ON THE FACTORIZATION OF LUCAS NUMBERS

Wayne L. McDaniel
University of Missouri-St. Louis, MO 63121

(Submitted March 1999)

1. INTRODUCTION

If an integer is not a prime, then it can, of course, be written as the product of two integers, say r and $r+k$. In the case of the Lucas numbers, L_{n}, it has been shown that the two factors may differ by 0 (that is, L_{n} is a square) only if $n=1$ or 3 [1], [3], may differ by 1 only if $n=0$ [4], [5], and may differ by 2 only if $n= \pm 2$ [6].

It is well known that $L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}$, where F_{n} is the $n^{\text {th }}$ Fibonacci number, so if $L_{n}=$ $r(r+k)$, we have an equation of the form $x^{4}+2 k x^{3}+x^{2} k^{2} \pm 4=5 y^{2}$. Since the left side has 3 distinct zeros, the number of solutions of this equation is finite, by a theorem of Siegel [7]; further, by a theorem of Baker (see [2]), $|x|$ and $|y|$ are effectively bounded. Hence, for a given k, the number of integers n such that $L_{n}=r(r+k)$ is finite, but the known bounds are extremely large.

We shall show that, if $L_{n}=r(r+k)$ for $k \equiv 1,6,7,8,17,18,19$, or $24(\bmod 25)$, the number of solutions is bounded by one-half the number of positive divisors of $\left|k^{2}-8\right|$ or $\left|k^{2}+8\right|$, and we provide an algorithm for finding all solutions. In each case,

$$
n<\frac{2 \log \left(\left(k^{2}+9\right) / 4\right)}{\log ((1+\sqrt{5}) / 2)}
$$

For certain infinite sets, e.g., $k \equiv 8(\bmod 100)$, we show that no solutions exist. When k is even, $L_{n}=r(r+k)$ is equivalent to $L_{n}=x^{2}-(k / 2)^{2}$, so our results extend Robbins' result [6] on the solutions of $L_{n}=x^{2}-1$ to the difference of two squares in infinitely many cases.

We write \square for "a square," τ is the usual "number of divisors" function, $(a \mid b)$ is the Jacobi symbol, and we will need the following familiar relations. Let g, m, n, and t be integers, t odd.

$$
\begin{gather*}
L_{2 g}=L_{g}^{2}-2(-1)^{g} \text { and } F_{2 g}=F_{g} L_{g}, \tag{1}\\
L_{-n}=(-1)^{n} L_{n} \text { and } F_{-n}=(-1)^{n+1} F_{n}, \tag{2}\\
2 L_{m+n}=L_{m} L_{n}+5 F_{m} F_{n}, \tag{3}\\
L_{2^{u} m} \equiv\left\{\begin{array}{lll}
2(\bmod 8) & \text { if } 3 \mid m \text { and } u \geq 1, \\
-1 & (\bmod 8) & \text { if } 3 \nmid m \text { and } u \geq 2,
\end{array}\right. \tag{4}\\
L_{2 g t+m} \equiv \pm L_{2 g+m}\left(\bmod L_{2 g}\right) . \tag{5}
\end{gather*}
$$

2. $L_{\boldsymbol{n}}$ AS THE PRODUCT OF TWO FACTORS DIFFERING BY \boldsymbol{k}

We assume, without loss of generality, that k is positive, and note that $L_{n}=r(r+k)$ for some r implies that $4 L_{n}+k^{2}=\square$.
Lemma 1: Let $L_{n}=r(r+k)$. If $k \equiv \pm 11(\bmod 3 \cdot 25 \cdot 41)$, then $n \equiv 0(\bmod 4)$.

Proof: Let $k= \pm 11(\bmod 3 \cdot 25 \cdot 41)$. We find that $4 L_{n}+k^{2}$ is a quadratic residue modulo 25 only for $n \equiv 0,1,4,8,9,12$, or $16(\bmod 20)$; if n is odd, then $n \equiv 1,9,21$, or $29(\bmod 40)$. Now, the Lucas numbers are periodic modulo 41 with period of length 40 , and $4 L_{n}+k^{2}$ is a quadratic nonresidue modulo 41 for $n \equiv 9,21$, and $29(\bmod 40)$, and is a quadratic nonresidue modulo 3 for $n \equiv 1(\bmod 8)$. It follows that $4 L_{n}+k^{2}=\square$ only if $n \equiv 0,4,8,12$, or $16(\bmod 20)$; that is, only if $n \equiv 0(\bmod 4)$.

Let

$$
\begin{aligned}
& S_{1}=\{k \mid k \equiv 1,6,19, \text { or } 24(\bmod 25)\} \\
& S_{2}=\{k \mid k \equiv 7,8,17, \text { or } 18(\bmod 25)\}
\end{aligned}
$$

and

$$
S_{3}=\{k \mid k \equiv \pm 11(\bmod 3 \cdot 25 \cdot 41)\}
$$

Theorem 1: Let $k \in S_{1} \cup S_{2} \cup S_{3}$. The number of nonnegative integers n for which $L_{n}=r(r+k)$ is less than or equal to $\tau\left(k^{2}-8\right) / 2$ if $k \in S_{1} \cup S_{3}$, and less than or equal to $\tau\left(k^{2}+8\right) / 2$ if $k \in S_{2}$. If $L_{n}=r(r+k)$, then

$$
n<\frac{2 \log \left(\left(k^{2}+9\right) / 4\right)}{\log ((1+\sqrt{5}) / 2)}
$$

Proof: Assume that $L_{n}=r(r+k)$; then $4 L_{n}+k^{2}=\square$. The quadratic residues modulo 25 are the integers in $T=\{0,1,4,6,9,11,14,16,19,21,24\}$.

We find that, for each integer k in $S_{1}, 4 L_{n}+k^{2} \equiv$ an element of $T(\bmod 25)$, precisely when $n \equiv 0,4,8,12$, or $16(\bmod 20)$; combining this with the result of Lemma 1 , we have $L_{n}=r(r+k)$ for each integer k in $S_{1} \cup S_{2}$ only when $n \equiv 0(\bmod 4)$. And, for each integer k in $S_{2}, 4 L_{n}+k^{2} \equiv$ an element of $T(\bmod 25)$, precisely when $n \equiv 2,6,10,14$, or $18(\bmod 20)$, i.e., only when $n \equiv 2$ $(\bmod 4)$.

Let $n=2 t$. Now, $L_{n}=r(r+k)$ implies that there exists an x such that $x^{2}=4 L_{2 t}+k^{2}$, so, by (1), we have $x^{2}-\left(2 L_{t}\right)^{2}=k^{2}-8(-1)^{t}$. Hence, there exist divisors c and d of $k^{2}-8(-1)^{t}$ such that $x+2 L_{t}=c$ and $x-2 L_{t}=d$, implying that $L_{t}=\frac{c-d}{4}$. Since, for a given pair (c, d) of divisors of $k^{2}-8(-1)^{t}$, the system has at most one solution; there exist at most $\tau\left[k^{2}-8(-1)^{t}\right] / 2$ integers n for which $L_{n}=r(r+k)$. Taking t even or odd for the two cases, respectively, proves the first statement of the theorem.

It is well known that $L_{n}=\alpha^{n}+\beta^{n}$, where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. Let $s=\left[k^{2}-\right.$ $\left.8(-1)^{t}-1\right] / 4$. Since $\alpha^{t}-1 / \alpha^{t}=\alpha^{t}+\beta^{t}=L_{t}=\frac{c-d}{4} \leq s$, we readily obtain $\alpha^{t}<\left(s+\sqrt{s^{2}+4}\right) / 2$ If $k=1$, it is easily seen that $n=0$, and if $k \neq 1$, then $\alpha^{t}<[s+(s+1)] / 2$. One obtains a relatively simple bound upon taking the logarithm of each side of $\alpha^{t}<s+\frac{1}{2}$, replacing t by $n / 2$ and replacing s by the larger of its two values.

Lemma 2: If $k \equiv 0(\bmod 4)$, then $L_{n}=r(r+k)$ only if n is odd.
Proof: Let $k=4 t$, and assume that, for some $m, L_{2 m}=r(r+k)$. Then

$$
L_{2 m}+4 t^{2}=r^{2}+4 r t+4 t^{2}=\square
$$

implying $L_{2 m} \equiv 0$ or $1(\bmod 4)$, contrary to (4).

We now exhibit several infinite sets of integers k such that L_{n} does not have the form $r(r+k)$ for any n.

Theorem 2: Let $S=\{k \mid k \equiv 8,24,32,44,56,68,76,92(\bmod 100)\}$. If $k \in S$, then $L_{n} \neq r(r+k)$ for any n.

Proof: Let $k \in S$ and assume, for some $n \geq 0$ and some integer r, that $L_{n}=r(r+k)$. By Lemma 2, n is odd. However, each element of S is in $S_{1} \cup S_{2}$ and, as noted in the proof of Theorem $1,4 L_{n}+k^{2}$ is a quadratic nonresidue for n odd.

Corollary: There exist infinitely many primes p such that L_{n} does not have the form $r(r+4 p)$ for any n.

Proof: The sequence $\{2+25 b\}$ contains infinitely many primes p and, for $p=2+25 b$, we have $4 p \equiv 8(\bmod 100)$.

3. L_{n} AS THE DIFFERENCE OF TWO SQUARES

The proof of the following theorem is immediate upon writing $x^{2}-m^{2}$ as $r(r+k)$ with $r=x-m$ and $k=2 m$.

Theorem 3: The equation $L_{n}=x^{2}-m^{2}$
a) is impossible for all $n \geq 0$ if $m \equiv 4,12,16,22,28,34,38$, or $46(\bmod 50)$,
b) has at most $\tau\left(4 m^{2}-8\right) / 2$ solutions if $2 m \in S_{1}$, and
c) has at most $\tau\left(4 m^{2}+8\right) / 2$ solutions if $2 m \in S_{2} \cup S_{3}$,
and, if $L_{n}=x^{2}-m^{2}$, then

$$
n<\frac{2 \log \left(m^{2}+9 / 4\right)}{\log ((1+\sqrt{5}) / 2)}
$$

In practice, for a given m, one may find the values of n such that $L_{n}=x^{2}-m^{2}$ by proceeding as in the proof of Theorem 1: simply write $L_{n / 2}=\frac{c-d}{4}$ for all pairs $(c, d), c \equiv d(\bmod 4)$, of factors of $\left|4 m^{2}-8(-1)^{n / 2}\right|$, and find n. We can now readily obtain the values of n for which $L_{n}=x^{2}-m^{2}$ for all m such that $2 m=k \in S_{1} \cup S_{2} \cup S_{3}$. Notice that L_{-n} is the difference of two squares iff L_{n} is the difference of two squares, since $L_{-n}= \pm L_{n}$.

By way of example, if $m=3$, then $2 m=6 \in S_{1}, 4 m^{2}-8(-1)^{n / 2}=28$, and $L_{n / 2}=\frac{c-d}{4}$ for $(c, d)=(14,2)$; hence, $L_{n / 2}=3$, and we conclude that $L_{n}=x^{2}-3^{2}$ only when $n= \pm 4\left(L_{ \pm 4}=7=\right.$ $4^{2}-3^{2}$).

It may be noted that we now know the values of n for which $L_{n}=x^{2}-m^{2}$ for $m=1,3$, and 4, and can determine the n for many larger values of m. In order to close the gap between 1 and 3 , we shall prove that $L_{n} \neq x^{2}-2^{2}$ for any n. Unlike the cases considered above, this case presents a difficulty that precludes the possibility of establishing a bound on n for all $k \equiv 2 m \equiv 4(\bmod M)$ for any M.

Lemma 3: If $3 \nmid g$, then $L_{2 g \pm 3} \equiv 5 F_{2 g}\left(\bmod L_{2 g}\right)$.

Proof: We note first that $F_{ \pm 3}=2$. By (3),

$$
2 L_{2 g \pm 3}=L_{2 g} L_{ \pm 3}+5 F_{2 g} F_{ \pm 3} \equiv 10 F_{2 g}\left(\bmod L_{2 g}\right) .
$$

Since $3 \nmid g, L_{2 g}$ is odd, and the lemma follows.
Lemma 4: If $3 \nmid g$ and t is odd, then $\left(L_{2 g \pm \pm 3}+4 \mid L_{2 g}\right)=\left(5 F_{2 g}+4 \mid L_{2 g}\right)$.
Proof: By (5) and Lemma 3,

$$
\left(L_{2 g t \pm 3}+4 \mid L_{2 g}\right)=\left(\pm L_{2 g \pm 3}+4 \mid L_{2 g}\right)=\left(5 F_{2 g}+4 \mid L_{2 g}\right) \text { or }\left(-5 F_{2 g}+4 \mid L_{2 g}\right) .
$$

We prove that these latter two Jacobi symbols are equal by showing that their product is +1 :

$$
\begin{aligned}
\left(5 F_{2 g}+4 \mid L_{2 g}\right) \cdot\left(-5 F_{2 g}+4 \mid L_{2 g}\right) & =\left(16-25 F_{2 g}^{2} \mid L_{2 g}\right) \\
& =\left(16-5\left(L_{2 g}^{2}-4\right) \mid L_{2 g}\right)=\left(36 \mid L_{2 g}\right)=+1 .
\end{aligned}
$$

Lemma 5: Let $u \geq 4$. Then $5 F_{2^{u} m}+2 L_{2^{u} m} \equiv-1(\bmod 8)\left\{\begin{array}{l}\text { if } u \text { is odd and } m=1, \text { or } \\ \text { if } u \text { is even and } m=5 .\end{array}\right.$
Proof: Let $m>0$. By (1) and (4),

$$
F_{2^{u} m}=F_{2^{u-2} m} L_{2^{u-2} m} L_{2^{u-1} m} \equiv F_{2^{u-2} m} \equiv F_{2^{u-4} m} \equiv \cdots F_{4 m} \text { or } F_{8 m}(\bmod 8),
$$

depending on whether u is even or odd, respectively. Using (4), $F_{8}=21$, and $F_{20}=6765$ proves the lemma.

Theorem 4: No term of the sequence $\left\{L_{n}\right\}$ is of the form $x^{2}-4$.
Proof: Assume $L_{n}=x^{2}-4$. By Lemma 2, we may assume that n is odd. Now $\square=L_{n}+4$ modulo 25 only if $n \equiv 13$ or $17(\bmod 20)$, and modulo 11 only if $n \equiv 5,7,9(\bmod 10)$. It follows that $n \equiv 1(\bmod 4)$ and $n \equiv-3(\bmod 5)$. For $n \equiv 1(\bmod 4)$, $\square=L_{n}+4$ modulo 7 and modulo 47 only if $n \equiv-3$ or $13(\bmod 32)$. However $L_{n}+4$ has period of length 64 modulo 2207 , and 13 and 45 are quadratic nonresidues modulo 64 ; hence, $n \equiv-3(\bmod 32)$. Combining this with $n \equiv-3$ $(\bmod 5)$, we have $n \equiv-3(\bmod 5 \cdot 32)$.

Let $n=2 g t-3$, with t odd, $g=2^{u}$ if u is odd, and $g=2^{u} \cdot 5$ if u is even $(u \geq 4)$. We shall use (1), (4), Lemma 5 , and the following observation:

$$
\begin{equation*}
2 L_{2 g}=2\left(L_{g}^{2}-2\right)=2 L_{g}^{2}+5 L_{g}^{2}-L_{g}^{2}=5 F_{g}^{2}+L_{g}^{2} \tag{6}
\end{equation*}
$$

By Lemma 4,

$$
\begin{aligned}
\left(L_{n}+4 \mid L_{2 g}\right) & =\left(5 F_{2 g}+4 \mid L_{2 g}\right)=\left(5 F_{2 g}+2\left(L_{g}^{2}-L_{2 g}\right) \mid L_{2 g}\right)=\left(5 F_{2 g}+2 L_{g}^{2} \mid L_{2 g}\right) \\
& =\left(L_{g} \mid L_{2 g}\right)\left(5 F_{g}+2 L_{g} \mid L_{2 g}\right)=-\left(L_{2 g} \mid L_{g}\right)(-1)\left(L_{2 g} \mid 5 F_{g}+2 L_{g}\right) \\
& =\left(L_{g}^{2}-2 \mid L_{g}\right)\left(2 \mid 5 F_{g}+2 L_{g}\right)\left(2 L_{2 g} \mid 5 F_{g}+2 L_{g}\right) \\
& =\left(-1 \mid L_{g}\right)\left(5 F_{g}^{2}+L_{g}^{2} \mid 5 F_{g}+2 L_{g}\right) \quad[\text { by (6)] } \\
& =-\left(45 F_{g}^{2}-\left(25 F_{g}^{2}-4 L_{g}^{2}\right) \mid 5 F_{g}+2 L_{g}\right)=-\left(5 \mid 5 F_{g}+2 L_{g}\right) \\
& =-\left(5 F_{g}+2 L_{g} \mid 5\right)=-(2 \mid 5)\left(L_{g} \mid 5\right)=\left(L_{g} \mid 5\right) .
\end{aligned}
$$

Since $L_{8}=47 \equiv 2(\bmod 5)$, by $(1), L_{16} \equiv 2(\bmod 5)$, and, by induction, $L_{2^{u}} \equiv 2(\bmod 5)$. Similarly, $L_{20}=15127 \equiv 2(\bmod 5)$, implying $L_{2^{u} .5} \equiv 2(\bmod 5)$. Hence, $\left(L_{g} \mid 5\right)=(2 \mid 5)=-1$, a contradiction.

ACKNOWLEDGMENT

The idea for this article occurred to the author following receipt by e-mail from Richard André-Jeannin of a much shorter proof of a theorem in my article "Pronic Lucas Numbers" [5]. André-Jeannin's proof did not involve congruences moduli $L_{2 g}$, where g is a function of n, and the absence of such congruences is essential to obtaining the above results. It is the necessity of over-coming this obstacle that suggests that obtaining an analogous result for the Fibonacci numbers may be difficult.

REFERENCES

1. Brother U. Alfred. "On Square Lucas Numbers." The Fib̄onacci Quarterly 2.1 (1964):1112.
2. A. Baker. Transcendental Number Theory. Cambridge: Cambridge University Press, 1975.
3. J. H. E. Cohn. "Square Fibonacci Numbers, Etc." The Fibonacci Quarterly 2.2 (1964):109113.
4. Ming Luo. "Nearly Square Numbers in the Fibonacci and Lucas Sequences." Journal of Chongqing Teacher's College 12.4 (1995):1-5. (In Chinese.)
5. Wayne L. McDaniel. "Pronic Lucas Numbers." The Fibonacci Quarterly 36.1 (1998):6062.
6. N. Robbins. "Fibonacci and Lucas Numbers of the Forms $w^{2}-1, w^{3} \pm 1$." The Fibonacci Quarterly 19.4 (1981):369-73.
7. C. L. Siegel. "Über einige Anwendungen diophantischer Approximationen" (1929), pp. 209266. In Collected Works. New York: Springer-Verlag, 1966.

AMS Classification Numbers: 11B39

