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1. INTRODUCTION 

A Diophantine triplet is a set of three positive integers (a,h,c) such that a<b <c and 
ah - 1, hc +1, and ac +1 are integer squares. Examples of such triplets are (1,3,8), (2,4,12), 
and (2990,22428,41796). 

The following four families of Diophantine triplets are well known: 
^i = mn,F2n+2,F2n+4):n>l}y 
F2 = {{Fin, ^W5F2 n ¥ 2) :/?>!}, 
^{{P2n,2P2n,P2n+2yn>l}, 
^2 = {(P2n,P2r1+2,2P2n+2):n>l}. 

We refer readers to [2], [3], and [4] for these families. Here, Fk and Pk denote the kth element of 
the Fibonacci sequence and the Pell sequence, respectively. In [1], the first author posed the 
problem of finding infinitely many such Diophantine triplets. 

The aim of this paper is to construct several different infinite families of Diophantine triplets 
using elements of the Pell sequence. We then formulate and prove a general result which gives 
formulas for a doubly infinite family of Diophantine triples. We conclude with a result on Dio-
phantine quadruplets. 

2. THE PELL SEQUENCE 

Although the Pell sequence is quite well known, we describe it here for the sake of complete-
ness. The Pell sequence is the sequence {Pn}, where Px = l, P2 = 2, and Pn+2 =2Pn+l + Pn for 
n > 1. That is, the Pell sequence is the sequence {1,2,5,12,29, 70,169,408,...}. (We note that 
this is the sequence of denominators for the successive convergents to the continued fraction 
expansion of 42 .) The following two properties of the Pell sequence are used in this paper: 

Property 1: Pn is even if n is even. 

Property 2: For all n > 1, 2P2\ +1 = (3P2""/2"-2)2. 

3. SOME FAMILIES OF DIOPHANTINE TRIPLETS 

For convenience, we shall use the following notation. FP(k) denotes the kth family obtained 
by using the Pell sequence. The /1th element of FP(k) is a triple denoted by Tn(k), whose ele-
ments in turn are denoted by An^k, B^k, and C„tk. That is, 

FP(k) = {Tn(k):n = l,2,...l and r„(*) = (4lfik,5llfjt,CJIfife). 
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Theorem 1: Let ^ , = %•, B„,, = 4P2„, and C„_l = fP2n-P2n_2. Then 

FP(l) = {Tn(l):n = l,2,...} = {(An!l,B„A,Cn,i):n = l,2,...} 

Is a family of DIophantine triplets. 

Proof: For each n > 1, using the definition of the Pell sequence and Property 2 leads to the 
equations 

4 , ^ + 1 = 2 /*+1 = 1 ^ ^ ^ * * 

P2n=2_)2_2p2 

A,,lC„\ + \- "I -2"^2„-^2„-2 1+1 

= 4P2 - 2P„?,„_, + i*a=L = ( 2 R - ^=1 l2n ^I2n12n-2^' A -\^I2n 4 { In 2 

2n 

2 

and 

Jn,Y^n,l 2n\ n 2n 2n~2 
15 

& I C H , + 1 = 4 P J T ^ - ^ +1 

- ^ f ^ - ^ l + P^/2-2! -2/& 
^21 p2 __ j j - p p , p2 

A r2n 2 2n 2n~2 2n-2 

11 P *2n-2 
2 2n 2 

By Property 1, since P2n and P2n_2 are even, each of the above squared expressions is an integer 
square, and the result follows. 

We list a few elements of FP(l): 
n Triple 
1 Ti(l) = (l,8,15) 
2 5(1) = (6,48,88) 
3 ^(l) = (35,280,513) 
4 T4(l) = (204,1632,2990) 

Theorem 2: Let ATJf2=2P2n, Bna = l5P2n-2P2n_2, and Cllf2 = 28P2lI-3P2n.2. Then FP(2) = 
(5(2) : w = 1,2,...} = {(4,^2, B„t2, Cna) : w = 1,2,...} is a family of Diophantine triplets. 

Proof: Noting that 4i,2^»,2 = 4 , iQ,b w e s e e ^rom Theorem 1 that 

4,.2^,,2 + l = ( y ^ . -
p \2 
/ 2n-2 
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Using algebraic techniques similar to those used in the proof of Theorem 1, we also obtain 

4,,2Q,2 + l = ( y ^ - ^ - 2 ) 2 and 5„J2C„;2 + 1 = ^ P 2 „ - | P 2 „ _ 2 J . 

Again, since the subscripts are even, these squares are integer squares, and the result follows. 

A few triples in the family FP(2) are listed here: 

n Triple 
1 T,(2)=(4,.30,56) 
2 r2(2) = (24,176,330) 
3 7;(2) = (140,1026,1924) 
4 T4(2) = (816,5980,11214) 

Theorem 3: Let 4 , > 3 = f P2n-P2n_2, B„,3 = 56P2n-6P2n_2, and C„>3 = f P2n-\2P2n_2. Then 
FP(3) = {T„(3) : n = 1,2,...} = {(4, 3, B„ 3, Q 3 ) : « = 1,2,...} is a family of Diophantine triplets. 

Proof: Noting that A„ 3B„3 = B„2C„2, we see from Theorem 2 that 

Using algebraic techniques similar to those used in the proof of Theorem 1, we also obtain 

A>3Q,3 + 1 = (28P2„-|P2„_2J and 5nj3C„;3 + l = ̂ P 2 „ - ^ P 2 „ _ 2 J . 

As before, since the subscripts are even, these squares are integer squares, and the result follows. 

Here are a few triples in the family FP(3): 

n Triple 
1 ^(3) = (15,112,209) 
2 ^(3) = (88, 660,1230) 
3 T3(3) = (513,3848,7171) 
4 T4(3) = (2990,22428,41796) 

4. A DOUBLY INFINITE FAMILY OF DIOPHANTINE TRIPLETS 

It is apparent from the previous section that the families FP(l), FP(2), and FP(3) fit into an 
infinite family of such families. In this section we will derive formulas for such a double infinite 
family. 

First, we define the auxiliary sequences {Gn : n > 1}, {Hn : n > 1}, and {Sn:n> 1} by 

G1 = 1,G2=4, mdGn+2 = 4Gn+l-Gn forn>\; 
Hx = H2 = 09 mdHn+2 = 4Hn+l-Hn-2(-iy forn>l; 
S,=4,S2 = 14, andSw+2 = 4 ^ - ^ forn> 1. 

244 [JUNE-JULY 



DIOPHANTINE TRIPLETS AND THE PELL SEQUENCE 

Thus, (G„) = (1,4,15,56,209,780,2911,...), (H„) = (0, 0,2, 6,24,88, 330,1230,...), and (Sn) = 
(4,14,52,194,724,....). 

Our main result is the following. 

Theorem 4: Let n and k be positive integers, and let 

E(n,k)=GkP2n~HkP2"-2. 

Then (E(n, k\ 2E{nJ k +1), E(n, k + 2)) is a Diophantine triplet. 

If we now define FP(k) = {(E(n, k\ 2E(n, k +1), E{n, k + 2)) : n = 1,2,...}, then the cases 
k = 1,2, and 3 agree with our previous definitions. Hence, this is the doubly infinite family we 
seek. 

Proof of Theorem 4 uses the properties of the Gn, Hn, and S„ contained in Propositions G, 
H, and S; their proofs use only induction and some tedious but straightforward algebra. 

Define the algebraic integers y and 8 by y - 2 + V3 and 8 = 2 - V3 . 

Proposition G: For n a positive integer: 
yn -8n 

(2) G
n+2Gr, + l = Gn+l> 

(3) 2G„G„+1 + 1 = (G„+1-G„)2, 
(4) G„+3+G„ = 3(G„+1 + G„+2). 

Proposition H: For « a positive integer: 

(3) H„ + H„+1 = 2G„_l, 
(4) Hn+3 + H„=3(Hn+l+Hn+2). 

Proposition S: For n a positive integer: 
(1) Sn = y"+S", 
(2) S„ + (-1)" is divisible by 3, 
(3) Sn+3 + Sn = 3(Sn+l + 

Remark: The reader will note that (G„) and (£„) are related in the same way as the Fibonacci 
and Lucas sequences are related. 

The following lemmas are quite useful in deriving the main result. We give the proof of 
Lemma 1 here; proofs of Lemmas 2 and 3 are similar but longer, and we have relegated them to 
the appendix. 

"~S
 3 1 . 
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Lemma 2: For every positive integer #i, GnHn+2 + Gn+2Hn + 6 = 2Gn+l(Hn+l + (-1)'2+1). 

Lemma 3: For every positive integer n, GnHn+l + Gn+lHn + 3 = \ (Gn+l - Gn) (Sn_l + (-l)n+l). 

Proof of Lemma 1: Using Proposition H(l), we see that 

6 2 ) 

=^((i+V3)V2"-3+(V3-i)2<52"-3-2(r+^))-|+i 

-^((V3+i)rn-2(r-i)-(V3-i)<5"-2(^-i))(-ir2, 

since y£= 1. Now we know that ^ - 1 = 73+1, £ - l = l - V 3 , j / + £ = 4, (1 + V3)2 = 2^, and 
(V3-1)2 = 2J. Hence, 

» n+i 9 9 9 9 9 

= (r"+1 + <?"+1)2-2 6 n 2(-l)"'1(^"-1 + ^"'1) 
9 

3 3 
y- i + < ^- i | ( _ i r - iV = p„_ 1 + ( - i ) -^ 2 

as claimed. 
We note that defining PQ = 0 is consistent with the Pell sequence recurrence and allows the 

proofs to go through in the case n - 1. 
Proof of the Main Result: For w, & positive integers, it suffices to show that 

E(n,k)E{n,k + 2) + \ and 2£(TI,&)£(«,* +1) +1 

are integer squares. The proof breaks into two parts: First, we expand E(n, k)E(n, k + 2) +1 and 
find that 

E(n, k)E(n, k + 2) +1 = 1 (G,P2w - HkP2n_2){Gk+2P2n - Hk,2P2n_2) +1 

= ~^{GkGk+2P2n + HA+2P2n-2 ~ P2nP2n-2iGkHk+2 + Gk+2^k)) + 1-

Now, by Property 2, 

2/& + 1 - ' - 2" ^2w-2 

i.e., 

1 _ ^2w • P2n-2 6 p p 
4 4 4

/ 2 W ^ 2 n - 2 -

Using Propositions G(2) and H(2), we find that in the expansion of E(n9 k)E(n9 k + 2) +1 the 
coefficients of P2n and P2n_2 are 

246 [JUNE-JULY 



DIOPHANTINE TRIPLETS AND THE PELL SEQUENCE 

% and fcHTl 
4 4 

respectively. By Lemma 2, we find that the coefficient of P2nP2n_2 is 

-1G Hk+i + (-lf+l 

Hence, 

E{n, k)E(n, k + 2) + 1 = \(Gk+lP2n - (HM + (-1)*+I)P2„_2)2, 

which—since the Pell sequence subscripts are even—is an integer square, as desired. Next, we 
expand E(n, k)E(n, k +1) +1 and find that 

E(n, k)E(n, k +1) +1 = \(2GkP2n - HkP2n_2)(Gk+1P2„ ~ HMP2n_2) +1 

= \&GkGk+xP2
2

n +2HkHk+lP2
2
n_2 - 2P2„P2n_2{GkHM + Gk+lHk)) +1. 

As before, recall that 
1 _ r2n t r2n-2 ° p p 
l~~ 4 + 4 4 ^2^21,-2-

Using Proposition G(3) and Lemma 1, we find that in the expansion of 2E(n, k)E(n, k +1) +1 the 
coefficients of P2n and P2n-2 are 

.«*+.-C*)' and l f ( ^ . + ( - r i V 

2 1 
2«-2 

4 4^ 3 
respectively. By Lemma 3, we find that the coefficient of P2nP2r}-2 'ls 

2(Gk+l-Gk)(Sk_1+(-lf-1) 
4 3 

Hence, 

2E(n,k)E{n,* +1) +1 = ±((Gk+l-Gk)P2n-S^+^ ' P2 

which—by Proposition S(2) and the fact that the Pell sequence subscripts are even—is an integer 
square, as desired. 

Diophantine Quadruples: Let us recall that a Diophantine quadruple is an ordered quadruple 
(a,b,c,d) of positive integers such that ab + ly ac + l9 atf + 1, bc + l,.bd + l, and of+ 1 are all 
integer squares. A recent result on Diophantine quadruples is the following (see [2]). 

Theorem 5: If (a, b, c) is a Diophantine triplet for which ab = 1 = x2, ac +1 = y2, be +1 = z2, and 
d=a+b+c+ 2abc + 2xyz, then (a, b, c, d) is a Diophantine quadruple. 

This result and our Theorem 4 produce an infinite family of Diophantine quadruples, namely, 
a = E(n,k), A = 2£(/i, * +1), 
c = E(n, k + 2\ d = a+b + c + 2abc + 2xyz, 

where 
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* = \{iGM -Gk)P2n - S" + <fl)k+l P2n_2) , 

y = \(GMp2n -(Hk+l+(-i)^)P2n_2y, 

For example, if we let n - 4 and k = 3, we obtain the Diophantine quadruple 
(2990,22428,41796,11211312362908); 

the six relevant squares are p2, q2, r2, s2, t2, and u2, where (p, q, r, s, t, u) is the sextuple 
(8189,11179,30617,183089661,501445225,684534886). 

APPENDIX 

In this appendix, we give proofs of Lemmas 2 and 3. 

Lemma 2: For every positive integer n, GnHn+2 + Gn+2Hn + 6 = 2Gn+l(Hn+l + (-l)w+1). 

Proof: Let us abbreviate GnHn+2+Gn+2Hn+6 by LHS. From Propositions G and H, we see 
that 

us*=?"-*" a+V3)r--(V3-i)^ (-ir2 

y-8 6 3 
Y n+2 _ Sn+2 Q + ^ y n - l _ ^ _ ggn-2 ^y-2 

+ y-8 6 3 + ' 
Using the facts that y8 = 1, (1 + V3)£4 + (V3 -1)^4 = 82V3, y -8 = iji, and a little algebra, we 
find that 

LHS = rt
 l fa(l + S)y2n + 2(V3 -\)82n -2V3 -8(- l )>"+ 1 + 8(-l)"<T+1 -82V3) + 6 

6(y -o)K ' 

-Gn+1(-1)"-1. = 2(1 + -J3)y2" + 2(V3 -1)82" 8 ( 

6fr-<5) 6( 

On the other hand, abbreviating 2G„+i(Hn+i + (-l)"+1) by RHS, we similarly see that 

RHS - 1 r _5 ((1+S)y"~x -(V3 - \ y r l -2(-l)"-1) + 2(- 1)"+1G„+1 

_2((l + V3)r
2"+(V3-l)^"-(l + ^ ) J 2 - (V3- l ) r

2 ) f4 o y 1X„+1(7 L(H<->" 6(y-5) 16 *7V v n+1' 

But 2((1 + V3)<52 + (V3 - \)y2) = 6(y - 8) = 12^3 and (-1)" = -(-1)"+1, so 

2(l + V3)r
2"H-2(V3-l)<?2" 8 , n „ r 

Hence, LHS = RHS and the lemma is proved. 

Lemma 3: For every positive integer n, GnHn+l + G„+lHn + 3 = ± (Gw+1 - G„) ( S ^ + (-l)w+1). 
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Proof: Let us abbreviate GnHn+l + Gn+lHn + 3 by LHS. Using Propositions G and H and the 
equalities cited in the proof of Lemma 2, we see that 

L H S = yn-sn (i+V3)r
w-1-(V3-i)^-1-2(-ir1 

y - 8 6 
Yn+l-8n+l {l + S)yn-2-{43-l)8n-2-2{-l)n-2

 | 3 
j / - J 6 

A little more algebra leads to the equation: 

LHS = —1—(2(1 + V3)r
2n~l + 2(V3 -1)^""1 - (V3 - l)4r

 2 

6 ( f - J ) v 

- (V3 +1)4^2 + 2(- i rXr" (y ~ 1) - Sn(S -1))) + 3. 

We use the facts that (73 -1)4^2 + (V3 +1)4£2 = 24^3 and 6(y -8) = 12^3 and arrive at 

LHS = r, 1
 cx (2(1 + V3>2n~l + 2(V3 - l ) ^ " 1 + 2(-l)w((l + V3)r" + (V3 -!)£")) +1. 

On the other hand, abbreviating j(Gw+1 - G J ( ^ _ j + (-l)"~l) by KHS, we similarly see by Propo-
sition S that 

RHS = „, ! ^(yn+l-8n+l-yn+8n)(yn-l+8n-l+(-l)n-1) 
3(y-8) 

= i r ^ ( ^ I ( 1 + ^ ) + < 5 2 , l " 1 ^ - 1 ) + ( 1 + ^ 
3(^-£) v 

+ (V3 -1)J + (-l)w"l(r"0 + V3) + <S"(V3 -1))). 
Since y - 1 = 1 +V3, 8-1 = -(V3 -1), and (1 + V3)r +(Vf -1)5 = 6^3, we find that 

p j i s = - ^ ( ( i + V 3 ) r
2 ^ 

3(y-8) 
Hence, LHS = RHS and this proves Lemma 3. 

REFERENCES 

1. M. N. Deshpande. Problem No. 10622. Amer. Math Monthly 104 (1997):870. 
2. A. Dujella. "Generalized Fibonacci Numbers and the Problem of Diophantus." The Fibo-

nacci Quarterly MA (1996):25-30. 
3. A. Dujella. "A Problem of Diophantus and Pell Numbers." Applications of Fibonacci Num-

bers 7:69-76. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1998. 
4. V. E. Hoggatt, Jr., & G. E. Bergum. "A Problem of Fermat and Fibonacci Sequences." The 

Fibonacci Quarterly 15.4 (1977):323-30. 
AMS Classification Numbers: 11B39, 11B61 

2001] 249 


