AN ALGORITHM FOR DETERMINING $\boldsymbol{R}(\boldsymbol{N})$ FROM THE SUBSCRIPTS OF THE ZECKENDORF REPRESENTATION OF N

David A. Englund
9808 Wilcox Drive, Belvidere, IL 61008
(Submitted April 1999-Final Revision July 1999)

1. INTRODUCTION

Let $R(N)$ be the number of representations of the positive integer N as the sum of distinct Fibonacci numbers. N has a unique Zeckendorf representation [4], [3], in which no two consecutive Fibonacci numbers appear in the sum. Several methods have been developed for determining $R(N)$, many of which involve recursive formulas based on the number of representations of smaller integers [1]. In this paper we present an algorithm for determining $R(N)$ solely from the subscripts of the Zeckendorf representation of N. Carlitz [2, p. 210] has given a similar algorithm that can be used in the special case in which the subscripts in the Zeckendorf representation have the same parity.

2. STATEMENT OF THE ALGORITHM

Algorithm for $\boldsymbol{R}(N)$: Write the Zeckendorf representation of N with the subscripts in descending order as follows:

$$
N=\sum_{i=1}^{t} F\left(S_{t+1-i}\right)=F\left(S_{t}\right)+F\left(S_{t-1}\right)+F\left(S_{t-2}\right)+\cdots+F\left(S_{j}\right)+F\left(S_{j-1}\right)+\cdots+F\left(S_{1}\right),
$$

where $S_{j} \geq S_{j-1}+2$ and $S_{1} \geq 2$, and $F(k)=F_{k}$. Define:
$T_{0}=1 ;$
$T_{1}=\left[S_{1} / 2\right]$ (where [] is the greatest integer function). Let
$T_{j}=\left[\left(S_{j}-S_{j-1}+2\right) / 2\right] T_{j-1}$ if S_{j} and S_{j-1} are of opposite parity;
$T_{j}=\left[\left(S_{j}-S_{j-1}+2\right) / 2\right] T_{j-1}-T_{j-2}$ if S_{j} and S_{j-1} are of the same parity.
Then $R(N)=T_{t}$.
Example 1: Find $R(63)$. The Zeckendorf representation of $63=F_{10}+F_{6}$. Thus:
$T_{0}=1$ (by definition);
$T_{1}=[6 / 2]=3$;
$T_{2}=[(10-6+2) / 2] T_{1}-T_{0}=(3)(3)-1=8=R(63)$.
Example 2: Find $R(824)$. The Zeckendorf representation of $824=F_{15}+F_{12}+F_{10}+F_{7}+F_{3}$. Thus:
$T_{0}=1$ (by definition);
$T_{1}=[3 / 2]=1$;
$T_{2}=[(7-3+2) / 2] T_{1}-T_{0}=(3)(1)-1=2$;
$T_{3}=[(10-7+2) / 2] T_{2}=(2)(2)=4 ;$
$T_{4}=[(12-10+2) / 2] T_{3}-T_{2}=(2)(4)-2=6$;
$T_{5}=[(15-12+2) / 2] T_{4}=(2)(6)=12=R(824)$.

Remark: In the special case in which all S_{i} are even, the validity of the present algorithm follows easily from the algorithm of Carlitz [2, p. 210]. (Alternatively, the validity of the algorithm of Carlitz follows from the validity of the present algorithm.) Suppose that all S_{i} are even. We write $S_{t}=2 k_{1}, S_{t-1}=2 k_{2}, \ldots, S_{1}=2 k_{t}$, and $j_{s}=k_{s}-k_{s+1}, s=1, \ldots, t-1, j_{t}=k_{t}$. Still following Carlitz, we define $C_{0}=1, C_{1}=j_{1}+1$, and $C_{s}=\left(j_{s}+1\right) C_{s-1}-C_{s-2}, s=2, \ldots, t$. Slightly modifying the last step, we define $C_{t}^{\prime}=j_{t} C_{t-1}-C_{t-2}$. Writing

$$
C\left(x_{1}, \ldots, x_{t}\right)=\left|\begin{array}{ccccc}
x_{1} & -1 & 0 & \cdots & 0 \\
-1 & x_{2} & -1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & x_{t}
\end{array}\right|
$$

for the continuant, we have [2, p. 212]

$$
\begin{aligned}
R(N) & =C_{t}-C_{t-1}=C_{t}^{\prime} \\
& =C\left(j_{1}+1, j_{2}+1, \ldots, j_{t-1}+1, j_{t}\right) \\
& =C\left(j_{t}, j_{t-1}+1, j_{t-2}+1, \ldots, j_{1}+1\right)=T_{t} .
\end{aligned}
$$

For example, if $N=F_{16}+F_{8}+F_{4}=1011$, then $\left(j_{1}+1, j_{2}+1, j_{3}\right)=(5,3,2)$ and the (modified) Carlitz algorithm gives:

$$
\begin{aligned}
& C_{0}=1 ; \\
& C_{1}=5 ; \\
& C_{2}=(3)(5)-1=14 ; \\
& C_{3}^{\prime}=(2)(14)-5=23=R(N) .
\end{aligned}
$$

Using the present algorithm, we obtain:

$$
\begin{aligned}
& T_{0}=1 ; \\
& T_{1}=2 ; \\
& T_{2}=(3)(2)-1=5 ; \\
& T_{3}=(5)(5)-2=23=R(N) .
\end{aligned}
$$

3. PROOF OF THE ALGORITHM

Lemma: Following the steps of the algorithm set forth in Section 2, if $N=F_{m}-1(m \geq 3)$, then $T_{0}=T_{1}=\cdots=T_{t}=1$.

Proof: This follows immediately from the formulas [3]

$$
F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n}-1(n \geq 2) \text { and } F_{2}+F_{4}+\cdots+F_{2 n}=F_{2 n+1}-1(n \geq 1) .
$$

Theorem: Following the steps of the algorithm set forth in Section 2, $R(N)=T_{t}$.
Proof: We use induction on t, the number of terms in the Zeckendorf representation of N. (Note that, if $t>1$, then the Zeckendorf representation of $N-F\left(S_{t}\right)$ is clearly $F\left(S_{t-1}\right)+F\left(S_{t-2}\right)+$ $\left.\cdots+F\left(S_{j}\right)+F\left(S_{j-1}\right)+\cdots+F\left(S_{1}\right).\right)$

1. The cases $t=1$ and $t=2$ follow immediately from the formula [1, p. 53] $R\left(F_{n}\right)=[n / 2]$ and from [1, Theorem 7, p. 58], respectively.
2. We suppose now that $t \geq 3$ and that the theorem is valid for $t-1$ and $t-2$. Let $S_{t}=m$ and $S_{t-1}=n$, so that $m-n \geq 2$ and $n \geq 4$. We write

$$
N^{\prime}=N-F\left(S_{t}\right)=F\left(S_{t-1}\right)+F\left(S_{t-2}\right)+\cdots+F\left(S_{j}\right)+F\left(S_{j-1}\right)+\cdots+F\left(S_{1}\right)
$$

Then we have $F_{n} \leq N^{\prime} \leq F_{n+1}-1$.
a) If $F_{n} \leq N^{\prime} \leq F_{n+1}-2$, we use [1, Corollary 3.1, p. 53].
a-1) Suppose that $m-n$ is odd. Then

$$
R(n)=[(m-n+1) / 2] R\left(N^{\prime}\right)=[(m-n+2) / 2] T_{t-1}=T_{t}
$$

using the induction hypothesis.
a-2) Suppose that $m-n$ is even. Using [1, Theorem 2, p. 48] and the induction hypothesis, we get

$$
\begin{aligned}
R(N) & =[(m-n+1) / 2] R\left(N^{\prime}\right)+R\left(F_{n+1}-2-N^{\prime}\right) \\
& =[(m-n+2) / 2] R\left(N^{\prime}\right)-\left(R\left(N^{\prime}\right)-R\left(F_{n+1}-2-N^{\prime}\right)\right) \\
& =[(m-n+2) / 2] R\left(N^{\prime}\right)-R\left(N^{\prime}-F_{n}\right)=[(m-n+2) / 2] T_{t-1}-T_{t-2}=T_{t} .
\end{aligned}
$$

b) Suppose now that $N^{\prime}=F_{n+1}-1=F_{n}+F_{n-2}+\cdots$. By [1, Theorem 7, p. 58], we have $R(N)=[(m-n+1) / 2]$. On the other hand, using the Lemma, we have

$$
T_{t}=([(m-n+2) / 2])(1)=[(m-n+1) / 2]
$$

if $m-n$ is odd, while

$$
T_{t}=([(m-n+2) / 2])(1)-1=[(m-n+1) / 2]
$$

if $m-n$ is even. So we have $R(N)=T_{t}$ in this case also. This completes the proof.

ACKNOWLEDGMENT

The author wishes to thank the anonymous referee for useful suggestions and for a proof of the algorithm by induction, which is considerably shorter than the proof in graph form contained in the author's original submission.

REFERENCES

1. M. Bicknell-Johnson \& D. C. Fielder. "The Number of Representations of N Using Distinct Fibonacci Numbers, Counted by Recursive Formulas." The Fibonacci Quarterly 37.1 (1999): 47-60.
2. L. Carlitz. "Fibonacci Representations." The Fibonacci Quarterly 6.4 (1968):193-220.
3. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. Santa Clara, CA: The Fibonacci Association, 1979.
4. E. Zeckendorf. "Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas." Bull. Soc. Royale Sci. Liège 41 (1972):179-82,
AMS Classification Numbers: 11B39, 11B37, 11Y55
