THE BINET FORMULA AND REPRESENTATIONS OF *k*-GENERALIZED FIBONACCI NUMBERS

Gwang-Yeon Lee

Department of Mathematics, Hanseo University, Seosan 356-706, Korea

Sang-Gu Lee and Jin-Soo Kim

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea

Hang-Kyun Shin

Department of Mathematics, Seoul National University of Education, Seoul 137-742, Korea (Submitted February 1999-Final Revision August 1999)

1. INTRODUCTION

We consider a generalization of Fibonacci sequence, which is called the k-generalized Fibonacci sequence for a positive integer $k \ge 2$. The k-generalized Fibonacci sequence $\{g_n^{(k)}\}$ is defined as

$$g_1^{(k)} = \dots = g_{k-2}^{(k)} = 0, \ g_{k-1}^{(k)} = g_k^{(k)} = 1$$

and, for $n > k \ge 2$,

$$g_n^{(k)} = g_{n-1}^{(k)} + g_{n-2}^{(k)} + \dots + g_{n-k}^{(k)}.$$

We call $g_n^{(k)}$ the *n*th *k*-generalized Fibonacci number. For example, if k = 2, then $\{g_n^{(2)}\}$ is a Fibonacci sequence and, if k = 5, then $g_1^{(5)} = g_2^{(5)} = g_3^{(5)} = 0$, $g_4^{(5)} = g_5^{(5)} = 1$, and then the 5-generalized Fibonacci sequence is

0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793,

Let I_{k-1} be the identity matrix of order k-1 and let E be a $1 \times (k-1)$ matrix whose entries are 1's. For any $k \ge 2$, the fundamental recurrence relation $g_n^{(k)} = g_{n-1}^{(k)} + g_{n-2}^{(k)} + \cdots + g_{n-k}^{(k)}$ can be defined by the vector recurrence relation

$$\begin{bmatrix} g_{n+1}^{(k)} \\ g_{n+2}^{(k)} \\ \vdots \\ g_{n+k}^{(k)} \end{bmatrix} = Q_k \begin{bmatrix} g_n^{(k)} \\ g_{n+1}^{(k)} \\ \vdots \\ g_{n+k-1}^{(k)} \end{bmatrix},$$

(1)

where

The matrix Q_k is said to be a *k*-generalized Fibonacci matrix. In [4] and [5], we gave the relationships between the *k*-generalized Fibonacci sequences and their associated matrices.

 $Q_k = \begin{bmatrix} 0 & I_{k-1} \\ 1 & E \end{bmatrix}_{k \times k}.$

In 1843, Binet found a formula giving F_n in terms of n. It is a very complicated-looking expression, and the formula is

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 - \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right] = \frac{\alpha^n - \beta^n}{\alpha - \beta},$$

where α and β are eigenvalues of Q_2 . In [6], Levesque gave a Binet formula for the Fibonacci sequence by using a generating function.

[MAY

In this paper, we derive a generalized Binet formula for the k-generalized Fibonacci sequence by using the determinant and we give several combinatorial representations of k-generalized Fibonacci numbers.

2. GENERALIZED BINET FORMULA

Let $\{g_n^{(k)}\}\$ be a k-generalized Fibonacci sequence. Throughout the paper we will use $g_n = g_{n+k-2}^{(k)}$, n = 1, 2, ..., and $G_k = (g_1, g_2, g_3, ...)$ for notational convenience.

For example, if k = 2, $G_2 = (1, 1, 2, 3, ...)$, and if $k \ge 3$, $G_k = (1, 1, 2, 4, ...)$. For G_k , $k \ge 2$, since $g_1 = g_2 = 1$, we can replace the matrix Q_k in (1) with

$$Q_{k} = \begin{bmatrix} 0 & g_{1} & 0 & \cdots & 0 \\ 0 & 0 & g_{1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & g_{1} \\ g_{1} & g_{1} & \cdots & g_{1} & g_{2} \end{bmatrix}.$$

Then we can find the following matrix in [3]:

$$Q_{k}^{n} = \begin{bmatrix} g_{n-(k-1)} & g_{1,2}^{\dagger} & g_{1,3}^{\dagger} & \cdots & g_{1,k-1}^{\dagger} & g_{n-(k-2)} \\ g_{n-(k-2)} & g_{2,2}^{\dagger} & g_{2,3}^{\dagger} & \cdots & g_{2,k-1}^{\dagger} & g_{n-(k-3)} \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ g_{n-1} & g_{k-1,2}^{\dagger} & g_{k-1,3}^{\dagger} & \cdots & g_{k-1,k-1}^{\dagger} & g_{n} \\ g_{n} & g_{k,2}^{\dagger} & g_{k,3}^{\dagger} & \cdots & g_{k,k-1}^{\dagger} & g_{n+1} \end{bmatrix},$$

where

$$g_{i,2}^{\dagger} = g_{n-(k-i)} + g_{n-(k-(i-1))}$$

$$g_{i,3}^{\dagger} = g_{n-(k-i)} + g_{n-(k-(i-1))} + g_{n-(k-(i-2))}$$

$$\vdots$$

$$g_{i,k-1}^{\dagger} = g_{n-(k-i)} + g_{n-(k-(i-1))} + g_{n-(k-(i-2))} + \dots + g_{n-(k-(i-(k-2)))},$$

i = 1, 2, ..., k. Since $Q_k^n Q_k^m = Q_k^{n+m}$, $g_{n+m} = (Q_k^{n+m})_{k,1}$; hence, we have the following theorem. Theorem 2.1 (see [3]): Let $G_k = (g_1, g_2, ...)$. Then, for any positive integers n and m,

$$g_{n+m} = g_n g_{m-(k-1)} + (g_n + g_{n-1}) g_{m-(k-2)} + (g_n + g_{n-1} + g_{n-2}) g_{m-(k-3)} + \cdots + (g_n + g_{n-1} + g_{n-2} + \cdots + g_{n-(k-2)}) g_{m-1} + g_{n+1} g_m$$

Note that $g_{n+m} = (Q_k^{n+m})_{k,1} = (Q_k^{n+m})_{k-1,k}$. Then we have the following corollary.

Corollary 2.2: Let $G_k = (g_1, g_2, ...)$. Then, for any positive integers n and m,

$$g_{n+m} = g_{n-1}g_{m-(k-2)} + (g_{n-1} + g_{n-2})g_{m-(k-3)} + (g_{n-1} + g_{n-2} + g_{n-3})g_{m-(k-4)} + \cdots + (g_{n-1} + g_{n-2} + g_{n-3} + \cdots + g_{n-(k-1)})g_m + g_ng_{m+1}$$

Now we are going to find the generalized Binet formula for the k-generalized Fibonacci sequence.

2001]

159

(2)

Lemma 2.3: Let
$$b_k = \frac{2^{k+1}}{k+1} \left(\frac{k}{k+1}\right)^k$$
. Then $b_k < b_{k+1}$ for $k \ge 2$.
Proof: Since $\frac{k+1}{k+2} > \frac{k}{k+1}$ and $k \ge 2$,

$$\left(\frac{k+1}{k+2}\right)^{k+1} > \left(\frac{k}{k+1}\right)^{k+1}$$
 and $\frac{2^{k+2}}{k+2} \ge \frac{2^{k+1}}{k}$

Therefore,

$$b_{k+1} = \frac{2^{k+2}}{k+2} \left(\frac{k+1}{k+2}\right)^{k+1} > \frac{2^{k+1}}{k+1} \left(\frac{k}{k+1}\right)^k = b_k$$

for each positive integer k. \Box

Lemma 2.4: The equation $z^{k+1} - 2z^k + 1 = 0$ does not have multiple roots for $k \ge 2$.

Proof: Let $f(z) = z^k - z^{k-1} - \dots - z - 1$ and let g(z) = (z-1)f(z). Then $g(z) = z^{k+1} - 2z^k + 1$. So 1 is a root but not a multiple root of g(z) = 0, since $k \ge 2$ and $f(1) \ne 0$. Suppose that α is a multiple root of g(z) = 0. Note that $\alpha \ne 0$ and $\alpha \ne 1$. Since α is a multiple root, $g(z) = \alpha^{k+1} - 2\alpha^k + 1 = 0$ and $g'(\alpha) = (k+1)\alpha^k - 2k\alpha^{k-1} = \alpha^{k-1}((k+1)\alpha - 2k) = 0$. Thus, $\alpha = \frac{2k}{k+1}$, and hence

$$0 = -\alpha^{k+1} + 2\alpha^k - 1 = \alpha^k (2 - \alpha) - 1$$

= $\left(\frac{2k}{k+1}\right)^k \left(2 - \frac{2k}{k+1}\right) - 1 = \left(\frac{2k}{k+1}\right)^k \left(\frac{2k+2-2k}{k+1}\right) - 1$
= $\frac{2^{k+1}}{k+1} \left(\frac{k}{k+1}\right)^k - 1 = b_k - 1.$

Since, by Lemma 2.3, $b_2 = (\frac{2}{3})^3 \times 2^2 = \frac{2^5}{3^3} > 1$ and $b_k < b_{k+1}$ for $k \ge 2$, $b_k \ne 1$, a contradiction.

Therefore, the equation g(z) = 0 does not have multiple roots. \Box

Let $f(\lambda)$ be the characteristic polynomial of the k-generalized Fibonacci matrix Q_k . Then $f(\lambda) = \lambda^k - \lambda^{k-1} - \cdots - \lambda - 1$, which is a well-known fact. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the eigenvalues of Q_k . Then, by Lemma 2.4, $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct. Let Λ be a $k \times k$ Vandermonde matrix as follows:

$$\Lambda = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_k^{k-1} \end{bmatrix}.$$

Set $V = \Lambda^T$. Let

and let $V_j^{(i)}$ be a $k \times k$ matrix obtained from V by replacing the j^{th} column of V by \mathbf{d}_i . Then we have the generalized Binet formula as the following theorem.

160

[MAY

Theorem 2.5: Let $\{g_n^{(k)}\}$ be a k-generalized Fibonacci sequence. Then

$$g_n = \frac{\det(V_1^{(k)})}{\det(V)},\tag{3}$$

where $g_n = g_{n+k-2}^{(k)}$.

Proof: Since the eigenvalues of Q_k are distinct, Q_k is diagonalizable. It is easy to show that $Q_k \Lambda = \Lambda D$, where $D = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_k)$. Since Λ is invertible, $\Lambda^{-1}Q_k \Lambda = D$. Thus, Q_k is similar to D. So we have $Q_k^n \Lambda = \Lambda D^n$. Let $Q_k^n = [q_{ij}]_{k \times k}$. Then we have the following linear system of equations:

$$\begin{aligned} q_{i1} + q_{i2}\lambda_1 + \cdots + q_{ik}\lambda_1^{k-1} &= \lambda_1^{n+i-1} \\ q_{i1} + q_{i2}\lambda_2 + \cdots + q_{ik}\lambda_2^{k-1} &= \lambda_2^{n+i-1} \\ &\vdots &\vdots \\ q_{i1} + q_{i2}\lambda_k + \cdots + q_{ik}\lambda_k^{k-1} &= \lambda_k^{n+i-1}. \end{aligned}$$

And, for each j = 1, 2, ..., k, we get

$$q_{ij} = \frac{\det(V_j^{(i)})}{\det(V)}$$

Therefore, by (2), we have the explicit form

$$q_{k1} = g_n = \frac{\det(V_1^{(k)})}{\det(V)}. \quad \Box$$

We note that, if k = 2, then (3) is the Binet formula for the Fibonacci sequence.

3. COMBINATORIAL REPRESENTATIONS OF *k*-GENERALIZED FIBONACCI NUMBERS

In this section, we consider some combinatorial representations of $g_n = g_{n+k-2}^{(k)}$ for $k \ge 2$. Let S_k be a $k \times k$ (0, 1)-matrix as follows:

$$S_k = \begin{bmatrix} E & 1 \\ I_{k-1} & 0 \end{bmatrix}$$

Then, by (2),

$$S_{k}^{n} = [s_{ij}] = \begin{bmatrix} g_{n+1} & g_{k,k-1}^{\dagger} & \cdots & g_{k,3}^{\dagger} & g_{k,2}^{\dagger} & g_{n} \\ g_{n} & g_{k-1,k-1}^{\dagger} & \cdots & g_{k-1,3}^{\dagger} & g_{k-1,2}^{\dagger} & g_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ g_{n-(k-3)} & g_{2,k-1}^{\dagger} & \cdots & g_{2,3}^{\dagger} & g_{2,2}^{\dagger} & g_{n-(k-2)} \\ g_{n-(k-2)} & g_{1,k-1}^{\dagger} & \cdots & g_{1,3}^{\dagger} & g_{1,2}^{\dagger} & g_{n-(k-1)} \end{bmatrix}.$$
(4)

In [1], we can find the following lemma.

Lemma 3.1 (see [1]):

$$s_{ij} = \sum_{(m_1,...,m_k)} \frac{m_j + m_{j+1} + \dots + m_k}{m_1 + \dots + m_k} \times \binom{m_1 + \dots + m_k}{m_1, \dots, m_k},$$

2001]

161

where the summation is over nonnegative integers satisfying $m_1 + 2m_2 + \dots + km_k = n - i + j$ and defined to be 1 if n = i - j.

Corollary 3.2: Let $\{g_n^{(k)}\}$ be the k-generalized Fibonacci sequence. Then

$$g_n = \sum_{(m_1,...,m_k)} \frac{m_k}{m_1 + \cdots + m_k} \times \begin{pmatrix} m_1 + \cdots + m_k \\ m_1, \dots, m_k \end{pmatrix},$$

where the summation is over nonnegative integers satisfying $m_1 + 2m_2 + \cdots + km_k = n - 1 + k$.

Proof: From Lemma 3.1, if i = 1 and j = k, then the conclusion can be derived directly from (4). \Box

Let $A = [a_{ij}]$ be an $n \times n$ (0, 1)-matrix. The *permanent* of A is defined by

$$\operatorname{per} A = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)},$$

where σ runs over all permutations of the set $\{1, 2, ..., n\}$. A matrix A is called *convertible* if there is an $n \times n$ (1, -1)-matrix H such that $perA = det(A \circ H)$, where $A \circ H$ denotes the Hadamard product of A and H. Such a matrix H is called a *converter* of A.

Let $\mathscr{F}^{(n,k)} = [f_{ij}] = T_n + B_n$, where $T_n = [t_{ij}]$ is the $n \times n$ (0, 1)-matrix defined by $t_{ij} = 1$ if and only if $|i - j| \le 1$, and $B_n = [b_{ij}]$ is the $n \times n$ (0, 1)-matrix defined by $b_{ij} = 1$ if and only if $2 \le j - i \le k - 1$. In [4] and [5], the following theorem gave a representation of $g_n^{(k)}$.

Theorem 3.3 (see [4], [5]): Let $\{g_n^{(k)}\}$ be the k-generalized Fibonacci sequence. Then

$$g_n = \operatorname{per} \mathcal{F}^{(n-1,k)}$$

where $g_n = g_{n+k-2}^{(k)}$.

Let *H* be a (1, -1)-matrix of order n-1, defined by

$$H = \begin{bmatrix} 1 & -1 & 1 & \cdots & 1 \\ 1 & 1 & -1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & -1 \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

Then the following theorem holds.

Theorem 3.4: Let $\{g_n^{(k)}\}$ be the k-generalized Fibonacci sequence. Then

$$g_n = \det(\mathcal{F}^{(n-1,\,k)} \circ H),$$

where $g_n = g_{n+k-2}^{(k)}$.

Proof: Since the matrix $\mathcal{F}^{(n-1,k)}$ is a convertible matrix with converter H, we have

 $\operatorname{per} \mathcal{F}^{(n-1,\,k)} = \operatorname{det}(\mathcal{F}^{(n-1,\,k)} \circ H)$

and, by Theorem 3.3, the proof is complete. \Box

Now we consider the generating function of the k-generalized Fibonacci sequence. We can easily find the characteristic polynomial, $x^k - x^{k-1} - \cdots - x - 1$, of the k-Fibonacci matrix Q_k . It

[MAY

follows that all of the eigenvalues of Q_k satisfy $x^k = x^{k-1} + x^{k-2} + \dots + x + 1$. And we can find the following fact in [5]:

$$x^{n} = g_{n-k+2}x^{k-1} + (g_{n-k+1} + g_{n-k} + \dots + g_{n-2k+3})x^{k-2} + (g_{n-k+1} + g_{n-k} + \dots + g_{n-2k+4})x^{k-3} + \dots + (g_{n-k+1} + g_{n-k})x + g_{n-k+1}.$$
(5)

Let $G_k(x) = g_1 + g_2 x + g_3 x^2 + \dots + g_{n+1} x^n + \dots$. Then

$$G_k(x) - xG_k(x) - x^2G_k(x) - \dots - x^kG_k(x) = (1 - x - x^2 - \dots - x^k)G_k(x).$$

Using equation (5), we have $(1 - x - x^2 - \dots - x^k)G_k(x) = g_1 = 1$. Thus,

$$G_k(x) = (1 - x - x^2 - \dots - x^k)^{-1}$$

for $0 \le x + x^2 + \dots + x^k < 1$.

Let $f_k(x) = x + x^2 + \dots + x^k$. Then $0 \le f_k(x) < 1$ and we have the following lemma.

Lemma 3.5: For positive integers p and n, the coefficient of x^n in $(f_k(x))^p$ is

$$\sum_{l=0}^{p} (-1)^{l} {p \choose l} {n-kl-1 \choose n-kl-p}, \quad \frac{n}{k} \le p \le n.$$

Proof:

$$(f_k(x))^p = (x + x^2 + \dots + x^k)^p = x^p (1 + x + x^2 + \dots + x^{k-1})^p$$

= $x^p \left(\frac{1 - x^k}{1 - x}\right)^p = x^p \left((1 - x^k)\left(\frac{1}{1 - x}\right)\right)^p$
= $x^p \left(\left(\sum_{l=0}^p \binom{p}{l}(-1)^l x^{kl}\right)\left(\sum_{i=0}^\infty \binom{p+i-1}{i} x^i\right)\right).$

In the above equation, we consider the coefficient of x^n . Since the first term on the right is x^p , we have kl + i = n - p, that is, i = n - kl - p. If l = q for any q = 0, 1, ..., p, then the second term on the right is

$$\left((-1)^q \binom{p}{q} \binom{n-kq-1}{n-kq-p} \right) x^{n-p}.$$

So the coefficient of x^n is

$$\sum_{l=0}^{p} (-1)^{l} {p \choose l} {n-kl-1 \choose n-kl-p}, \ \frac{n}{k} \le p \le n. \quad \Box$$

Theorem 3.6: For positive integers p and n,

$$g_{n+1} = \sum_{\substack{n \\ k \le p \le n}} \sum_{l=0}^{p} (-1)^{l} {p \choose l} {n-kl-1 \choose n-kl-p}.$$
 (6)

Proof: Since

$$G_k(x) = g_1 + g_2 x + g_3 x^2 + \dots + g_{n+1} x^n + \dots = \frac{1}{1 - x - x^2 - \dots - x^k},$$

2001]

163

the coefficient of x^n is the $(n+k-1)^{st}$ Fibonacci number, that is, g_{n+1} in G_k . And

$$\begin{aligned} G_k(x) &= \frac{1}{1 - x - x^2 - \dots - x^k} = \frac{1}{1 - f_k(x)} \\ &= 1 + f_k(x) + (f_k(x))^2 + \dots + (f_k(x))^n + \dots \\ &= 1 + f_k(x) + x^2 \sum_{l=0}^n \binom{2}{l} (-1)^l x^{kl} \sum_{i=0}^\infty \binom{i+1}{i} x^i \\ &+ \dots + x^n \sum_{l=0}^n \binom{n}{l} (-1)^l x^{kl} \sum_{i=0}^\infty \binom{n+i-1}{i} x^i + \dots \end{aligned}$$
(7)

Since we need the coefficient of x^n , we only need the first n+1 terms on the right and the $(p+1)^{st}$ term in (7) such that

$$x^p \sum_{l=0}^p \binom{p}{l} (-1)^l x^{kl} \sum_{i=0}^\infty \binom{p+i-1}{i} x^i.$$

So kl + i = n - p, as we see in (6), and $\frac{n}{k} \le p \le n$. Thus, by Lemma 3.5, we have the theorem. \Box

From the above theorems, we have five representations for g_n , $g_n = g_{n+k-2}^{(k)}$. That is,

$$g_{n} = \operatorname{per} \mathcal{F}^{(n-1, k)} = \operatorname{det}(\mathcal{F}^{(n-1, k)} \circ H) = \frac{\operatorname{det}(V_{1}^{(k)})}{\operatorname{det}(V)}$$
$$= \sum_{\frac{n-1}{k} \leq p \leq n-1} \sum_{l=0}^{p} (-1)^{l} {p \choose l} {n-kl-2 \choose n-kl-p-1}$$
$$= \sum_{(m_{1}, \dots, m_{k})} \frac{m_{k}}{m_{1}+\dots+m_{k}} \times {m_{1}+\dots+m_{k} \choose m_{1},\dots, m_{k}},$$

where the summation is over nonnegative integers satisfying $m_1 + 2m_2 + \cdots + km_k = n - 1 + k$.

ACKNOWLEDGMENT

This work was partially supported by the Brain Korea 21 Project.

REFERENCES

- W. Y. C. Chen & J. D. Louck. "The Combinatorial Power of the Companion Matrix." *Linear Algebra Appl.* 232 (1996):261-78.
- 2. R. A. Horn & C. R. Johnson. Matrix Analysis. New York: Cambridge Univ. Press, 1985.
- 3. G.-Y. Lee. "A Completeness on Generalized Fibonacci Sequences." Bull. Korean Math. Soc. 32.2 (1995):239-49.
- 4. G.-Y. Lee & S.-G. Lee. "A Note on Generalized Fibonacci Numbers." *The Fibonacci Quarterly* **33.3** (1995):273-78.
- 5. G.-Y. Lee, S.-G. Lee, & H.-G. Shin. "On the k-Generalized Fibonacci Matrix Q_k ." Linear Algebra Appl. 251 (1997):73-88.
- 6. Claude Levesque. "On mth-Order Linear Recurrences." The Fibonacci Quarterly 23.4 (1985):290-93.

AMS Classification Numbers: 11B39, 15A15, 15A36

164