ALGORITHMIC DETERMINATION OF THE ENUMERATOR FOR SUMS OF THREE TRIANGULAR NUMBERS

John A. Ewell

Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115
(Submitted May 1999-Final Revision October 1999)

1. INTRODUCTION

In order to lend greater precision to statements of results and methods of proof, we begin our discussion with a definition.

Definition 1.1: As usual, $\mathbb{P}:=\{1,2,3, \ldots\}, \mathbb{N}:=\mathbb{P} \cup\{0\}$, and $\mathbb{Z}:=\{0, \pm 1, \pm 2, \ldots\}$. Then, for each $n \in \mathbb{N}$,

$$
t_{3}(n):=\left|\left\{(h, j, k) \in \mathbb{N}^{3} \left\lvert\, n=\frac{h(h+1)}{2}+\frac{j(j+1)}{2}+\frac{k(k+1)}{2}\right.\right\}\right| ;
$$

and $q(n):=$ the number of partitions of n into distinct parts. We define $q(0):=1$ and $q(n):=0$ for $n<0$. The function $q(n), n \in \mathbb{N}$, is generated by the infinite product expansion

$$
\prod_{1}^{\infty}\left(1+x^{n}\right)=\sum_{0}^{\infty} q(n) x^{n}
$$

which is valid for each complex number x such that $|x|<1$.
As so many arithmetical discussions do, our discussion begins with Gauss, who first proved the following theorem. (The result was conjectured by Fermat about 150 years earlier.)

Theorem 1.2: Every natural number can be represented by a sum of three triangular numbers, i.e., for each $n \in \mathbb{N}, t_{3}(n)>0$.

In this paper our major objective is to give an algorithmic procedure for computing $t_{3}(n)$, $n \in \mathbb{N}$. This is accomplished by the following two results.

Theorem 1.3: For each $n \in \mathbb{N}$,

$$
q(n)+2 \sum_{k \in \mathbb{P}}(-1)^{k} q\left(n-k^{2}\right)= \begin{cases}(-1)^{m}, & \text { if } n=m(3 m \pm 1) / 2, \tag{1.1}\\ 0, & \text { otherwise } .\end{cases}
$$

Theorem 1.4: For each $n \in \mathbb{N}$,

$$
\begin{equation*}
t_{3}(n)=q(n)-\sum_{k \in \mathbb{P}}(-1)^{k} q\left(n-3 k^{2}+2 k\right)(3 k-1)+\sum_{k \in \mathbb{P}}(-1)^{k} q\left(n-3 k^{2}-2 k\right)(3 k+1) . \tag{1.2}
\end{equation*}
$$

For a proof of Theorem 1.3, see [1, pp. 1-2]. Section 2 is dedicated to the proof of Theorem 1.4.

2. PROOFS

In our development we require the following three identities:

$$
\begin{equation*}
\prod_{1}^{\infty}\left(1+x^{n}\right)\left(1-x^{2 n-1}\right)=1 \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
\prod_{1}^{\infty} \frac{1-x^{2 n}}{1-x^{2 n-1}}=\sum_{0}^{\infty} x^{n(n+1) / 2}, \tag{2.2}\\
\prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)\left(1-a^{2} x^{2 n-2}\right)\left(1-a^{-2} x^{2 n}\right)}{\left(1+a x^{2 n-1}\right)\left(1+a^{-1} x^{2 n-1}\right)}=\sum_{-\infty}^{\infty} x^{n(3 n+2)}\left(a^{-3 n}-a^{3 n+2}\right) . \tag{2.3}
\end{gather*}
$$

Identities (2.1) and (2.2) are valid for all complex numbers x such that $|x|<1$, while (2.3) is valid for each pair of complex numbers a, x such that $a \neq 0$ and $|x|<1$. For proofs of (2.1) and (2.2), see [2, pp. 277-84]; for a proof of (2.3), see [3, pp. 23-27]. In passing, we observe that the cube of the right-hand side of (2.2) generates the sequence $t_{3}(n), n \in \mathbb{N}$. Proof of Theorem 1.4 is facilitated by the following lemma.

Lemma 2.1: For each complex number x such that $|x|<1$,

$$
\begin{equation*}
\prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)^{3}}{\left(1+x^{2 n-1}\right)^{2}}=\sum_{-\infty}^{\infty}(3 n+1) x^{n(3 n+2)} \tag{2.4}
\end{equation*}
$$

Proof: Multiply (2.3) by $-a^{-1}$ to get

$$
\left(a-a^{-1}\right) \prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)\left(1-a^{2} x^{2 n}\right)\left(1-a^{-2} x^{2 n}\right)}{\left(1+a x^{2 n-1}\right)\left(1+a^{-1} x^{2 n-1}\right)}=\sum_{-\infty}^{\infty} x^{n(3 n+2)}\left(a^{3 n+1}-a^{-3 n-1}\right) .
$$

Now we operate on both sides of the foregoing identity with $a D_{a}, D_{a}$ denoting differentiation with respect to a, subsequently, let $a \rightarrow 1$ and cancel a factor of 2 to draw the desired conclusion.

Returning to the proof of Theorem 1.4, we multiply both sides of (2.4) by

$$
\prod_{n=1}^{\infty}\left(1+x^{2 n-1}\right)^{-1}
$$

and appeal to (2.1), where we let $x \rightarrow-x$, to get

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n} t_{3}(n) x^{n} & =\prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)^{3}}{\left(1+x^{2 n-1}\right)^{3}} \\
& =\prod_{n=1}^{\infty}\left(1+(-x)^{n}\right) \sum_{-\infty}^{\infty}(3 n+1) x^{n(3 n+2)} \\
& =\sum_{n=0}^{\infty}(-1)^{n} q(n) x^{n} \sum_{-\infty}^{\infty}(3 n+1) x^{n(3 n+2)} .
\end{aligned}
$$

Now we expand the product of the two series and, subsequently, equate coefficients of like powers of x to prove Theorem 1.4.

Our algorithm proceeds in two steps:
(i) Use the recursive determination of q in Theorem 1.3 to compile a table of values of q, as in Table 1.
(ii) Utilizing Theorem 1.4 and the values of q computed in Table 1, we then compile a list of values of t_{3}, as shown in Table 2 .

TABLE 1

n	$q(n)$	n	$q(n)$
0	1	13	18
2	1	14	22
3	2	16	32
4	2	17	38
5	3	18	46
6	4	19	54
7	5	20	64
8	6	21	76
9	8	22	89
10	10	23	104
11	12	24	122
12	15	25	142

TABLE 2

n	$t_{3}(n)$	n	$t_{3}(n)$
0	1	10	9
1	3	11	6
2	3	12	9
3	4	13	9
4	6	14	6
5	3	15	6
6	6	16	15
7	9	17	9
8	3	18	7
9	7	19	12

3. CONCLUDING REMARKS

The brief tables above are compiled to show the effectiveness of the algorithm. For a fixed but arbitrary choice of $n \in \mathbb{P}$, we observe that: (1) to compute $q(n)$ we need about \sqrt{n} of the values $q(k), 0 \leq k<n$; and then (2) to compute $t_{3}(n)$ we need $q(n)$ and about $\sqrt{4 n / 3}$ of the values $q(k), 0 \leq k<n$. Doubtless, the formulas (1.1) and (1.2) can be adapted to machine computation, and the corresponding tables can then be extended indefinitely.

For given $n \in \mathbb{P}$, there are formulas that express $t_{3}(n)$ in terms of certain divisor functions. But, for each divisor function f, evaluation of $f(k), k \in \mathbb{P}$, requires factorization of k. By comparison we observe that our algorithm is entirely additive in character. In a word, no factorization is required.

ACKNOWLEDGMENT

The author wishes to express his gratitude to the anonymous referee for suggestions that led to an improved exposition.

REFERENCES

1. J. A. Ewell. "Recurrences for Two Restricted Partition Functions." The Fibonacci Quarterly 18.1 (1980):1-2.
2. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. Oxford: Oxford University Press, 1960.
3. M. V. Subbarao \& M. Vidyasagar. "On Watson's Quintuple-Product Identity." Proc. Amer. Math. Soc. 26 (1970):23-27.
AMS Classification Numbers: 11E25, 05A19

