ALGORITHMIC DETERMINATION OF THE ENUMERATOR FOR SUMS OF THREE TRIANGULAR NUMBERS

John A. Ewell

Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115 (Submitted May 1999-Final Revision October 1999)

1. INTRODUCTION

In order to lend greater precision to statements of results and methods of proof, we begin our discussion with a definition.

Definition 1.1: As usual, $\mathbb{P} := \{1, 2, 3, ...\}, \mathbb{N} := \mathbb{P} \cup \{0\}$, and $\mathbb{Z} := \{0, \pm 1, \pm 2, ...\}$. Then, for each $n \in \mathbb{N}$,

$$t_3(n) := \left| \left\{ (h, j, k) \in \mathbb{N}^3 | n = \frac{h(h+1)}{2} + \frac{j(j+1)}{2} + \frac{k(k+1)}{2} \right\} \right|;$$

and q(n) := the number of partitions of *n* into distinct parts. We define q(0) := 1 and q(n) := 0 for n < 0. The function $q(n), n \in \mathbb{N}$, is generated by the infinite product expansion

$$\prod_{1}^{\infty} (1+x^n) = \sum_{0}^{\infty} q(n)x^n,$$

which is valid for each complex number x such that |x| < 1.

As so many arithmetical discussions do, our discussion begins with Gauss, who first proved the following theorem. (The result was conjectured by Fermat about 150 years earlier.)

Theorem 1.2: Every natural number can be represented by a sum of three triangular numbers, i.e., for each $n \in \mathbb{N}$, $t_3(n) > 0$.

In this paper our major objective is to give an algorithmic procedure for computing $t_3(n)$, $n \in \mathbb{N}$. This is accomplished by the following two results.

Theorem 1.3: For each $n \in \mathbb{N}$,

$$q(n) + 2\sum_{k \in \mathbb{P}} (-1)^k q(n-k^2) = \begin{cases} (-1)^m, & \text{if } n = m(3m\pm 1)/2, \\ 0, & \text{otherwise.} \end{cases}$$
(1.1)

Theorem 1.4: For each $n \in \mathbb{N}$,

$$t_3(n) = q(n) - \sum_{k \in \mathbb{P}} (-1)^k q(n - 3k^2 + 2k)(3k - 1) + \sum_{k \in \mathbb{P}} (-1)^k q(n - 3k^2 - 2k)(3k + 1).$$
(1.2)

For a proof of Theorem 1.3, see [1, pp. 1-2]. Section 2 is dedicated to the proof of Theorem 1.4.

2. PROOFS

In our development we require the following three identities:

$$\prod_{1}^{\infty} (1+x^{n})(1-x^{2n-1}) = 1; \qquad (2.1)$$

[JUNE-JULY

276

$$\prod_{1}^{\infty} \frac{1 - x^{2n}}{1 - x^{2n-1}} = \sum_{0}^{\infty} x^{n(n+1)/2}; \qquad (2.2)$$

$$\prod_{1}^{\infty} \frac{(1-x^{2n})(1-a^2x^{2n-2})(1-a^{-2}x^{2n})}{(1+ax^{2n-1})(1+a^{-1}x^{2n-1})} = \sum_{-\infty}^{\infty} x^{n(3n+2)}(a^{-3n}-a^{3n+2}).$$
(2.3)

Identities (2.1) and (2.2) are valid for all complex numbers x such that |x| < 1, while (2.3) is valid for each pair of complex numbers a, x such that $a \neq 0$ and |x| < 1. For proofs of (2.1) and (2.2), see [2, pp. 277-84]; for a proof of (2.3), see [3, pp. 23-27]. In passing, we observe that the cube of the right-hand side of (2.2) generates the sequence $t_3(n)$, $n \in \mathbb{N}$. Proof of Theorem 1.4 is facilitated by the following lemma.

Lemma 2.1: For each complex number x such that |x| < 1,

$$\prod_{1}^{\infty} \frac{(1-x^{2n})^3}{(1+x^{2n-1})^2} = \sum_{-\infty}^{\infty} (3n+1)x^{n(3n+2)}.$$
(2.4)

Proof: Multiply (2.3) by $-a^{-1}$ to get

$$(a-a^{-1})\prod_{1}^{\infty}\frac{(1-x^{2n})(1-a^{2}x^{2n})(1-a^{-2}x^{2n})}{(1+ax^{2n-1})(1+a^{-1}x^{2n-1})} = \sum_{-\infty}^{\infty}x^{n(3n+2)}(a^{3n+1}-a^{-3n-1}).$$

Now we operate on both sides of the foregoing identity with aD_a , D_a denoting differentiation with respect to a, subsequently, let $a \rightarrow 1$ and cancel a factor of 2 to draw the desired conclusion.

Returning to the proof of Theorem 1.4, we multiply both sides of (2.4) by

$$\prod_{n=1}^{\infty} (1+x^{2n-1})^{-1},$$

and appeal to (2.1), where we let $x \rightarrow -x$, to get

$$\sum_{n=0}^{\infty} (-1)^n t_3(n) x^n = \prod_{1}^{\infty} \frac{(1-x^{2n})^3}{(1+x^{2n-1})^3}$$
$$= \prod_{n=1}^{\infty} (1+(-x)^n) \sum_{-\infty}^{\infty} (3n+1) x^{n(3n+2)}$$
$$= \sum_{n=0}^{\infty} (-1)^n q(n) x^n \sum_{-\infty}^{\infty} (3n+1) x^{n(3n+2)}$$

Now we expand the product of the two series and, subsequently, equate coefficients of like powers of x to prove Theorem 1.4.

Our algorithm proceeds in two steps:

(i) Use the recursive determination of q in Theorem 1.3 to compile a table of values of q, as in Table 1.

(ii) Utilizing Theorem 1.4 and the values of q computed in Table 1, we then compile a list of values of t_3 , as shown in Table 2.

TABLE 1					TABLE 2		
n	q(n)	n	q(n)	n	$t_3(n)$	n	$t_3(n$
0	1	13	18	0	1	10	9
2 3	1	14	22	1	3	11	(
3	2	16	32	2	3	12	ç
4	2	17	38	3	4	13	Ģ
5	3	18	46	4	6	14	(
6	4	19	54	5	3	15	
7	5	20	64	6	6	16	1
8	6	21	76	7	9	17	Ģ
9	8	22	89	8	3	18	-
10	10	23	104	9	7	19	12
11	12	24	122		/	1)	14
12	15	25	142				

3. CONCLUDING REMARKS

The brief tables above are compiled to show the effectiveness of the algorithm. For a fixed but arbitrary choice of $n \in \mathbb{P}$, we observe that: (1) to compute q(n) we need about \sqrt{n} of the values q(k), $0 \le k < n$; and then (2) to compute $t_3(n)$ we need q(n) and about $\sqrt{4n/3}$ of the values q(k), $0 \le k < n$. Doubtless, the formulas (1.1) and (1.2) can be adapted to machine computation, and the corresponding tables can then be extended indefinitely.

For given $n \in \mathbb{P}$, there are formulas that express $t_3(n)$ in terms of certain divisor functions. But, for each divisor function f, evaluation of f(k), $k \in \mathbb{P}$, requires factorization of k. By comparison we observe that our algorithm is entirely additive in character. In a word, no factorization is required.

ACKNOWLEDGMENT

The author wishes to express his gratitude to the anonymous referee for suggestions that led to an improved exposition.

REFERENCES

- 1. J. A. Ewell. "Recurrences for Two Restricted Partition Functions." *The Fibonacci Quarterly* **18.1** (1980):1-2.
- 2. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. Oxford: Oxford University Press, 1960.
- 3. M. V. Subbarao & M. Vidyasagar. "On Watson's Quintuple-Product Identity." Proc. Amer. Math. Soc. 26 (1970):23-27.

AMS Classification Numbers: 11E25, 05A19
