height. Now it is 

0U4) = ( V } ^ and h(L") = 

then we have 
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