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0. INTRODUCTION 

There have been many reports on the properties of various polynomial sequences and their 
generalizations (see, e.g., [1], [3], [4], [5], [6], and [9] and the references therein). In this paper 
we shall try to treat some polynomial sequences by virtue of the line-sequential formalism devel-
oped earlier. To this end? we choose [9] as the guide of our endeavor and obtain some results of 
a different variety supplementary to those appearing in the literature. In particular, we treat the 
Morgan-Voyce (MV) polynomial sequences in some detail (for the origination of the MV polyno-
mials, see the references in [1]) and then apply the method to the Jacobsthal (J) and the Vieta (V) 
polynomial sequences. Finally, we illustrate applications of these results with some examples. 
The line-sequential treatments of at least some of the other well-known polynomial sequences are 
somewhat more complicated, so these and other related matters will be discussed in a later report. 

1. MV-POLYNOMIAL LINE-SEQUENCES 

For convenience of reference, we recap here some of the basic conventions employed in the 
line-sequential formalism. A homogeneous second-order line-sequence is represented by 

\J(c9b):...9u_29u^l9[u09ul\9u29u39...9un9...9 nez9u„eR9 (1.1) 

where c and h9 neither zero, are the anharmonic coefficients of the recurrence relation, cun_2 + 
bun_x - un9 and the symbol [% wj denotes the generating pair of the line-sequence (see §4 in [7]). 

The set of line-sequences (1.1) spans a vector space with the pair of basis vectors: 
Uh0(c9hy...9(c + b2)/c\-b/c9[l90]9c9cb9c(c + h2)9.^ (1.2a) 

UQA(c9b):...9(c + b2)/c3
9-b/c2

9l/c9[09l]9b9c + b2
9... (1.2b) 

(see (4.2) and (4.3) in [7]). For convenience, we describe the pair as being "mutually comple-
mentary." A general line-sequence (1.1) is then decomposable into its basis components (see 
(2.9) in [7]) in the following manner: 

U(c,b) = u0UlQ(c9h) + ulU0A(c9h). (1.2c) 
«o»"i 

A word on the nomenclature: to comply to the line-sequential format established previously, 
the symbols and the names adopted here are necessarily somewhat different from some of the 
corresponding ones of the polynomial sequences as they appear in the literature. However, this 
will not cause any confusion, as we shall see. For convenience, we adopt the letter M to denote 
the MV polynomials that are characterized by the values b - x + 2 and c = - 1 . For the generating 
pair [1,0], we then have what we call the "complementary MV-Fibonacci line-sequence," or, for 
short, the M1>0 line-sequence: 
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M1>0(-l,x + 2):...3(x2+4x + 3)3x + 25[l30],-l3-(x4-2)?-(x2+4x + 3),.... (1.3a) 

Let mn[\ 0] denote the rfi1 term (or element) in Ml0, counting from the first member of the 
basis pair as the zeroth term, that is, w%[l, 0] = 1, and increasing toward the right as the positive 
direction. Then the parity relation will be shown later to be 

m_n[\0] = -mri+2[l,0l (1.3b) 

Let Mlj0(+) denote the positive branch, «>0, of the Ml0 line-sequence, which is denoted 
by {wn(\ 0; x + 2,1)} in Horadam's notation. Its coefficients table, adapted to the format employed 
in [9], is given in Table 1 below. The corresponding table for the negative branch can be inferred 
from Table 1 by means of the parity relation (1.3b). 

TABLE 1. The Coefficients Associated with the M1>0(+) Sequence 

n x° x1 x2 x3 x4 x5 

0 1 
1 0 
2 - 1 
3 -2 -1 
4 -3 -4 -1 
5 -4 -10 -6 -1 
6 -5 -20 -21 -8 -1 
7 -6 -35 -56 -36 -10 -1 

The complementary line-sequence of (1.3 a) is given by 
M0 j l (- l ,x + 2): . . . ,-(x2+4x + 3),-(x + 2),-l,[0,l],x + 2,x2+4x + 3,..., (1.4a) 

which is the MV-Fibonacci line-sequence, or the M0^ { line-sequence for short, the positive branch 
of which is called the MV Even Fibonacci polynomial sequence in [9]. Its parity relation, accord-
ing to (4.9) in [7], is given by 

«-„[0,l] = - /^[0, l ] . (1.4b) 
Clearly, PI0l is the negative of one order translation from M10, that is, 

M0A = -IMl0, (1.4c) 

where T denotes the translation operator. In terms of the elements, 

mn[0M = -mn+l[l,0l (l Ad) 

Definition 1: We say that a line-sequence B is "translationally dependent" on the line-sequence A 
if and only if 2? can be obtained from 4̂ by means of some (harmonic or anharmonic combinations 
of) translation operations on A. 

Substituting (1.4d) into (1.4b), we obtain the parity relation (1.3b) for Mlj0. 
The line-sequences Mx^ and M0j then form a pair of orthonormal bases spanning the 2D 

MV line-sequential vector space. Any line-sequence in this space can then be decomposed into its 
basis components in the manner according to (1.2c). 
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Combining the parity relations (1.3b) and (1.4b) with the translation relation (1.4d), we 
obtain the following set of basis relations between the elements of the two basis line-sequences: 

m_Jl,0]^w + 1[0,l] , (1.5a) 
m_n[l,0] = -m_{n+l)[0,l]; (1.5b) 

or 
m_n[0,l] = mn+1[l,0l (1.5c) 
m_n[0,l] = -m_(n_l)[l,0l (1.5d) 

The Mlx line-sequence, the positive branch of which is named the MV Odd Fibonacci poly-
nomial sequence in [9], is given by 

M1;1(-l?x + 2):...?x2 + 3x + l?x + l,[l?l],x + l,x2+3x + l,.... (1.6a) 

It decomposes into its basis components according to (1.2c): 
Mxl = Ml0 + M01. (1.6b) 

Or, in terms of the elements, 
mn[l,l] = mn[X0]+mn[0M (1.6c) 

It is seen that the sum of the corresponding coefficients in Table 1 for Ml0(+) above and Table 
2(a) for M0 j(+) in [9] equals the corresponding coefficient in Table 2(b) for M u (+) in [9], as 
can be deduced from (1.6c). 

Applying relation (1.4c) to the component equation (1.6b), we obtain the following transla-
tional expression of Mt x in terms of M1? 0: 

Mu = (I-T)Ml0, (1.6d) 

where / is the identity operator of translation. In terms of the elements, we have 
^ P J ] - ^ [ l ? 0 ] - ^ + 1 [ l , 0 ] . (1.6e) 

A look at the relevant terms in Table 1 and in Table 2(b) in [9] bears out this relationship. 
Since a line-sequence in the MV space can always be decomposed into its basis components, 

and since the pair of bases are translationally dependent, all MV line-sequences are translationally 
dependent on either of the basis line-sequences. Since the two bases (4.2) and (4.3) in [7] for the 
general case are translationally dependent, the above said property must hold in general. We state 
this in the form of a theorem. 

Theorem 1: All line-sequences defined in a line-sequential vector space are translationally depen-
dent on either basis line-sequence. 

Applying (1.5 a) and (1.5 c) to (1.6c), we obtain the parity rule for M u , 
m_n[l,l] = mn+l[\M (1.6f) 

a property clearly displayed in (1.6a). 
The MV-Lucas line-sequence, the positive branch of which is the MV Even Lucas polynomial 

sequence according to [9], is given by 

M2 j c + 2(-l,x + 2):...?x2+4x + 2,x + 2,[2?x-f2],x2+4x + 2,x3 + 6x2+9x + 2,.... (1.7a) 
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Applying the geometrical sequences (1.10a) and (1.10b) to the Binet formula (1.12d), see 
below, and noting that afi=l9 it is easy to show that the parity relation among the terms in 

x+2 *s given by 
m_n[2,x + 2] = mn[2,x + 2l (1.7b) 

which is clearly displayed in the line-sequence (1.7a). 
Decomposing (1.7a) into its basis components, we have 

Mx x+2 = 2Mh 0 + (x + 2)M0,! (1.7c) 

or, in terms of their elements, 
mri[2,x + 2] = 2mn[\0] + (x + 2)mn[0,ll (1.7d) 

Applying basis relation (1.5a) with parity relations (1.4b) and (1.7b) to (1.7d) above, we get 

mn{2, x + 2] = 2^+1[0, l ] -(x + 2K[0,1]. (1.7e) 

This is the MV-version of the well-known relation ln- 2fn+l-fn between the elements of the 
Lucas and the Fibonacci sequences. 

Applying relation (1.4c) to (1.7c), we obtain 
M2,x+2 = [2 / - (x + 2)7]Ml50. (1.7f) 

This is the translational representation of the MV-Lucas line-sequence in terms of its first basis. 
We say the line-sequence M2jX+2 is "anharmonically" translationally dependent on the basis M1>0. 

The line-sequential form of M_ u , the positive branch of which is called the MV Odd Lucas 
polynomial sequence in [9], is given by 

M_l5l(-l,x + 2):.. . ,-(x2+5x + 5),-(x + 3),[-l,l],x + 3,x2+5x + 5,.... (1.8a) 

Its decomposition is given by 

M_h! = -Ml o + M), i • (1 -8b) 
In terms of the elements, 

ml[-i,i] = -inl[i,o]+^[o,i]. (i.8c) 
It is seen that the sum of the negative of a term in Table 1 above and the corresponding term in 
Table 2(a) in [9] equals the corresponding term in Table 3(b) in [9], as can be deduced from 
(1.8c). 

Applying the relations (1.5a) and (1.5c) to (1.8c), we find the parity relation for the elements 
of M_4 j : 

m_n[-lA] = -mn+l[-lM (1.8d) 

which is clearly displayed in the line-sequence (1.8a). 
Applying the relation (1.4c) to (1.8b), we obtain the following translational representation of 

M_tj in terms of the first basis M1?0, 

M_hl = -(I + T)Ml0. (1.8e) 

The following set of interrelationships among the MV polynomials can be shown to hold: 
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M,o + M . u = Mo,i; (19a) 
M,i + M . U = 2M0>1; (1.9b) 
MlA+Ml0 = M2A, (1.9c) 
(x + 2)MX, - xMu 0 = Mx x+2; (1.9d) 

and so forth. 
The pair of geometrical line-sequences relating to Ml0 is given by 

Mx a(-l, x + 2):..., a'2, a~\ [1, a], a2, a3,..., (1.10a) 
and 

Mhp{-\,x + 2):...,pr\p-\[\,pip2,p\..., (1.10b) 
where 

a = [x + 2 + (x2+4x)1/2]/2, ^ = [x + 2-(x2+4x)1 / 2]/2 (1.11a) 

are the roots of the generating equation 

q2-(x + 2)q + l = 0. (1.11b) 

Since Mla and MXp also form a pair of orthogonal (but not normal) bases of the MV vector 
space (see §3 in [8]), any MV line-sequence can be expressed as a linear combination of its Mha 

and Ml/3 components, which, in a manner of speaking, is just its Binet formula. 
Generalizing relation (4.9) in [8] and applying basis decompositions in terms of M^a and 

MXp, we obtain the following set of Binet's formulas for the family of MV line-sequences: 
Ml0 = (-flMla + aMlfi)/(a-fi); (1.12a) 
M0J = (Mla~M^)/(a-^y, (1.12b) 
Mu=[(l-^Mla-(l-a)M^]/(a-^; (1.12c) 
M2,x+2 = Mla+MXp; (1.12d) 
M_u=[(l + ̂ Mla-(l + a)M^]/(a-/]). (1.12e) 

Notice that the form of the Binet formulas (1.12b) and (1.12d) justifies our identifying them 
as the MV-Fibonacci and MV-Lucas line-sequences, respectively, consistent with works in this 
area; and as a cross check, multiplying f( 1.12b) and (1.12d), we obtain, in terms of the elements, 

^ [ 0 , l K [ 2 , 2 + x ] - ^ J 0 , l ] , (1.13) 

which is the MV version of the well-known relation fjn = f2n between the Fibonacci and Lucas 
numbers. 

Since, by Theorem 1, a line-sequence can always be translationally represented in terms of 
either of its bases, and since its basis can always be expressed in terms of the geometrical line-
sequence, namely Binet's formula, a line-sequence can always be expressed in terms of the geo-
metrical line-sequence which, naturally, is referred to as its Binet formula. Formulas (1.12c) and 
(1.12e) are such examples. We state this in the form of a theorem. 

Theorem 2: All line-sequences defined in a line-sequential vector space are expressible by means 
of their respective Binet formulas. 
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2. THE JACOBSTHAL POLYNOMIAL LINE-SEQUENCES 
The Jacobsthal (J) polynomial sequence is characterized by the parameters b = l and c = x. 

(Here, we adopt the convention used in [9]; for another convention used by Horadam, see [4].) 
The basis pair is given by 

J0J(x, 1):..., - (2x~2 4- x~3), x"1 + x~2, - x"1, [0,1], x, x, x2 + x, 2x2 + x,..., (2.1 a) 

J0J(x, 1):..., -(2x~3 + x"4)? x"2 + x"3, -x~2, x~\[091], 1, x + 1, 2x +1,.. . , (2.1b) 

where the first one will be referred to as the "complementary J-Fibonacci line-sequence" or Jlj0 
line-sequence for short; the second one is the "J-Fibonacci line-sequence," or J0l line-sequence 
whose positive branch is called the J-Fibonacci sequence in [9]. The pair then span the 2D J line-
sequential vector space. Obviously, the two basis line-sequences are related translationally, 

TJl0 = xJ0A, (2.2a) 
or, in terms of the elements, 

7„+1[l,0] = x/„[0,l]. (2.2b) 

The parity relation of the terms in Jlj0 can be shown to be 

. U l , 0] = (-l)"+2x-("+l)jn+2ll, 0]. (2.3a) 

According to (4.9) in [7], the parity relation for terms in J0? x is given by 

i-w[0,l] = (-ir+ 1x-"jJ0,l] . (2.3b) 

Substituting the translation relation (2.2b) into (2.3b), we get (2.3a). 
Using these parity relations with the translation relation, we obtain the following set of rela-

tions between the elements of the two basis line-sequences: 

7-„[l,0] = (-*)-"7„+i[0,l], (2.4a) 
7_„[l,0] = x;L(„+1)[0,l]; (2.4b) 

or 
; -J0, l ] = (-x)-<"+1>y„+1[l,0], (2.4c) 
7-„[0,l] = x-1

7L(n_1)[l,0]. (2.4d) 

The coefficient table of Jx 0(+) is given in Table 2 below. 

TABLE 2. The Coefficients Associated with the / l i 0 (+) Sequence 

n 

0 
1 
2 
3 
4 
5 
6 
7 

x° 
1 
0 
0 
0 
0 
0 
0 
0 

xl 

1 
1 
1 
1 
1 
1 

x2 

1 
2 
3 
4 

x3 

1 
3 
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The J-Lucas line-sequence is given by 
Jxx(x, 1):..., - 3x-2 - x~3,2x~l + x-2, - x"\ [2,1], 2x +1,3x +1,2x2 + 4x +1, . . . , (2.5a) 

which is a linear combination of the basis line-sequences (2.1a) and (2.1b), 

^2,1 = 2^1,0 + ̂ 0.1 (2.5b) 

or, in terms of the corresponding members in these line-sequences, 
jn[2,l] = 2j„[l,0]+j„[0,l]. (2.5c) 

It is seen that the sum of twice a term in Table 2 for Jlj0(+) above and a term in Table 4(a) for 
Jo9i(+) in [9] equals the corresponding term in Table 4(b) for J2,i(+) 'm [9], as can be deduced 
from relation (2.5c) above. 

From the Binet formula (2.8c) below, using (2.6a) and (2.6b), noting that afi = -x9 we 
obtain the following parity relation for the J-Lucas line-sequence: 

y_n[2,l] = (-l)"x-"/„[2,l]. (2.5d) 

Applying parity relation (2.5d) and relations (2.4a) and (2.4c) to the component equation 
(2.5c), using the translation equation (2.2b), we obtain 

7„[2,l] = 2x-V„+2[l,0]-7„[0,l], (2.5e) 

which is the J-version of the relation ln = 2/w+1 - / „ . 
Applying the translation relation (2.2a) to the basis component equation (2.5b), we obtain the 

translational representation of the J-Lucas line-sequence in terms of the J1?0 basis, 

J2A = (2I + x-lT)Jl0, (2.5f) 

a result consistent with the statement of Theorem 1 above. 
The pair of geometrical line-sequences relating to Jl0 is given by 

Jla(x, 1):.... a'2, a~\ [1, a], a2, a\..., (2.6a) 

jxfi(x,iy....,/r2,fi-l,[i,p\,fi2,fi3,..., (2.6b) 
where 

a = [l + (l + 4x)1/2]/2, ^ = [ l - ( l + 4x)1/2]/2 (2.7a) 

are the roots of the generating equation 
q2_q-x = 0 (2.7b) 

Here, considering the multitude of recurring polynomial sequences which may be treated in this 
manner, we retain the use of the same pair of letters a and (3 to represent the roots of the respec-
tive generating equation of each case, rather than adopt a new pair of letters each time for each 
case; while the pair of letters A and B remains reserved for representing the large and the (nega-
tive) small golden ratios. 

Then an arbitrary J line-sequence can be expressed in terms of J^a and JXp. In particular, 

Ao = (-/Vla + <*rifi)l(<*-P), (2-8a) 
which is Binet's formula for the complementary J-Fibonacci line-sequence, and 
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\l = (Aa-Ap)'(a-^ (2.8b) 
which is Billet's formula for the J-Fibonacci line-sequence, and 

J2,l = Jl,a + A/1> (2-8c) 
which is Binet's formula for the J-Lucas line-sequence. 

It is easy to see that 
7 jO, im2, l ] = A,[0,l], (2.9) 

which is the J-version of the basic relation fjn = f2n. 

3. THE VIETA POLYNOMIAL LINE-SEQUENCES 

The V-polynomial sequence is characterized by the parameters b = x and c = - 1 . Observing 
that, if we put x + 2 = x' for the MV-polynomials, then the latter will be line-sequentially equiva-
lent to the V-polynomials. Therefore, the line-sequential relations of the V-polynomials can be 
obtained directly from the corresponding ones of the MV-polynomials. For convenience of refer-
ence, however, we compile the following essential relations for the V-polynomials. 

The basis pair of the V line-sequences is given by 

F l 5 0 ( - l ,x ) : . . . , - (2x-x 3 ) , - ( l -x 2 ) ,x , [ l ,0 ] , - l , -x , l -x 2
? 2x-x 3 , . . . , (3.1a) 

F 0 5 l ( - l ,x ) : . . . , 2x-x 3 , l -x 2 , -x , - l , [0 , l ] ,x , - ( l -x 2 ) , - (2x-x 3 ) . . . , (3.1b) 

where the first one is the complementary V-Fibonacci line-sequence, or V^0 line-sequence for 
short; the second is the V-Fibonacci line-sequence, or V0j line-sequence for short. This pair spans 
the 2D V line-sequential vector space. 

Obviously, we have the following translational relation between the two basis line sequences: 
VOA = -TVl0 (3.2a) 

or, in terms of the elements, 
v„[0,l] = -vn+1[l,0]. (3.2b) 

The parity relation of the elements in Vl0 is found to be 

v_„[l,0] = -v„+2[l,0]. (3.3a) 

From (4.9) in [7], the parity relation for the elements in V0l is found to be 

v_„[0,l] = -v„[0,l], (3.3b) 

which is clearly borne out in (3.1b). Applying (3.2b) to (3.3b), we obtain (3.3a). 
Using these parity relations together with the translation relation (3.2b), we obtain the fol-

lowing set of relations between the elements of the two basis line-sequences: 
v_„[l,0] = v„+1[0,l], (3.4a) 
v_„[l,0] = -v_(„+1)[0,l]; (3.4b) 

or 
v_„[0,l] = v„+1[l,0], (3.4c) 
v_w[0,l] = -v_(„_1)[l,0]. (3.4d) 
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This set of relations parallels exactly the set for the MV line-sequences, namely, from (1.5a) to 
(1.5d), as it should be. 

The coefficient table of Vx 0(+) is given in Table 3. 

TABLE 3. The Coefficients Associated with the V1Q{-\-) Sequence 

0 
1 
2 
3 
4 
5 
6 
7 

1 
0 

- 1 
0 
1 
0 

- 1 
0 

-1 
0 
2 
0 

-3 

-1 
0 
3 
0 

-1 
0 
4 

-1 
0 - 1 

The coefficient table of xV0tl(+) = V0x(+) is given in Table 4. 

TABLE 4. The Coefficients Associated with the ^ x ( + ) Sequence 
n x° xl x2 x3 x4 x5 x6 x7 

0 
1 
2 
3 
4 
5 
6 
7 

0 
0 
0 
0 
0 
0 
0 
0 

1 
0 

-1 
0 
1 
0 

-1 

1 
0 

- 2 
0 
3 
0 

1 
0 

-3 
0 
6 

1 
0 

- 4 
0 

1 
0 

- 5 
1 
0 1 

The V-Lucas line-sequence is given by 

V2,x(-l,x): • x(3 - x2), - (2 - x2), x, [2, x], - (2 - x2), - x(3 - x2),. (3.5a) 

The coefficient table of V2 x(+) is given in Table 5. 

TABLE 5. The Coefficients Associated with the V2 x(+) Sequence 

0 
1 
2 
3 
4 
5 
6 
7 

2 
0 

- 2 
0 
2 
0 

- 2 
0 

1 
0 

- 3 
0 
5 
0 

- 7 

1 
0 

- 4 
0 
9 
0 

1 
0 

-5 
0 

14 

1 
0 

- 6 
0 

1 
0 

- 7 
1 
0 1 

The decomposition ofV2x into its basis components is given by 

V2,x-2Vl0+xV0A (3.5b) 
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or, in terms of the elements, 
vn[2, x] = 2vB[l, 0] + xvw[0,1]. (3.5c) 

It can be seen that the sum of twice a coefficient in Table 3 and the corresponding coefficient 
in Table 4 equals the corresponding coefficient in Table 5, as can be deduced from (3.5c). 

The parity relation among the terms of VXx is obtained from (1.7b): 

v_n[2,x] = vJ2,xl (3.6a) 
which is apparent in (3.5a). 

The V-version of the relation ln - 2fn+l - fn is obtained from (1.7e): 

vw[2,x] = 2vw+1[0,l]-xvJ0,l]. (3.6b) 

The translational expression of V2>x in terms of Vlf0 is obtained from (1.7f): 

V2,x = (2I-xT)Vl0. (3.6c) 

The pair of geometrical line-sequences relating to F10 is given by 

Vla(-l, x):...,-of2, a~\ [1, a] , a\ a\..., (3.7a) 

Vhp{-\x):.^[r\p-\l\Pl(]\p\..., (3.7b) 
where 

a = [x + (x2-4)1/2]/2, /? = [x-(x2-4)1 / 2 ] /2 (3.8a) 

are the roots of the generating equation 
q2-xq+ 1 = 0. (3.8b) 

Hence, the Binet formula for the Vl0 line-sequence is given by 

fi,o = (rfiVua + aV^/ia-fi), (3.9a) 

the Binet formula for the V0l line-sequence is given by 

V0,i = (Vla-Vlf})/(a-P), (3.9b) 

and the Binet formula for the V-Lucas line-sequence is given by 
V2.x = Vla+Vlfi. (3.9c) 

Obviously, 
v„[0,l]vll[2,x] = v2n[0,l], (3.9d) 

which is the V-version of the relation fnln = f2n. 

4* SOME APPLICATIONS 

We illustrate the application of the foregoing results with a few examples. 

Example 1: For the MV-Lucas line-sequence, by the rule of line-sequential addition, we have 

Using translation relation (1.4c), we obtain (T- T~l)M^ x = M 2 ? x+2. So, in general, we have 
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( r + i _ r - i ) H i = r M ^ + 2 ( 4 1 a ) 

This is the translationa! representation of the MV-Lucas line-sequence in terms of its second basis. 
In elements form, this becomes 

mn+l [0,1] - mn_l [0,1] = mJ2, x + 2], (4. lb) 

which is the MV-version of the well-known relation between the Fibonacci and the Lucas 
numbers/„+!+/„_!= ^. 

Applying parity relation (1.4b) to (4.1b), we obtain 
mKll-1)[0,l]-iWL(ltfl)[0,l] = inl[2,x + 2] (4:lc) 

or 
(T-^-r^)M0A = T"MXx+2, (4.1d) 

which is the negative translational representation of the MV-Lucas line-sequence. From (4. Id), it 
can easily be inferred that 

(7-<»-i) + T~in+l))F0J = (-lTTnFxly (4.1e) 

which is the negative translational representation of the Lucas line-sequence. Therefore, in terms 
of the elements, we obtain the expression of the Lucas numbers in terms of the Fibonacci numbers 
with negative indices, i.e., 

/_<„_,, +U+l) = (-l)"4, (4.1Q 
which is a particular case of equation (2.16) of Horadam [2]. 

Example 2: For the J-Lucas line-sequence, we have J u + ̂ o = ^2,1- Using translation relation 
(2.2a), we have [T+xT"1] J 0 J = J2 J . Hence, we obtain 

[r+1 + xTn~l] \ ! = r J%!. (4.2a) 

This is the translational expression of the J-Lucas line-sequence in terms of its second basis. In 
the elements form, we have 

jn+l [0,1] + xjn_x [0,1] = j,[2,1], (4.2b) 

which is the J-version of the relation fn+l +/„_! = /„ • 
Applying parity relation (2.3b) to (4.2b) and using the translation operation, we obtain 

(-l)nxn {xT~{n+l) + T~{n~l)) J0j j = TnJ2t h (4.2c) 

which is the negative translational expression of the J-Lucas line-sequence in terms of its second 
basis. 

Example 3: For the V-Lucas line-sequence, we start with Vlx + Vl0 = V2iX. Using translation 
relation (3.2a), this becomes (T- T~~l)VQ1 = V2tX. Hence, we have 

(Tn+l- T"-l)Vo,i = TnV2iX. (4.3a) 

This is the translational representation of the V-Lucas line-sequence in terms of its second basis. 
In the elements form, we find that 
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v>l+1[0,l]-vfr.1[0,l] = vJI[2,x], (4.3b) 

which Is the V-version of the relation fn+l +/w-i = 4 • 
Applying parity relation (3.3b) to (4.3b) and using the translation operation, we have 

which is the negative translational expression of the V-Lucas line-sequence in terms of its second 
basis. 
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