RECIPROCAL SUMS OF SECOND-ORDER RECURRENT SEQUENCES

Hong Hu

Dept. of Math., Huaiyin Normal College, Huaiyin 223001, Jiangsu Province, P.R. China
Zhi-Wei Sun ${ }^{*}$
Dept. of Math., Nanjing University, Nanjing 210093, P.R. China
E-mail: zwsun@nju.edu.cn

Jian-Xin Liu

The Fundamental Division, Nanjing Engineering College, Nanjing 210013, P.R. China
(Submitted March 1999-Final Revision June 1999)

1. INTRODUCTION

Let \mathbb{Z} and $\mathbb{R}(\mathbb{C})$ denote the ring of the integers and the field of real (complex) numbers, respectively. For a field F, we put $F^{*}=F \backslash\{0\}$. Fix $A \in \mathbb{C}$ and $B \in \mathbb{C}^{*}$, and let $\mathscr{L}(A, B)$ consist of all those second-order recurrent sequences $\left\{w_{n}\right\}_{n \in \mathbb{Z}}$ of complex numbers satisfying the recursion:

$$
\begin{equation*}
w_{n+1}=A w_{n}-B w_{n-1} \text { (i.e., } B w_{n-1}=A w_{n}-w_{n+1} \text {) for } n=0, \pm 1, \pm 2, \ldots \tag{1}
\end{equation*}
$$

For sequences in $\mathscr{L}(A, B)$, the corresponding characteristic equation is $x^{2}-A x+B=0$, whose roots $\left(A \pm \sqrt{A^{2}-4 B}\right) / 2$ are denoted by α and β. If $A \in \mathbb{R}^{*}$ and $\Delta=A^{2}-4 B \geq 0$, then we let

$$
\begin{equation*}
\alpha=\frac{A-\operatorname{sg}(A) \sqrt{\Delta}}{2} \text { and } \beta=\frac{A+\operatorname{sg}(A) \sqrt{\Delta}}{2} \tag{2}
\end{equation*}
$$

where $\operatorname{sg}(A)=1$ if $A>0$, and $\operatorname{sg}(A)=-1$ if $A<0$. In the case $w_{1}=\alpha w_{0}$, it is easy to see that $w_{n}=\alpha^{n} w_{0}$ for any integer n. If $A=0$, then $w_{2 n}=(-B)^{n} w_{0}$ and $w_{2 n+1}=(-B)^{n} w_{1}$ for all $n \in \mathbb{Z}$. The Lucas sequences $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{v_{n}\right\}_{n \in \mathbb{Z}}$ in $\mathscr{L}(A, B)$ take special values at $n=0$, 1 , namely,

$$
\begin{equation*}
u_{0}=0, u_{1}=1, v_{0}=2, v_{1}=A . \tag{3}
\end{equation*}
$$

It is well known that

$$
\begin{equation*}
(\alpha-\beta) u_{n}=\alpha^{n}-\beta^{n} \text { and } v_{n}=\alpha^{n}+\beta^{n} \text { for } n \in \mathbb{Z} . \tag{4}
\end{equation*}
$$

If $A=1$ and $B=-1$, then those $F_{n}=u_{n}$ and $L_{n}=v_{n}$ are called Fibonacci numbers and Lucas numbers, respectively.

Let m be a positive integer. In 1974, I. J. Good [2] showed that

$$
\sum_{n=0}^{m} \frac{1}{F_{2^{n}}}=3-\frac{F_{2^{m}-1}}{F_{2^{m}}} \text {, i.e., } \sum_{n=0}^{m-1} \frac{(-1)^{2^{n}}}{F_{2^{n+1}}}=-\frac{F_{2^{m}-1}}{F_{2^{m}}} \text {; }
$$

V. E. Hoggatt, Jr., and M. Bicknell [4] extended this by evaluating $\sum_{n=0}^{m} F_{k 2^{n}}^{-1}$, where k is a positive integer. In 1977, W. E. Greig [3] was able to determine the sum $\sum_{n=0}^{m} u_{k 2^{n}}^{-1}$ with $B=-1$; in 1995, R. S. Melham and A. G. Shannon [5] gave analogous results in the case $B=1$. In 1990, R. André-Jeannin [1] calculated $\sum_{n=1}^{\infty} 1 /\left(u_{k n} u_{k(n+1)}\right)$ and $\sum_{n=1}^{\infty} 1 /\left(v_{k n} v_{k(n+1)}\right)$ in the case $B=-1$ and

[^0]$2 \nmid k$, using the Lambert series $L(x)=\sum_{n=1}^{\infty} x^{n} /\left(1-x^{n}\right)(|x|<1)$; in 1995, Melham and Shannon [5] computed the sums in the case $B=1$, in terms of α and β.

In the present paper we obtain the following theorems that imply all of the above.
Theorem 1: Let m be a positive integer, and f a function such that $f(n) \in \mathbb{Z}$ and $w_{f(n)} \neq 0$ for all $n=0,1, \ldots, m$. Then

$$
\begin{equation*}
\sum_{n=0}^{m-1} \frac{B^{f(n)} u_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}}=\frac{B^{f(0)} u_{f(m)-f(0)}}{w_{f(0)} w_{f(m)}}, \tag{5}
\end{equation*}
$$

where $\Delta f(n)=f(n+1)-f(n)$. If $w_{1} \neq \alpha w_{0}$, then

$$
\begin{equation*}
\sum_{n=0}^{m-1} \frac{(-1)^{n}}{w_{f(n)}}\left(\frac{2 \alpha^{f(n)}}{w_{1}-\alpha w_{0}}-\frac{B^{f(n)} u_{\Delta f(n)}}{w_{f(n+1)}}\right)=\frac{1}{w_{1}-\alpha w_{0}}\left(\frac{\alpha^{f(0)}}{w_{f(0)}}-(-1)^{m} \frac{\alpha^{f(m)}}{w_{f(m)}}\right) . \tag{6}
\end{equation*}
$$

Theorem 2: Suppose that $A, B \in \mathbb{R}^{*}$ and $\Delta=A^{2}-4 B \geq 0$. Let $f:\{0,1,2, \ldots\} \rightarrow\left\{k \in \mathbb{Z}: w_{k} \neq 0\right\}$ be a function such that $\lim _{n \rightarrow+\infty} f(n)=+\infty$. If $w_{1} \neq \alpha w_{0}$, then we have

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{B^{f(n)} u_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}} & =\frac{\alpha^{f(0)}}{\left(w_{1}-\alpha w_{0}\right) w_{f(0)}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{w_{f(n)}}\left(\frac{2 \alpha^{f(n)}}{w_{1}-\alpha w_{0}}-\frac{B^{f(n)} u_{\Delta f(n)}}{w_{f(n+1)}}\right) . \tag{7}
\end{align*}
$$

In the next section we will derive several results from these theorems. Theorems 1 and 2 are proved in Section 3.

2. CONSEQUENCES OF THEOREMS 1 AND 2

Theorem 3: Let k and l be integers such that $w_{k n+l} \neq 0$ for all $n=0,1,2, \ldots$. Then

$$
\begin{equation*}
u_{k} \sum_{n=0}^{m-1} \frac{B^{k n}}{w_{k n+l} w_{k(n+1)+l}}=\frac{u_{k m}}{w_{l} w_{k m+l}} \text { for all } m=1,2,3, \ldots \tag{8}
\end{equation*}
$$

If $A, B \in \mathbb{R}^{*}, A^{2} \geq 4 B, k>0$, and $w_{1} \neq \alpha w_{0}$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{u_{k} B^{k n+l}}{w_{k n+l} w_{k(n+1)+l}}=\frac{\alpha^{l}}{\left(w_{1}-\alpha w_{0}\right) w_{l}} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(2 \frac{\left(-\alpha^{k}\right)^{n}}{w_{k n+l}}-\left(w_{1}-\alpha w_{0}\right) u_{k} \beta^{l} \frac{\left(-B^{k}\right)^{n}}{w_{k n+l} w_{k(n+1)+l}}\right)=\frac{1}{w_{l}} . \tag{10}
\end{equation*}
$$

Proof: Simply apply Theorems 1 and 2 with $f(n)=k n+l$.
Remark 1: When $B=1, l=k$, and $\left\{w_{n}\right\}=\left\{u_{n}\right\}$ or $\left\{v_{n}\right\}$, Melham and Shannon [5] obtained (8) with the right-hand side replaced by a complicated expression in terms of α and β.

Theorem 4: Let $A, B \in \mathbb{R}^{*}$ and $\Delta=A^{2}-4 B>0$. Then, for any positive integer k, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left(-B^{k}\right)^{n}}{u_{k n} u_{k(n+1)}}=\frac{\alpha^{k}}{u_{k}^{2}}+\operatorname{sg}(A) \frac{\sqrt{\Delta}}{u_{k}}\left(4 L\left(\frac{\alpha^{4 k}}{B^{2 k}}\right)-2 L\left(\frac{\alpha^{2 k}}{B^{k}}\right)\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left(-B^{k}\right)^{n}}{v_{k n} v_{k(n+1)}}=\frac{\operatorname{sg}(A)}{\sqrt{\Delta}}\left(\frac{\alpha^{k}}{u_{2 k}}-\frac{2}{u_{k}}\left(4 L\left(\frac{\alpha^{8 k}}{B^{4 k}}\right)-4 L\left(\frac{\alpha^{4 k}}{B^{2 k}}\right)+L\left(\frac{\alpha^{2 k}}{B^{k}}\right)\right)\right) . \tag{12}
\end{equation*}
$$

Proof: Clearly, $|\alpha|<|\beta|$ and $\beta-\alpha=\operatorname{sg}(A) \sqrt{\Delta}$. Thus, $u_{n}=\left(\beta^{n}-\alpha^{n}\right) /(\beta-\alpha)$ and $v_{n}=$ $\alpha^{n}+\beta^{n}$ are nonzero for all $n \in \mathbb{Z} \backslash\{0\}$. Obviously $u_{1}-\alpha u_{0}=1$ and $v_{1}-\alpha v_{0}=A-2 \alpha=\beta-\alpha=$ $\operatorname{sg}(A) \sqrt{\Delta}$. Applying Theorem 3 with $l=k$ and $\left\{w_{n}\right\}_{n \in \mathbb{Z}}=\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ or $\left\{v_{n}\right\}_{n \in \mathbb{Z}}$, we then obtain.

$$
\sum_{n=1}^{\infty}\left(u_{k} \frac{\left(-B^{k}\right)^{n}}{u_{k n} u_{k(n+1)}}-2 \frac{\left(-\alpha^{k}\right)^{n}}{u_{k n}}\right)=\frac{\alpha^{k}}{u_{k}}
$$

and

$$
\sum_{n=1}^{\infty}\left(u_{k} \frac{\left(-B^{k}\right)^{n}}{v_{k n} v_{k(n+1)}}-\frac{2}{\operatorname{sg}(A) \sqrt{\Delta}} \cdot \frac{\left(-\alpha^{k}\right)^{n}}{v_{k n}}\right)=\frac{\alpha^{k} / v_{k}}{\operatorname{sg}(A) \sqrt{\Delta}} .
$$

Clearly,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\left(-\alpha^{k}\right)^{n}}{u_{k n}} & =\sum_{n=1}^{\infty}(\beta-\alpha) \frac{\left(-\alpha^{k}\right)^{n}}{\beta^{k n}-\alpha^{k n}}=(\beta-\alpha) \sum_{n=1}^{\infty} \frac{(-1)^{n}(\alpha / \beta)^{k n}}{1-(\alpha / \beta)^{k n}} \\
& =(\beta-\alpha)\left(2 \sum_{\left.\substack{n=1 \\
2 \mid n} \frac{(\alpha / \beta)^{k n}}{1-(\beta / \beta)^{k n}}-\sum_{n=1}^{\infty} \frac{(\alpha / \beta)^{k n}}{1-(\alpha / \beta)^{k n}}\right)}\right. \\
& =(\beta-\alpha)\left(2 L\left(\frac{\alpha^{2 k}}{\beta^{2 k}}\right)-L\left(\frac{\alpha^{k}}{\beta^{k}}\right)\right)=\operatorname{sg}(A) \sqrt{\Delta}\left(2 L\left(\frac{\alpha^{4 k}}{B^{2 k}}\right)-L\left(\frac{\alpha^{2 k}}{B^{k}}\right)\right) .
\end{aligned}
$$

If $|x|<1$, then

$$
\begin{aligned}
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{1+x^{n}} & =2 \sum_{n=1}^{\infty} \frac{x^{2 n}}{1+x^{2 n}}-\sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{n}} \\
& =2 \sum_{n=1}^{\infty}\left(\frac{x^{2 n}}{1-x^{2 n}}-\frac{2 x^{4 n}}{1-x^{4 n}}\right)-\sum_{n=1}^{\infty}\left(\frac{x^{n}}{1-x^{n}}-\frac{2 x^{2 n}}{1-x^{2 n}}\right) \\
& =2 L\left(x^{2}\right)-4 L\left(x^{4}\right)-L(x)+2 L\left(x^{2}\right)=-4 L\left(x^{4}\right)+4 L\left(x^{2}\right)-L(x) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\left(-\alpha^{k}\right)^{n}}{v_{k n}} & =\sum_{n=1}^{\infty} \frac{\left(--\alpha^{k}\right)^{n}}{\alpha^{k n}+\beta^{k n}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{(\alpha / \beta)^{k n}}{1+(\alpha / \beta)^{k n}} \\
& =-4 L\left(\frac{\alpha^{4 k}}{\beta^{4 k}}\right)+4 L\left(\frac{\alpha^{2 k}}{\beta^{2 k}}\right)-L\left(\frac{\alpha^{k}}{\beta^{k}}\right) \\
& =-4 L\left(\frac{\alpha^{8 k}}{B^{4 k}}\right)+4 L\left(\frac{\alpha^{4 k}}{B^{2 k}}\right)-L\left(\frac{\alpha^{2 k}}{B^{k}}\right) .
\end{aligned}
$$

Combining the above and noting that $u_{k} v_{k}=u_{2 k}$, we then obtain the desired (11) and (12).

Remark 2: If $|x|<1$ then

$$
\begin{aligned}
L(-x) & =\sum_{n=1}^{\infty} \frac{x^{2 n}}{1-x^{2 n}}-\sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{n}}+\sum_{n=1}^{\infty} \frac{x^{2 n}}{1+x^{2 n}} \\
& =L\left(x^{2}\right)-\left(L(x)-2 L\left(x^{2}\right)\right)+\left(L\left(x^{2}\right)-2 L\left(x^{4}\right)\right)=-2 L\left(x^{4}\right)+4 L\left(x^{2}\right)-L(x) .
\end{aligned}
$$

Thus, Theorem 2 of André-Jeannin [1] is essentially our (11) and (12) in the special case $B=-1$ and $2 \nmid k$.

Theorem 5: Let $k, l, m \in \mathbb{Z}$ and $l, m>0$. If $w_{\left(k_{i}^{n}\right)} \neq 0$ for all $n=0,1, \ldots, m$, then

Proof: Let $f(n)=\binom{k+n}{l}$ for $n \in \mathbb{Z}$. It is well known that $\Delta f(n)=\binom{k+n+1}{l}-\binom{k+n}{l}=\binom{k+n}{l-1}$. So Theorem 5 follows from Theorem 1.

Remark 3: In the case $k=0$ and $l=2$, (13) says that

$$
\begin{equation*}
\sum_{n=0}^{m-1} \frac{u_{n} B^{n(n-1) / 2}}{w_{n(n-1) / 2} w_{n(n+1) / 2}}=\frac{u_{m(m-1) / 2}}{w_{0} w_{m(m-1) / 2}} . \tag{14}
\end{equation*}
$$

Theorem 6: Let a, k be integers, and m a positive integer. Suppose that $w_{k a^{n}} \neq 0$ for each $n=0$, $1, \ldots, m$. Then

$$
\begin{equation*}
\sum_{n=0}^{m-1} \frac{B^{k a^{n}} u_{k(a-1) a^{n}}}{w_{k a^{n}} w_{k a^{n+1}}}=\frac{B^{k} u_{k\left(a^{m}-1\right)}}{w_{k} w_{k a^{m}}} . \tag{15}
\end{equation*}
$$

Proof: Just put $f(n)=k a^{n}$ in Theorem 1.
Remark 4: In the case $a=2$ and $\left\{w_{n}\right\}=\left\{u_{n}\right\}$, (15) becomes

$$
\begin{equation*}
\sum_{n=0}^{m-1} \frac{B^{k 2^{n}}}{u_{k 2^{n+1}}}=\frac{B^{k} u_{k\left(2^{m}-1\right)}}{u_{k} u_{k 2^{m}}} . \tag{16}
\end{equation*}
$$

This was obtained by Melham and Shannon [5] in the case $B=1$ and $k>0$. In the case $a=3$ and $\left\{w_{n}\right\}=\left\{v_{n}\right\}$, (15) turns out to be

$$
\begin{equation*}
\sum_{n=0}^{m-1} \frac{B^{k 3^{n}} u_{k 3^{n}}}{v_{k 3^{n+1}}}=\frac{B^{k} u_{k\left(3^{m}-1\right)}}{v_{k} v_{k 3^{m}}} \tag{17}
\end{equation*}
$$

since $u_{2 h}=u_{h} v_{h}$ for $h \in \mathbb{Z}$.
Theorem 7: Let k be an integer and m a positive integer. If $w_{k\left(2^{n}-1\right)} \neq 0$ for each $n=0,1, \ldots, m$, then

$$
\begin{equation*}
\sum_{n=0}^{m-1} \frac{B^{k\left(2^{n}-1\right)} u_{k 2^{n}}}{w_{k\left(2^{n}-1\right)} w_{k\left(2^{n+1}-1\right)}}=\frac{u_{k\left(2^{m}-1\right)}}{w_{0} w_{k\left(2^{m}-1\right)}} . \tag{18}
\end{equation*}
$$

Proof: Just apply Theorem 1 with $f(n)=k\left(2^{n}-1\right)$.

3. PROOFS OF THEOREMS 1 AND 2

Lemma 1: For $k, l, m \in \mathbb{Z}$, we have

$$
\begin{equation*}
w_{k} u_{l+m}-w_{k+m} u_{l}=B^{l} w_{k-l} u_{m} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{k} \alpha^{l}-w_{l} \alpha^{k}=\left(w_{1}-\alpha w_{0}\right) B^{l} u_{k-l} . \tag{20}
\end{equation*}
$$

Proof: (i) Fix $k, l \in \mathbb{Z}$. Observe that

$$
\begin{aligned}
\left(\begin{array}{cc}
w_{k+1} & w_{k} \\
u_{l+1} & u_{l}
\end{array}\right) & =\left(\begin{array}{cc}
w_{k} & w_{k-1} \\
u_{l} & u_{l-1}
\end{array}\right)\left(\begin{array}{cc}
A & 1 \\
-B & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
w_{k-1} & w_{k-2} \\
u_{l-1} & u_{l-2}
\end{array}\right)\left(\begin{array}{cc}
A & 1 \\
-B & 0
\end{array}\right)^{2}=\cdots=\left(\begin{array}{cc}
w_{k-l+1} & w_{k-l} \\
u_{1} & u_{0}
\end{array}\right)\left(\begin{array}{cc}
A & 1 \\
-B & 0
\end{array}\right)^{l} .
\end{aligned}
$$

Taking the determinants, we then get that

$$
\left|\begin{array}{cc}
w_{k+1} & w_{k} \\
u_{l+1} & u_{l}
\end{array}\right|=\left|\begin{array}{cc}
w_{k-l+1} & w_{k-l} \\
1 & 0
\end{array}\right| \times\left|\begin{array}{cc}
A & 1 \\
-B & 0
\end{array}\right|^{l},
$$

i.e., $w_{k} u_{l+1}-w_{k+1} u_{l}=B^{l} w_{k-l}$. Thus, (19) holds for $m=0,1$.

Each side of (19) can be viewed as a sequence in $\mathscr{L}(A, B)$ with respect to the index m. By induction, (19) is valid for every $m=0,1,2, \ldots$; also (19) holds for each $m=-1,-2,-3, \ldots$. Thus, (19) holds for any $m \in \mathbb{Z}$.
(ii) By induction on l, we find that $w_{l+1}-\alpha w_{l}=\left(w_{1}-\alpha w_{0}\right) \beta^{l}$. Clearly, both sides of (20) lie in $\mathscr{L}(A, B)$ with respect to the index k. Note that, if $k=l$, then both sides of (20) are zero. As

$$
\left(w_{1}-\alpha w_{0}\right) B^{l}=\left(w_{1}-\alpha w_{0}\right) \beta^{l} \alpha^{l}=\left(w_{l+1}-\alpha w_{l}\right) \alpha^{l}=\alpha^{l} w_{l+1}-\alpha^{l+1} w_{l},
$$

(20) also holds for $k=l+1$. Therefore, (20) is always valid and we are done.

Proof of Theorem 1: Let $d \in \mathbb{Z}$. In view of Lemma 1, for $n=0,1, \ldots, m-1$, we have

$$
\begin{aligned}
\frac{u_{d+f(n+1)}}{w_{f(n+1)}}-\frac{u_{d+f(n)}}{w_{f(n)}} & =\frac{u_{d+f(n+1)} w_{f(n)}-u_{d+f(n)} w_{f(n+1)}}{w_{f(n)} w_{f(n+1)}} \\
& =\frac{w_{f(n)} u_{d+f(n)+\Delta f(n)}-w_{f(n)+\Delta f(n)} u_{d+f(n)}}{w_{f(n)} w_{f(n+1)}}=\frac{B^{d+f(n)} w_{-d} u_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}} .
\end{aligned}
$$

It follows that

$$
\sum_{n=0}^{m-1} \frac{B^{d+f(n)} w_{-d} u_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}}=\sum_{n=0}^{m-1}\left(\frac{u_{d+f(n+1)}}{w_{f(n+1)}}-\frac{u_{d+f(n)}}{w_{f(n)}}\right)=\frac{u_{d+f(m)}}{w_{f(m)}}-\frac{u_{d+f(0)}}{w_{f(0)}}
$$

and that

$$
\begin{aligned}
\sum_{n=0}^{m-1}(-1)^{n+1} \frac{B^{d+f(n)} w_{-d} u_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}} & =\sum_{n=0}^{m-1}\left((-1)^{n+1} \frac{u_{d+f(n+1)}}{w_{f(n+1)}}+(-1)^{n} \frac{u_{d+f(n)}}{w_{f(n)}}\right) \\
& =2 \sum_{n=0}^{m-1}(-1)^{n} \frac{u_{d+f(n)}}{w_{f(n)}}+(-1)^{m} \frac{u_{d+f(m)}}{w_{f(m)}}-(-1)^{0} \frac{u_{d+f(0)}}{w_{f(0)}} .
\end{aligned}
$$

Putting $d=-f(0)$, we then obtain (5) and

RECIPROCAL SUMS OF SECOND-ORDER RECURRENT SEQUENCES

$$
\sum_{n=0}^{m-1}(-1)^{n+1} w_{f(0)} \frac{B^{f(n)} u_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}}=2 \sum_{n=0}^{m-1}(-1)^{n} \frac{B^{f(0)} u_{f(n)-f(0)}}{w_{f(n)}}+(-1)^{m} \frac{B^{f(0)} u_{f(m)-f(0)}}{w_{f(m)}}
$$

Now suppose that $w_{1} \neq \alpha w_{0}$. By Lemma 1 , for each $n=0,1, \ldots, m$,

$$
\alpha^{f(0)} w_{f(n)}-\alpha^{f(n)} w_{f(0)}=\left(w_{1}-\alpha w_{0}\right) B^{f(0)} u_{f(n)-f(0)},
$$

i.e.,

$$
-\frac{B^{f(0)} u_{f(n)-f(0)}}{w_{f(n)}}=\frac{\alpha^{f(n)} w_{f(0)}}{\left(w_{1}-\alpha w_{0}\right) w_{f(n)}}-\frac{\alpha^{f(0)}}{w_{1}-\alpha w_{0}}
$$

Thus,

$$
\begin{aligned}
& w_{f(0)} \sum_{n=0}^{m-1}(-1)^{n} \frac{B^{f(n)} u_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}} \\
& =2 \sum_{n=0}^{m-1}(-1)^{n}\left(\frac{w_{f(0)} \alpha^{f(n)}}{\left(w_{1}-\alpha w_{0}\right) w_{f(n)}}-\frac{\alpha^{f(0)}}{w_{1}-\alpha w_{0}}\right)+(-1)^{m}\left(\frac{w_{f(0)} \alpha^{f(m)}}{\left(w_{1}-\alpha w_{0}\right) w_{f(m)}}-\frac{\alpha^{f(0)}}{w_{1}-\alpha w_{0}}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \sum_{n=0}^{m-1} \frac{(-1)^{n}}{w_{f(n)}}\left(\frac{2 \alpha^{f(n)}}{w_{1}-\alpha w_{0}}-\frac{B^{f(n)} u_{\Delta f(n)}}{w_{f(n+1)}}\right) \\
& =\frac{2}{w_{1}-\alpha w_{0}} \sum_{n=0}^{m-1}(-1)^{n} \frac{\alpha^{f(0)}}{w_{f(0)}}+\frac{(-1)^{m}}{w_{1}-\alpha w_{0}}\left(\frac{\alpha^{f(0)}}{w_{f(0)}}-\frac{\alpha^{f(m)}}{w_{f(m)}}\right) \\
& =\frac{1}{w_{1}-\alpha w_{0}}\left(\frac{\alpha^{f(0)}}{w_{f(0)}}-(-1)^{m} \frac{\alpha^{f(m)}}{w_{f(m)}}\right) .
\end{aligned}
$$

This proves (6).
Lemma 2: Let $A, B \in \mathbb{R}^{*}$ and $\Delta=A^{2}-4 B \geq 0$. Then

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\alpha^{n}}{u_{n}}=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{w_{n}}{u_{m+n}}=\frac{w_{1}-\alpha w_{0}}{\beta^{m}} \text { for any } m \in \mathbb{Z} . \tag{22}
\end{equation*}
$$

Proof: When $\Delta=0$ (i.e., $\alpha=\beta$), by induction $u_{n}=n(A / 2)^{n-1}$ for all $n \in \mathbb{Z}$; thus, $u_{n} \neq 0$ for $n= \pm 1, \pm 2, \pm 3, \ldots$,

$$
\lim _{n \rightarrow+\infty} \frac{\alpha^{n}}{u_{n}}=\lim _{n \rightarrow+\infty} \frac{(A / 2)^{n}}{n(A / 2)^{n-1}}=0
$$

and

$$
\lim _{n \rightarrow+\infty} \frac{u_{m+n}}{u_{n}}=\lim _{n \rightarrow+\infty} \frac{(m+n)(A / 2)^{m+n-1}}{n(A / 2)^{n-1}}=\left(\frac{A}{2}\right)^{m}=\beta^{m} .
$$

In the case $\Delta>0,|\alpha|<|\beta|$; hence, $u_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$ is zero if and only if $n=0$. Thus,

$$
\lim _{n \rightarrow+\infty} \frac{\alpha^{n}}{u_{n}}=(\alpha-\beta) \lim _{n \rightarrow+\infty} \frac{1}{1-(\beta / \alpha)^{n}}=0 .
$$

Also

$$
\lim _{n \rightarrow+\infty}\left(\frac{u_{n+1}}{u_{n}}-\beta\right)=\lim _{n \rightarrow+\infty} \frac{\alpha^{n+1}-\beta^{n+1}-\beta\left(\alpha^{n}-\beta^{n}\right)}{\alpha^{n}-\beta^{n}}=\lim _{n \rightarrow+\infty} \frac{\alpha-\beta}{1-(\beta / \alpha)^{n}}=0
$$

If $m \in\{0,1,2, \ldots\}$, then

$$
\lim _{n \rightarrow+\infty} \frac{u_{m+n}}{u_{n}}=\lim _{n \rightarrow+\infty} \prod_{0 \leq k<m} \frac{u_{k+n+1}}{u_{k+n}}=\beta^{m}
$$

and

$$
\lim _{n \rightarrow+\infty} \frac{u_{n-m}}{u_{n}}=\lim _{n \rightarrow+\infty} \frac{u_{n}}{u_{m+n}}=\beta^{-m}
$$

In view of the above, (21) always holds and $\lim _{n \rightarrow+\infty} u_{m+n} / u_{n}=\beta^{m}$ for all $m \in \mathbb{Z}$.
By Lemma $1, w_{1} u_{n}-w_{n} u_{1}=B w_{0} u_{n-1}$ for $n \in \mathbb{Z}$. Therefore,

$$
\lim _{n \rightarrow+\infty} \frac{w_{n}}{u_{n}}=w_{1}-\frac{B w_{0}}{\lim _{n \rightarrow+\infty} u_{n} / u_{n-1}}=w_{1}-\frac{B w_{0}}{\beta}=w_{1}-\alpha w_{0}
$$

and hence (22) is valid.
Proof of Theorem 2: Assume that $w_{1} \neq \alpha w_{0}$. In view of Lemma 2,

$$
\lim _{m \rightarrow+\infty} \frac{B^{f(0)} u_{f(m)-f(0)}}{w_{f(m)}}=B^{f(0)} \frac{\beta^{-f(0)}}{w_{1}-\alpha w_{0}}=\frac{\alpha^{f(0)}}{w_{1}-\alpha w_{0}}
$$

and

$$
\lim _{m \rightarrow+\infty} \frac{\alpha^{m}}{w_{m}}=\lim _{m \rightarrow+\infty} \frac{\alpha^{m}}{u_{m}} \times \lim _{m \rightarrow+\infty} \frac{u_{m}}{w_{m}}=0
$$

Applying Theorem 1, we immediately get (7).
Remark 5: On the condition of Theorem 2, if $w_{1}=\alpha w_{0}$, then by checking the proof of Theorem 2 we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{B^{f(n)} u_{\Delta f(n)}}{w_{f(n)} w_{f(n+1)}}=\infty \tag{23}
\end{equation*}
$$

REFERENCES

1. R. André-Jeannin. "Lambert Series and the Summation of Reciprocals in Certain Fibonacci-Lucas-Type Sequences." The Fibonacci Quarterly 28.3 (1990):223-26.
2. I. J. Good. "A Reciprocal Series of Fibonacci Numbers." The Fibonacci Quarterly 12.4 (1974):346.
3. W. E. Greig. "On Sums of Fibonacci-Type Reciprocals." The Fibonacci Quarterly 15.4 (1977):356-58.
4. V. E. Hoggatt, Jr., \& M. Bicknell. "A Reciprocal Series of Fibonacci Numbers with Subscripts $2^{n} k$." The Fibonacci Quarterly 14.5 (1976):453-55.
5. R. S. Melham \& A. G. Shannon. "On Reciprocal Sums of Chebyshev Related Sequences." The Fibonacci Quarterly 33.2 (1995):194-202.
AMS Classification Numbers: 11B39, 11B37

\%8\%

[^0]: * This author is responsible for all the communications, and was supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, and the National Natural Science Foundation of the People's Republic of China.

