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1. INTRODUCTION 

Most students are familiar with representations of integers using various integral bases. In 
[1], George Bergman introduced a system using the irrational base a = ̂ ~-. The number a is of 
course the well-known golden ratio,* often defined as the limit of the sequence {Fn I Fn_x), where 
Fn is the /2th Fibonacci number. Under this system, we can represent any natural number n 
(uniquety) as the sum of nonconsecutive powers of a. This means that, for any natural number n, 
there exists a unique sequence {^}, where ei e {0,1} for all i, such that n-Y^=-ooeial anc* 
eiei+i - 0 f ° r e a °k '• The a-expansion of n is ...e_2e_le0ele2..., where we adopt the convention of 
underlining the zero* coordinate and omitting leading and trailing zeros when convenient. For 
example, 5 = a"4 + a'1 + a3, so the base-a representation of 5 is 10010001. Table 1 shows the a-
expansions of the first 30 natural numbers. Table 2 shows the base 2 representations. 

If we look down any column of the base 2 representations, it is easy to detect the patterns, 
which involve strings of 0s and Is of equal length, so that the ratio of Is to 0s is almost 1. The 
situation for other positive integral bases is analogous. In contrast, the columns in the a-expan-
sions also exhibit patterns, but these are not so easy to detect or describe. The purpose of this 
paper is to explore some of these patterns. For each positive integer n, let Ratio^n) be the ratio 
of the numbers k <n that do have a1 in their a-expansions to those that do not. In other words, 
Ratioi(ri) is the ratio of Is to 0s in the Ith column (i.e., the column corresponding to a1) of the a-
expansions of the integers 1 through n. 

Hart and Sanchis showed in [6] that Ratio0(n) -^ a~2 as n -> QO, thus proving Conjecture 1 
from [2], as well as answering a question posed by Bergman in [1]. In this paper, we generalize 
the techniques used in [6] to derive the behavior of Ratio^n) for all other values of/'. It should 
come as no surprise that a-expansions are closely related to the Fibonacci sequence. Indeed, any 
natural number n can be expressed uniquely as the sum of Fibonacci numbers Fk (here F0 = 0, 
Fl = l, and Fk = Flc_l+Fk_2). This is the well-known Zeckendorf decomposition of n. Grabner et 
a'- ([3], [4]) showed that, for m > log,„ k, the Zeckendorf decomposition of kFm can be produced 
by replacing each a1 in the a-expansion of k with Fm+i. Thus, our results also provide informa-
tion about the occurrence of Fk+i in the Zeckendorf decomposition of kFk. 

* In [5] and [6], the symbol p was used for this quantity; we have decided to change to the more commonly used a: 
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TABLE 1. a-Expansions of the Integers 1-30 TABLE 2. Base 2 Expansions 

n 
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21 
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28 
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1 
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0 
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1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 

1 
1 • 

0 1 
0 1 
0 1 . 
0 1 
0 1 
o o i ! 
o o i ! 
0 0 1 
0 0 1 
1 0 1 
1 0 1 
0 0 0 1 
0 0 0 1 
0 0 0 1 
0 0 0 1 
0 0 0 1 
1 0 0 1 
1 0 0 1 
0 1 0 1 
0 1 0 1 
0 1 0 1 
0 1 0 1 
0 1 0 1 
0 0 0 0 1 

1 n 
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0 
0 
0 
1 
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1 
1 
1 
1 
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0 
0 
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1 
1 
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0 
0 
0 
0 
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1 
1 

0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 ! 
0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 
0 0 1 
0 1 1 
1 0 
1 1 
0 0 
0 1 
1 0 1 

Definition LI: For each integer r, define Rr as follows: 
a. R0=a~2, 

b. Rr = Lr;1~} foroddr>0, 

a R=-r=1—-for even r > 0 , aL-\ 

& R, 
aL 

for r < 0, 
'-r+l 

where L0 = 2, Lx=l, and Z +̂1 = Zy + L^ are the Lucas numbers for / >0. Alternatively, Li = 
Fi-i+Fi+v It was shown in [6] that limWH>00 Ratio0(ri) = R0. In this paper we show that, for each 
r*0, l im^^ Ratior{n) = Rr. Note also the interesting fact that, as r -» oo and as r -> -QO, Rr 

approaches the limit R0. Our strategy is to first establish some recursive patterns along each 
column (these are established in Lemma 3.5) which will allow us to obtain precise expressions for 
Ratiot{nk) and Ratio^), where {nk} and {mk} are two subsequences of the natural numbers. 
The limits of these subsequences can then easily be obtained from known limit results about Fibo-
nacci and Lucas numbers. We then show that, as n -» oo? members of the foil sequence Ratiofo) 
must be caught between these two subsequences and hence the foil sequence converges. Our 
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proofs use only combinatorial and algorithmic techniques and do not require any specialized 
number theory background. 

2. DEFINITIONS AND PRELIMINARIES 

We use definitions and notation similar to those used in [5] and [6], In particular, £(n) 
denotes the absolute value of the smallest power of a in the a-expansion of w, and u{ri) denotes 
the largest such power. The following is a restatement of Theorem 1 from [4] in terms of the a-
expansion. 

Theorem 2.1 (Grabmer, Nernes3 Petho, Tichy): For k>l, we have £(n) = u(ri) = 2k whenever 
L2k <n< L2k+l, and we have £(n) = 2k + 2 and u{n) = 2k + l whenever L2k+l <n< L2k+2. 

The following definitions are from [6]. 

Definition 2.2: We define F to be the infinite dimensional vector space over Z given by V = 
{(..., V-i, v0, vh v2,...): vi GZ\/I, with at most finitely many vi nonzero}. For clarity, we under-
line the zero* coordinate. 

Definition 23: Define Fto be the subset of V consisting of all vectors whose entries are in the 
set {0,1} and which have no two consecutive ones. We will call the elements of V totally reduced 
vectors. When convenient, we omit trailing and leading zeros, so for example, 

(...,0,...,0,0,1,0,1,0,1,0?0,...,03...) = (1,0,130,1). 
As in [5], we represent a-expansions by vectors in V, where a one in the j * coordinate represents 

Definition 2.4: We define the function a:N->V so that, when the or-expansion of n is 
£,* _oo efal, a(n) is the vector in V with vt =er 

It follows from Theorem 2.1 that, if L2k<n< L2k+l, we can write 

2fc-2 

i=-2k+2 

and, if L2k+l <n< L2k+2, then we can write 
2 J k - l 

n = a~2k~2+ Y,eiai+a2k+l s o t h a t a(n) = (^^e-2^e-2k+h-^e-h%eh''^e2k-^0^1)- (2) 
i=-2Jc 

Definition 2.5: The function a: V -> N is defined as follows: a((..., v_1? v0, vl9...)) = ZJLoo via*• 

Thus a(a(n)) = n for all natural numbers n. (Note that the definition of a in [5] is in terms 
of Fibonacci numbers, and is not equivalent to the one given here. Specifically, the two functions 
are only guaranteed to be equal when applied to a(n) where n eN.) The following definitions 
are generalizations of definitions in [6]. (The definitions in [6] correspond to the case / = 0.) 

Definition 2.6: We say that n has property 8Py if a1 appears in the a-expansion of n. 

Definition 2.7: For natural numbers n, m: 
a* Onest{n,m]= \{k e N : n <k <m, k has property 3̂ . }|; 
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k Zeros^n,m]=\{k GN :n<k <m, k does not have property 9*. }|; 
n ,- / -j Ones,(n, m] 

c. Ratio, (n, m] - ^—LV1-Jr • 
By abuse of notation, we also define Ratiot{n) = Ratio^O, ri\. We will call a finite sequence 

of Os and Is & pattern. We use patterns to describe values of [a(n)\ for fixed i and a sequence of 
consecutive natural numbers n. Recall that [a(w)]f- = 1 if a1 occurs in the a-expansion of n, and 
that [a(/2)], = 0 otherwise. Thus, for n < m, we can define the pattern 

Patt(n, m] = [a(n + l)\[a{n +2)], • • • [a(m)]r 

Patterns can be concatenated. We will denote the concatenation operation with the operator +, 
but will omit it when convenient. So, for example, for n < m < p, 

PatjQi, p] = Patt{n, m] + Pat^m, p] = Patf(n, mjPat^m, p]. 

In addition, we use the notation Pin to denote the prefix of a pattern P obtained by deleting the 
rightmost n digits. So, for example, 11001/2 = 110. By abuse of notation, if P is a pattern, we 
define Ones(P) and Zeros(P) to be the number of Is and the number of 0s, respectively, appear-
ing in the pattern P. We also define Ratio(P) = Ones(P)/ Zeros(P). We will be using the fol-
lowing known facts about Fibonacci and Lucas numbers: For any h > 0, the sequence F2n+h IF2n is 
decreasing, the sequence F2n+uhIF2n+l is increasing, the sequence L2n+h/L2n is increasing, the 
sequence L2n+l+h/L2n+l is decreasing, and 

Hm(Fn+h/Fn) = a\ (3) 
«-»oo 

\im(Ln+h/L„) = a», (4) 

Fn+hLn+k ~ FnLn+h+k = (~ lTFhLk > ( 5 ) 

Fn+hFn+k ~ FnFn+h+k = (~lTFhFky ( 6 ) 

tFi = FM-h 0) 
7=0 

h 

X Fk+2i = Ffc+2h+l ~ Fk-l > ( 8 ) 

ak + ak+2 = aLM + Lk. (9) 

Formulas (5) and (6) are from [7], page 177, (19b and 20a). The following Lemma will be 
used repeatedly. 

Lemma 2.8: Let a,b,c,d e N, and x,y eR. If f < x and f <y, then f±£.< max{x,y). When 
each < is replaced by >, the result holds with max replaced by min. 

3. SOME USEFUL RESULTS 

In the sequence of a-expansions of the natural numbers, the Lucas numbers play a special 
role. First, note that 

a(L2,) = 102^-1002^1l and a(L2k+l) = (10)*1(01)*. 
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(Readers may derive these formulas themselves, or refer to [2].) In Table 1, compare the expan-
sions found between LA = 7 and L5 -11 with those found between L6 = 18 and 2L5 = 22. The 
two sequences of expansions are identical if we restrict our attention to powers of a between a~3 

and a3. Similar observations can be made, for large enough k, by comparing the expansions of 
the numbers found between L2k_2 and L2k_x, and those between L2k and 2L2k__1: the expansions 
are identical for those powers of a between a~k and ak. It can be proved that this is always the 
case, using an algorithmic technique presented in [5]. In fact, a full recursive pattern in the 
sequence of a-expansions can be established. This was shown in [6], and we merely restate the 
relevant results here. Note that, for n>4, Ln< 2Ln_x < Ln_2 + Ln< Ln+l. Thus, we can partition 
the a-expansions between Ln and Ln+l into three segments: the first from Ln to 2ZW_1, the second 
from 2Lrl_l to Z,„_2 + Zw, and the third from Ln_2 + Ln to Z„+1. As partly indicated above (for 
even ri), the sequence of a-expansions between Ln and 2Ln_l is similar to that between Ln_2 and 
Ln_v In addition, the sequence of a-expansions between 2Ln_x and Ln_2 + Ln is similar to that 
between Ln_3 and Ln_2, and the sequence of a-expansions between Ln_2 + Ln and L„+l is again 
similar to that between Ln_2 and Ln_v The exact ways in which the sequences are similar (or 
dissimilar) vary for each of the three segments, and also vary depending on whether n is even or 
odd. The full result is expressed in the following propositions, and was proved in Lemma 3.8 of 
[6]. 

Proposition 5.1: Let k>2. If Q<m<L2k_2 and a{L2k_x+m) - 0> 0, £_(2£_2)? • • • > e - i ? % eh • • • ? 
^ .3 ,0 ,1) , then: 

°* e-(2k-2)=®' 
0,0,0,1). 

c. a(Ln_x + L2k+l+m) = (1,0,0,0, eH2k_2),..., e_h e±, eu..., e2k_3,0,1,0,1). 
d. a(2L2k+l+m) = (1,0,1,0, e_(2k_2),..., e_h e1,el,..., e2k_3,0,1,0,0,1). 

Proposition 3.2: Let k>2. If §<m<L2k_x and a(L2k+m) = (l,0,e_(2k_2),...,e_i,eo,el,..., 
e2k-2> 0,1), then: 

a. a(L2k+2+m) = (1,0,0,0, e<2k_2), ...,e_x,eA,eh..., e2k_2,0,0,0,1). 
h. a(L2k + L2k+2+m) = (1,0,1,0, e_^k_2y ...,e_x,e^,ex,..., e2k_2, 0,1,0,1). 
c a(2L2k+2+iw) = (1,0,0,1,0,0,e_(2k_2),...,e_heQ,eh...,e2k_2,0,1,0, 0,1). 

From Propositions 3.1 and 3.2, the following may be deduced. 

Corollary 3J: Let&>2. 
a. For L2k+l <n< 2L2k, a(n) begins with 10010 and ends in 0001. 
h For L2k_x + L2k+l <n< L2k+2, a(n) begins with 10000 and ends in 0101. 
a For 2L2k+l = L2k_t + L2k+2 <n<L2k + L2k+2, a(n) begins with 10100 and ends in 01001. 
d For L2k+2 <n<2L2k+h a(n) begins with 1000 and ends in 0001. 
e. For L2k + L2k+2 <n< L2k+3, a{n) begins with 1010 and ends in 0101. 
/ For 2L2k+2 = L2k + L2k+3 <n< L2k+l + L2k+3, a(ri) begins with 100100 and ends in 01001. 
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Definition 3.4: For k > 1, Pk = Patr(Lk_h Lk]. 
From the above propositions, recursive formulas for Pk easily follow. 

Lemma 3.5: Let k > 2. 
a. If-2k + 3<r <2k-2ythm P2k+2 = P2kP2k~lP2k. 
h. lf-2k + 4<r <2k-3, then Pr

2k+l = P2k-lP2k~2P2k-\ 

Proof: Fix k and r as above and define the following maps: 
/ i : [L2k-i + \ L2k -1] -> [Z,2jt+1 +1,2L2k -1], /i(x) = x + L2k; 
J 2 : L^2fc-2> ^2J t - J " ^ P - ^ f c , Ck-l + ^2fc+lL / 2 W ~ X + ^2Jt+li 

/ 3 : l^k-l+ 1> ̂ 2fc ~ 1] ~> [^2Jfc-l+ ^2Jt+l + 1> ̂ 2£+2 " ^L / s ( X ) = X + ^2Jfc+l-

Clearly, these maps are one-to-one and onto. Moreover, by Propositions 3.1 and 3.2, [a(x)]r = 
[a(/(x))] r for any x in the domain of ft, if -2k + 3<r<2k-2. It follows that 

Patr(L2k_h L2k -l] = Patr(L2k+h 2L2k -1], 
Patr(L2k_2 - 1, i2A:-l] - Patr(^^2k ~ \ ^2k-\ + ^2/t+lL 

Patri^k-l' Ck ~ 1] " Patr\^2k-l + ^2£+l> ^2£+2 ~~ ! ] • 

Then 
Patr(L2k_h L2k -1] + Patr(L2k_2 -1, L^.J + Patr(L2k_h L2k -1] 
= PaUL2k+b 2L2k -1] + Patr{2L2k -1, I 2 M + Z2 M] + Patr{L2k_x + Z^+1, Z2^+2 -1]. 

Using the fact that [a(Z,2it)]r = 0 for every &, this simplifies to P2kP2k~lP2k = P2k+2. Simi-
larly, we define the following maps: 

Si: i^2k-2y Ck-i] -* [̂2&> 2Z2fc_j], ^j(x) = x + Z^^ ; 
#2 • iL2k-3 + 1, ^2*-2 - 1] - > E2Z-2^-l + *> ̂ 2Jfc-2 + Z2fc ~ 1], & ( * ) = * + ^ 

& ! t^2ife-2> Ajfc-J ""* t^2fc-2 + ^2Jb ^2Jfc+lL & ( * ) ~ X + Llk • 

Again by Propositions 3.1 and 3.2, these maps are bijections which leave the rth term of the 
a-expansion of x fixed for -2k+ 4 < r < 2k - 3. So, by concatenating the domains and ranges as 
above, we again obtain p2k-ip2k-2p2k-i = p2k+y Q 

4. SOME SPECIAL SUBSEQUENCES OF Matior(n) 

Here we show that, for each r, there exist two subsequences of Ratior(n) that converge to 
Rr. These subsequences are related to the odd and even Lucas numbers. One is increasing and 
the other is decreasing. In Section 5 we show that the sequence Raiior(n) is trapped between 
these two monotone convergent subsequences, and therefore Raiior(n) must also converge to Rr. 

4A Positive Powers of a 
We consider even and odd powers separately. For even powers, let r = 2/ where / > 1; for 

odd powers, let r = 21 +1 where / > 0. Using the recursive formulas derived in the previous sec-
tion, it is straightforward to obtain closed formulas for Ones{Pk). 
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Lemma 4.1: For k>2, 
fo. 

OnesiPfo = • 1, 
k<2l, 
k = 2l, 

2̂M> k — 2l + l, 
Oms(P2

k
M) = 

0, k<2l+l, 
L2l~\, k = 2l+2, 

l(L2l-l)Fk_2l_3, k>2I + 3. 

Proof: The proof is by induction on k. The base cases are somewhat numerous but straight-
forward. We use Theorem 2.1 and Corollary 3.3 to compute the entries of the middle two 
columns of the following table, then compute the last column by simple counting. 

k<2l 

k = 2l 

k = 2I + l 

k = 2l + 2 

4-i<"<4 
u(n) = k-l 
[a(n)]2l=0 
[a(n)]2M = 0 
u(n) = 21-1 
[a(n)]2l = 0 
[a(n)]2M = 0 
u{n) = 21 
[a(n)]2l = 1 
[a(n)]21+l = 0 
u(n) = 21 + 1 
[a(n)]2l=0 
[a(n)]2l+l = 1 

n = Lk 

u(n) = k-lotk 
[a(n)]2l = 0 
[a(n)]2M = 0 

u(n) = 21 
[a(n)]2l = 1 
Mn)]2M = 0 
u{n) = 21 
[a(n)]2l = 1 
[a(n)]2l+l = 0 
u(n) = 2l + 2 
[a(n)]2l = 0 
[a(n)]2M = 0 

Ones(Pk) 
Ones(P2

k) = 0 
Oms(P2

k
M) = 0 

Ones{P2
k
l) = l 

Oms(P2
k
M) = 0 

Ones(Pk
l) = Lk-Lk_x = L2l_l 

Ones(Pk
M) = 0 

Ones(P2
k) = 0 

Ones(P2
k
M) = Lk- Lk_} -1 = L2l_x 

If k = 21 + 3 and L2l+2 <n< L2l+3, then u{n) = 21+2 again by Theorem 2.1. Corollary 3.3 
again helps us to complete the following table: 

L2l+2 <n< 2L2!+l I 2L2/+1 < n < L2l + L2l+2 L2l + L2l+2 <n<L. Ones(P2l+3) 

[a(n)]2l = 0 
[a(w)]2l+1=0 

[a(n)]2l = 0 

N»] 2 / + i=0 
[a(n)]2l = 1 

Mn)]2l+l=0 
Ones(P2

2r) = L2l+3-(L2l + L2l+2) + l = L2/_1 + l 
021+ 3 
2/+1 • 

If k = 2/ + 4, then u(n) = 21 + 3 for L2l+3 < n < L2l+4 and u(ri) = 21+4 for n = L2l+4. We again 
invoke Corollary 3.3 to complete the table: 

^21+3 < n <^^2/+2 
2L2l+2<n 

- ^21+1 + ^21+3 
J-"JIA.\ + 1* 2/+1 "T ^21+3 
<n< L, n = L0 Oms(P2l+4) 

[a(n)]2l = 0 [a(n)]2l = 1 

[«(«)]2/+i = ° 

[a(n)]2l = 0 

Mn)]2M = 1 

[a(n)]21 = 0 Ones(P%+4) 

For the inductive step, assume that k > 2/ + 5. By Lemma 3.5, 

Ones{P^) = 20ms(P2
k
l-2) + Ones{P^) 

= 2(Z2M + l)Fk_2l_4 + (L2l_x + l)Fk_2l_5 = ( L ^ + l)i^_2/_2-

Similarly, 

Owes(ig+1) - 20nes(P^l) + Ones(P^) 
= 2(L2l - l)Fk_2l_5 + (L2l - l)Fk_2l_6 = (L2l - l)Fk_2l_3. D 
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Now that we have formulas for Ones(Pr
k) for positive r, closed formulas for Ratior{Ln) for 

all Lucas numbers L„ may be obtained by straightforward calculations. However, the sub-
sequences of the Ratior(m) sequence in which we are interested happen to occur not at the Lucas 
numbers themselves but at points close to the Lucas numbers. Specifically, we will show that (for 
positive odd powers of a ) the values Ratio2l+l(L2k+l - L2l+l -1) form a decreasing subsequence at 
which local maxima occur; and that the values Ratio2i+l(L2k- L2i) form an increasing sub-
sequence at which local minima occur. Similar subsequences occur for even positive powers of 
a, and for negative powers. To obtain formulas for these ratios, we need to first nail down the 
patterns occurring between these points and the Lucas numbers that they are close to. This is 
done in the following Lemma for positive powers of a. The proof, which is omitted, uses induc-
tion on k combined with results from Propositions 3.1 and 3.2, as well as Corollary 3.3. 

Lemma 4.2: If k > /+1 , then: 
a. Pat2l+l(L2k+l - L2M -1, L2k+l] = 0 W 1 . 
h. Pat2M(L2k+l - L2l+2, L2k+l - L2l+l -1] = 1 2/ . 
c. Pat2l+l(L2k-L2hL2k] = l^-l0. 
d. Pat2M{L2k+2 - L2M -1, L2k+2 - L2l] = 02Z^i+1. 
e. Pat2l(L2k-L2hL2k] = 0L*. 
f Pat2l{L2k_x - Z 2 M - 1 , L2k_x] = 1 W i . 

The main results of this section are given in Theorems 4.3 and 4.4. 

Theorem 4.3: For / > 0 and large enough k: 
a, R®tio2l+l(L2k+l - L2l+l -1) decreases to i?2/+i as k increases. 
h. Ratio2M(L2k - L2i) increases to R2l+l as k increases. 

Proof: By Lemmas 4.1 and 4.2, if k > I +1, then using Formula (7), 
2k+l 

One^^iO, Z^+1 - 4 / + 1 -1] = One$2M(0, L ^ ] - £ Ones{P2
J
M) 

2fc+l 

= L2l ~ 1 + X (^2/ ~ Wj-2l-3 = L2l - * + (L2l ~ l)(F2k-2l ~ 0 = (L2l ~ fyF2k-2l-
j=2l+3 

It follows that 

E W T V I ( J T W- (^2/ ~ 0^A:-2/ L 2 l - \ 
nano2l+l\^2k+l~ ^21+1 ~ V - 7 j i 71 ivF ~ T - T 1 

^2k+\ ~>2/+l ~ l ~ l L 2 l ~ L)r2k-2l ^2k+\ ^21+1 l _ n -\) 
^2k-2l 

Part (a) follows from the fact that (L2k+l - L2l+l -1) / F2k_2l is increasing for large enough k 
(which can be deduced from Formula (5)) and has limjt a2/+2 + a11 = aL2l+l + L2l (from Formulas 
(3) and (9)). Similarly, if k >/ + 2, then 

Ones2l+l(Q, L2k - L2l] = Ones2l+l(0, L2k\- Ones2l+l(L2k - L2h L2k] 
2k 2k 

= X Ones{PlM)~ (L2l -1) = (L2l -1) £*}-2/-3 = (L2l- \){F2k_2l_x -1). 
J=l j=2l+3 
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It follows that 

Ratw2l+l(L2k-L2l) = (L2/-l)(F2fe_2/_1-l) 1 , 7 - 1 

Part (b) follows from the fact that Lu~Ll1 

^2k ~ ^2/ ~ (^2/ " l)(^Jt-2M ~ 1) 

F2k_2l_l-T *s decreasing (for large enough k, again by For-

r2k-2l-l~l 

mula (5)) and has limit a2l+2 + a21. D 

Theorem 4.4: For / > 1 and large enough k\ 
a. Ratid2i(L2k - L2i) decreases to R2l as k increases. 
h Ratio2i(L2k+i - Z2/_i -1) increases to R2l as k increases. 

The proof of this theorem is omitted as it is similar to the proof of Theorem 4.3. 

4.2 Negative Powers of a 
We state here the results for the subsequences of Ratior(n) where r <0. The proofs are 

completely analogous to those from the previous subsection. 

Lemma 4.5: For k > 1: 

Ones{P*2l) = { 

J2J-2> 
L '21-U 

k<2l, 
k = 2l, 
k = 2l + \, 

0, £ = 2/+2, 
L2i(Fk-2i-3 + 0, ^odd, 

k>2l+3, 
L2i(Fk_2l_3-l), keven, 

k>2l + 3; 

Ones(P_\2M))-. 

0, k<2l + 3, 
L2M(Fk_2l_4-l), *odd, 

£>2/ + 4, 
L2M(FIC-21-4 + 1X ^even, 

&>2/ + 4. 

Lemma4.6: If & > / +1, then: 

(A h. Pat-(2l+\)y±J2k+2 ^21+2' ^2k+2. 

Pat. (2/+l)(-^2A+3 

•LTIJ-T, •L">lrJ-'>\ — 1 + « 

2^2/ + 2 ? ^ + 3 ] = 02L2/+2-
<£ Pat_2l(L2h L2k + L2M] - 0^-i. 
e. Pat_2l(L2k+l - L2h L2k+l] = 1^. 
/ Pat_2l(L2k+2 - L2l+2, L2k+2] = 0 2/+2. 

Theorem 4.7: Let / be a nonnegative integer. For large enough k: 
a. If / > 0, then Ratio_^2l+V)(L2k - L2i) decreases to R-^i+i) a s * increases. 
6. If / > 0, then Ratio_(2i+V}(L2k+^) increases to R^y+i) a s ̂  increases. 
c. If / > 1, then Ratio_2l(L2k+{) decreases to i?_(2/) as k increases. 
d. If / > 1, then Ratio_2l{L2k + Z^j) increases to i?_(2/) as & increases. 
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5. THE MAIN RESULT 

In this section we show that, as w-»oo, members of the Ml sequence Ratior{n) must be 
caught between the two subsequences examined in the previous section. In order to do this, we 
bound the ratios of prefixes of patterns originating at members of the subsequences, and then use 
Lemma 2.8. 

5.1 The Case r > 0 Odd 
We start by examining in more detail the patterns appearing between Lucas numbers. The 

base cases are taken care of in the following corollary. 

Corollary 5.1: Fo r />0 : 
3] = 0L2M. 

4] = o^z+ii^o. 
_1 = QL2M\L2rlQL2M+l 

5J 
J = QL2M\L2rlQ2L2l+l+llL2rlQ 

_1 — QL21+\\L2rlQ2L2l+\+llL2rlQL2l+l+llL2rlQL2l+l+l 

Proof: Parts (a)-(c) follow from Corollary 3.3 and Theorem 2.1. Parts (d) and (e) follow 
from (a)-(c) using Lemma 3.5. D 

Lemma 5.2: For k>l+2\ 
a. RatioiPi^)<R2l+l. 
b. RatioiPitfPiti^R^. 
c. Ratio{P^+l)>R2M. 
d RatiotP^Ptfc^R^. 

Proof: By Lemma 4.1, if k > 1+2, then 

Katio(P2M ) - - — — —j . 
^2k-3 \^2l l)r2k-2I-4 ^2k-3 U - \ \ 

(L 

b. 
c. 
d 
e. 

^a*2/+l(^2/+2> ^21+3. 

P^U+li^lM' ^21+4. 

Pa^2/+1(Z2/+4, X2/+5. 

^at2l+l(^2l+5y L2l+6\ 

PQtWl(^2/+6> ^2/+7-

^2k-2l-4 

Since F
 2k~3 is decreasing with limit a2l+2 + a21, 

j2k-l\ ^ ^ 2 / ~ 1 

which proves (a). We also have 
OmsiPltfPlh) = OmsiP^ + OmsiP^) 

~ \^2l ~ 0^2A:-2/-4 + (^2/ ~~ ̂ )^2k-2l-3 ~ (^21 " ^)^2k-2l-2^ 

and hence, by part (a), 

RatHP^P^) = ^2l-X)F2,_v_2 = Raij0(p2k++l) < Ri 

^2k-l ~ V^2/ l)r2k-2l--2 
Similarly, 
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RatioiP^) = (L2l'mk-^ = T
 L»~l . 

^Ik-l \^2l l)P2k-2l-3 ^2k-2 n _ J\ 
^2k-2l-3 

L Since F
 2k 2 is increasing with limit a 2 + a 2/+2 , ^ 2 / 

L, , - l 

which proves (c). For part (d), the reader may check that 
RatioiP^Pifc1) = RatioiPHf) > R2M 

using part (c). D 

We intend to show that, for L2k+l-L2l+l-\<n<L2k+3-L2l+l-1, limsup^^Ratio2l+l{n)< 
i?2/+i- By Theorem 4.3 and Lemma 2.8, it is sufficient to show that, if P is any prefix of 
^ahi+i(^2k+i ~~ A2/+1 ~ \ ^2k+3 ~^21+1 ~~2], then Ratio(P) < R2M. However, this last statement is 
not true for the largest prefixes unless k is sufficiently large. We therefore first prove a partial 
result applicable to prefixes P which do not include the tail end of ones found in Pat2l+l(L2k+1 -
^21+1 ~~ 1> ^2k+3 ~ ^21+1 ~ 2 ] -

Lemma §.3: For / > 0 and k > /+1 , if P is any prefix of P^t2l+l(L2k+l - L2l+l -1, L2k+3 - L2l+2], 
then Ratio(P) < R2t+1. 

Proof: We use repeatedly the fact that, by Lemma 2.8, the pattern obtained by concatenating 
two patterns whose ratios are < R2M also has ratio < R2M. If k = 1 +1, then by Lemma 4.2 and 
Corollary 5.1, 

Pat2l+l(L2i+3 - L2l+1 -1, L2l+5 - L2l+2] 

= P^2l+l(^2l-h3 ~ ^21+1 ~ \ ^ 2 / + 3 l + ^2/+l ^2/+l ' ^2 /+2 

- 0 2 L 2 / + 1 + 1 1 L 2 / ~ 1 0 J L 2 / + 1 + 1 . 

The prefix yielding the highest ratio is P - Q2L2i+\+\Liri g 0 t h a t 

2X2/+1 + l"oL2 / + 1 + l Ratio(P) = - ^ ^ < - ^ ± - = R •21+1-

If k = I + 2, the pattern in question is 

Pat2l+l (^21+5 ~~ Lll+1 ~ 1» ^21+7 ~ L2I+2I 

- Pahl+l\^2l+5 ~ ^21+1 ~~ 1> ^2l+s\ + *2M *2l+l ' ^2f+2 
= 02L2/+l+^L2/-l02I2/+l+ll^2/-l0L2/+l+1^2/-102L2/+l+1lL2/-l()^2/+l+l 

by Lemma 4.2 and Corollary 5.1. We need only consider the prefixes ending in lLirl, since these 
yield the highest ratios. We have: 

a. Ratio(02L^+1lLv-1) = n^2l~\ <-^~l 

2L2l+l + l aL2M + l' 
.X+UL21-\\ _ 2£2/ - 2 _ L2l-l L2l - 1 k Ratio(02L^+hL^-l02L^+hL'1-1) = *pl \ = o"~2/ \ < 

4L2M + 2 2L2l+l + l oL2/+1 + l ' 
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c. i?ar/o(02Z'2/+1+1lL2/"102L2/+1+1lL2/"10z'2/+1+1lL2/"1) = 3^2/ 3 = Ll1 1 <. Ll1 1 

5i2/+1 + 3 (5 / 3)L2l+l +1 aL2l+l +1 ' 

^ ]{ati0(p2L2M+llL2l-^^2M+^2r^2l+^ - 4 i"2/ 
7Z2/+1 + 4 

^2/ ~ 1 < ^2/ ~ 1 
(7/4)Z2/+1 + l aL2/+1 + l ' 

For the inductive step, assume k > / + 3. By Lemmas 3.5 and 4.2, 
Pai2l+l\^2k+l ~ ^21+1 ~ 1, ^2fc+3 ~" ^2/+2J 
— A^2/+i+1 p2£+2p2fc+3 / r _ A £ 2 / + I + 1 p2fc p 2 £ - l p2fc p2£+lp2A: p2fc+l / j 
~ u ^ Z + l ^27+1 ' ^ 2 / + 2 ~ U r2l+\r2l+\ r2l+lr2l+l r2l+lr2l+l ' ^21+2-

Suppose P is a prefix of this pattern. 

Case 1: If P is a prefix of O^'+^P,2/^, the result follows by the induction hypothesis. 

Case 2: P = 0^+lP2f+lQ = &«+lPfa2PZ£?P£?Q9 where 2 is a prefix of P2f+?/L2l+2. By 
the induction hypothesis, Ratio(QL*M+lP^Q) < P2/+i> and RatioiP^fP^3) < R2M by Lemma 
5.2. Hence, Ratio{P)<R2M. 

Case 3:- P = 0^*«+1/^1(/g*71/Z2/+2)j2, where 0 is a prefix of Pat2M{L2k_x-L2M, L2k_x] = 
1̂ 2/-ioL2/+i+i by Lemma 4.2. The prefix yielding the largest ratio is 

But this is a permutation of P' = ̂ l C ^ + I 1 / ^2/+2)lL2/"1()L2/+!+1 = P2il\F2ik+\l > so that Ratio(P) = 
Ratio(P') < R2M by Lemma 5.2. 

Case 4: P = O ^ ' + ^ P ^ P j ^ g , where 0 is a prefix of P2ik
+lP2^ / 2̂/+2 • BY t h e induction hy-

pothesis, iJatfo(O^'+,+10 < P2/+1. By Lemma 5.2, Ratio(P2l
k
+lP^1) < P2/+1, so Ratio(P) < R2M. 

Case 5: P = o W ^ f ^ w h e r e g i s a 

prefix of P®t2M{L2k+l - L2l+2, L2k+l] = \L2rlQL2M+l As in Case 4, the prefix yielding the highest 
ratio is 

p _ f)L2M+l p2k+2/p2k+l I r \]L2l-\ 
r - u "+1 r2/+1 ^r2/+1 / i ^ ^ ; 1 

which is a permutation of P' = P2
2/+t1 2̂2/+i"2> SO t h a t Ratio(P) = Ratio{P') < R2M by Lemma 5.2. 

Case 6: P = O ^ ^ P ^ f P ^ g , where g is a prefix of P2L\PIM < L2M- B Y t h e induction 
hypothesis, Ratio(0^M+lQ) < R2M. By Lemma 5.2, Ratio(P2J£2P$£l) < P2/+1; thus, Ratio(P) < 
R2l+l' D 

The result for all prefixes can now be proved as follows. 

Lemma 5.4: For / > 0 , there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat2l+l{L2k+l - L2M -1, L2k+3- L2M - 2], then Ratio(P) < R2M. 

Proof: Note that, by Lemma 4.2, 

Pat2M(L2k+l - L2l+l - 1 , L2k+3 - L2l+l - 2] - Pat2l+l(L2k+l - L2l+l -1, L2k+3 - L2l+2] +1 2/ , 

so, in view of Lemma 5.3, we need only show that, for large enough k, 
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Ratio2M{L2k+l L2M -1, L2k+3 - L2M - 2] < R2l+l. 

Now, by Lemmas 4.2 and 4.1, 
Ones2l+l(L2ku - L2l+l - 1 , L2k+3 - L2l+l - 2] 
= Q ^ ^ ! - 4 / + 1 - 1 , Z^+J + One^^L^, L2k+3] 

- Ones2l+l(L2k+3 - L2l+l - 2, L2k+3] = (Z^ - fyF2k_2M - 1 . 
So 

/?/y/7>> (T - T - 1 7 " - f - 9 1 - (^2/ V-^2fc-2/+l 1 
^o2 / + 1(Z2,+ 1 L2M l,L2k+3 L2l+l ^ - ( ^ ^ D . ^ . ! ) ^ ^ ^ ! ) 

1 ^ 1 
4 . + 2 - l - a 2 l + a 2 ^ _ 1 

(^2/ - l)F2k-2l+l ~ l hi-1 

since (L _$2~_ ^ is decreasing for k larger than some Kh by Formula (5), with limit a2+a21*2. 
Now 

i r . . - i r . _ i 
"~^2/+l-

1 
a2'+a2l+2 

L2l-\ 

L2i~\ 
_j a2' + a2/+2-L2; + r 

_ £2/-l 
az:2W+i 

This proves the lemma. • 

The next step consists of showing that, for L2k -L2l<n< L2k+2 - L2h 

limMn^Ratio2M(n)>R2l+v 

Again, it is sufficient to consider proper prefixes of Pat2l+l(L2k - L2b L2k+2 - L2l]. The results and 
proofs are analogous to the ones just presented. We present only the statements of the results. 

Lemma 5.5: For / > 0 and k > 1+1, if P is any prefix of Pat2l+l(L2k -L2b L2k+2 -L2l+3-1], then 
Ratio{P)>R2M. 

Lemma 5.6: For /> 0, there exists an integer Kt such that, if k >Kt and P is any prefix of 
Pat2l+l(L2k - L2b L2k+2 - L2l -1], then Ratio(P) > R2M. 

We can now state the final result for positive odd powers of a. 

Theorem 5.7: For any / > 0, l im^^ Ratio2M(n) = R2l+l. 

Proof: If Lu+l -L2l+l -\<n< L2k+3 - L2M - 2, then 

P ^ 2 / + 1 ( 0 , H ] = P O ^ 2 / + 1 ( 0 , Z ^ + 1 - Z 2 / + 1 - 1 ] + P , 

where P is a prefix of Pat2l+l(L2k+1- L2l+l-l, L2k+3- L2l+1-2]. & k ls l a r 8 e enough, then by 
Lemma 5.4, Ratio(P) <R2i+i, and by Theorem 4.3, Ratio(L2k+l-L2l+l-l) decreases to the limit 
R2M. So 

Rati^^n) < max{Ratio2l+l(L2k+l - L2l+l -1), Ratio(P)}. 

Letting n -> oo, we obtain 
lim s u p , ^ Ratio2l+l(n) < R2M. 
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Similarly, if L2k -L2l<n< L2k+2 -L2l-l, then 

Pat2l+l(0, n] = Pat2M(Q, L2k - L2l] + P, 

where P is a prefix of Pat2l+l(L2k - L2b L2k+2 - L2l -1]. If k is large enough, then by Lemma 5.6, 
Ratio(P) > R2M, and by Theorem 4.3, Ratio(L2k - L2l) increases to the limit R2l+l. Therefore, 

Ratio2l+l(n) > mm{Ratio2l+l(L2k - L2l\ Ratio(P)}. 

Now, letting n -> oo? we obtain 
lim i n f ^ Ratio2M(n) > R2l+l. D 

5.2 Other Cases 
We state the results for the cases r > 0 even and r < 0 without proof. The proofs are very 

similar to those in the previous subsection. 

Lemma 5.8: For / > 1 , there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat2l{L2k - L2b L2kJt2 - L2l -1], then Ratio(P) < R2l. 

Lemma 5.9: For / > 1 , there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat2l(L2k+l - L2l_x -1, L2k+3 - L2l_x - 2], then Ratio(P) > R2l. 

Theorem 4.4 together with Lemmas 5.8 and 5.9 leads to the following theorem. 

Theorem 5.10: For any / > 1, l im^^ Ratio2l(ri) - R2l. 

Lemma 5.11: For /> 0, there exists an integer Kt such that, for k >Kh if P is any prefix of 
P^-iiM^Lik ~hu hk+2'hi-llthen Ratio{P) <i?_(2/+1). 

Lemma 5.12: For / > 0 , there exists an integer Kt such that, for k >Kh if P is any prefix of 
Pat-(2M)(L2k+h LIM~ 1 ] , t h e n Ratio{P) > R_(2My 

Theorem 4.7 together with Lemmas 5.11 and 5.12 leads to the following theorem. 

Theorem 5.13: For any / > 0, lim^^^ Ratio_^2l+l)(n) = R^2i+i) • 

Lemma 5.14: For /> 1, there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat_(2l)(L2k+h L2k+3 -1], then Ratio{P) < R_(2l). 

Lemma 5.15: For /> 1, there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat_(2i)(L2k + L2l_h L2k+2 + L2l_x -1], then Ratio{P) > R_(2l). 

Theorem 4.7 together with Lemmas 5.14 and 5.15 leads to the following theorem. 

Theorem 5.16: For any / > 1, l im^^ Ratio_^2[){n) = R^2iy 

6. CONCLUSION 

We have characterized the frequency of occurrence of a1 in the a-expansions of the positive 
integers, for both positive and negative powers of a, using a recursive pattern found in these 
expansions. These results complete the characterization of the frequency of occurrence of the 
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powers of a in the a-expansions of the positive integers, which was started in [6], Other charac-
teristics, such as the frequency of occurrence of certain specific patterns in the expansions, might 
be capable of being derived using similar methods. 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark'Bowron 
Director of Operations, MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowron@my-deja.com 
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