
ON THE FACTORIZATION OF LUCAS NUMBERS 

Wayne L. McDaniel 
University of Missouri-St. Louis, MO 63121 

(Submitted March 1999) 

1. INTRODUCTION 

If an integer is not a prime, then it can, of course, be written as the product of two integers, 
say r and r + k. In the case of the Lucas numbers, Ln, it has been shown that the two factors may 
differ by 0 (that is, Ln is a square) only if n -1 or 3 [1], [3], may differ by 1 only if n = 0 [4], [5], 
and may differ by 2 only if n = ±2 [6]. 

It is well known that L2
n-5F2 = 4(-l)", where Fn is the rfi Fibonacci number, so if Ln = 

r(r + k), we have an equation of the form x4 + 2kx3 + x2k2 ±4 = 5y2. Since the left side has 3 
distinct zeros, the number of solutions of this equation is finite, by a theorem of Siegel [7]; 
further, by a theorem of Baker (see [2]), |JC| and \y\ are effectively bounded. Hence, for a given k, 
the number of integers n such that Ln = r(r + k) is finite, but the known bounds are extremely 
large. 

We shall show that, if Ln = r(r + k) for k = 1,6,7,8,17,18,19, or 24 (mod 25), the number of 
solutions is bounded by one-half the number of positive divisors of |Ar2 — 8| or |£2+8|, and we 
provide an algorithm for finding all solutions. In each case, 

21og((*2+9)/4) 
log((l + V5)/2) ' 

For certain infinite sets, e.g., k = 8 (mod 100), we show that no solutions exist. When k is even, 
Ln = r(r + k) is equivalent to Ln -x2 -{k /2)2, so our results extend Robbins' result [6] on the 
solutions of Ln = x2 -1 to the difference of two squares in infinitely many cases. 

We write • for "a square," r is the usual "number of divisors" function, (a\b) is the Jacobi 
symbol, and we will need the following familiar relations. Let g, my n, and t be integers, / odd. 

L2g = L2
g-2(-iy and F2g=FgLg, (1) 

L_n = (-lfLn and F_n = (-\rlF^ (2) 

^m+n ~ LmLn+5rmrn, (3) 

2 (mod8) if 3\m mdu>l, 
-1 (mod 8) if3|/w andn>2, L*.m*\ i ; „ J O ' _ L _ ^ . : ; w 

L2gt+m = ±L2g+m ( m o d L2g)' ( 5 ) 

2. Ln AS THE PRODUCT OF TWO FACTORS DIFFERING BY k 

We assume, without loss of generality, that k is positive, and note that Ln = r(r + k) for some 
r implies that 4Ln + k2 = • . 

Lemma 1: Let Ln = r{r + k). If ^ = ±11 (mod 3-25-41), then n = 0 (mod 4). 
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Proof: Let k = ±11 (mod 3-25-41). We find that 4Ln + k2 is a quadratic residue modulo 25 
only for n = 0,1, 4, 8, 9,12, or 16 (mod 20); if n is odd, then n = 1, 9,21, or 29 (mod 40). Now, 
the Lucas numbers are periodic modulo 41 with period of length 40, and 4Ln + k2 is a quadratic 
nonresidue modulo 41 for n = 9,21, and 29 (mod 40), and is a quadratic nonresidue modulo 3 for 
n = 1 (mod 8). It follows that 4ZW + k1 = • only if n = 0,4,8,12, or 16 (mod 20); that is, only if 
n = 0 (mod 4). 

Let 
Sx = {k | k = 1,6,19, or 24 (mod 25)}, 
52 = {k | * ss 7,8,17, or 18 (mod 25)}, 

and 
53 = {k |k = ±11 (mod 3-25-41)}. 

Theorem 1: Let k e Sl
{u$2^>S3. The number of nonnegative integers n for which Ln = r(r + k) 

is less than or equal to r(k2 -&)/2 if k eSxvS3, and less than or equal to r(k2 + 8) / 2 if k e S2. 
If Ln = r(r + k), then 

21og((F+9)/4) 
log((l + V5)/2) ' 

Proof: Assume that Ln = r(r + k); then 4Ln + k2 = D. The quadratic residues modulo 25 are 
the integers in T = {0,1,4, 6, 9,11,14,16,19,21,24}. 

We find that, for each integer k in 'Sl9 4Ln + k2 = an element of T (mod 25), precisely when 
n = 0,4,8,12, or 16 (mod 20); combining this with the result of Lemma 1, we have Ln - r{r + k) 
for each integer k in S1^JS2 only when n = 0 (mod 4). And, for each integer kin S2, 4Z,W + k2 == 
an element of 7 (mod 25), precisely when n = 2, 6,10,14, or 18 (mod 20), i.e., only when » = 2 
(mod 4). 

Let n-2t. Now, Z,„ = r(r + ̂ ) implies that there exists an x such that x2 = 4L2i + k2, so, by 
(1), we have x2 - (2Lt)2 -k2 - 8(-l)f. Hence, there exist divisors c and dofk2- 8(-l)r such that 
x + 2Lt -c and x-2Lt =d, implying that Lt =^. Since, for a given pair (c,d) of divisors of 
k2 -8(-l) ? , the system has at most one solution; there exist at most r{k2 -8(- l ) f ] /2 integers n 
for which Ln = r(r + k). Taking t even or odd for the two cases, respectively, proves the first 
statement of the theorem. 

It is well known that Ln = an+fi\ where a = (l + V5)/2 and /? = ( 1 - V5)/2. Let s = [k2-
8(-l)r -1] / 4 . Since a* -1 / af = a* ±^f = Lt = ̂ - < j , we readily obtain ar < ( J + V ^ + 4 ) /2 
If k = 1, it is easily seen that « = 0, and ifk&l, then a1 < [s + (s +1)]/ 2. One obtains a relatively 
simple bound upon taking the logarithm of each side of a1 <s + j , replacing t by nil and 
replacing s by the larger of its two values. 

Lemma 2: If k = 0 (mod 4), then Z,w = r(r + k) only if n is odd. 

Proof: Let k = 4t9 and assume that, for some /w, Z2w = r(r + k). Thee 

Z ^ + 4t2 = r2 + Art +4t2 = • , 

implying L2m = 0 or 1 (mod 4), contrary to (4). 
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We now exhibit several infinite sets of integers k such that Ln does not have the form r(r + k) 
for any n. 

Theorem 2: Let S = {k \ k = 8,24,32,44,56,68,76,92 (mod 100)}. If k e S, then 4 * r(r + k) 
for any n. 

Proof: Let A e S and assume, for some n > 0 and some integer r, that Z,„ = r(r + k). By 
Lemma 2, n is odd. However, each element of S is in Sx<uS2 and, as noted in the proof of 
Theorem 1, ALn + k2 is a quadratic nonresidue for w odd. 

Corollary: There exist infinitely many primes/? such that Ln does not have the form r(r + 4p) for 
any n. 

Proof: The sequence {2 + 256} contains infinitely many primes/? and, for p = 2 + 25b, we 
have 4p = 8 (mod 100). 

3. Ln AS THE DIFFERENCE OF TWO SQUARES 

The proof of the following theorem is immediate upon writing x2~m2 as r(r + k) with 
r = x-m and k -2m. 

Theorem 3: The equation Ln-x2 - m2 

a) is impossible for all n > 0 if m = 4,12,16,22,28,34,38, or 46 (mod 50), 

b) has at most r(4m2 - 8) / 2 solutions if 2m e Si, and 

cj has at most r(4m2 + 8) / 2 solutions if 2m e S2 ^ S3, 

and, if Ln = x2 -m2, then 
21og(m2 + 9/4) 

? l<log((l + V5)/2)' 

In practice, for a given #2, one may find the values of n such that Ln = x2~m2 by proceeding 
as in the proof of Theorem 1: simply write Ln/2 = ^- for all pairs (c,d), c = d (mod 4), of factors 
of \4m2 - 8(-l)w/21, and find n. We can now readily obtain the values of n for which Ln = x2-m2 

for all m such that 2m- k e Sj u S 2 uS 3 . Notice that L_n is the difference of two squares iff Ln 

is the difference of two squares, since L_n - ±Ln. 
By way of example, if m = 3, then 2m = 6eSl9 4m2-8(-l)w/2 =28, and Ln/2=^- for 

(c, d) = (14, 2); hence, Lnl2 - 3, and we conclude that Ln-x2 - 32 only when n = ±4 (L±4 = 7 = 
42-32) . 

It may be noted that we now know the values of n for which Ln = x2 - m2 for m = 1, 3, and 4, 
and can determine the n for many larger values of m. In order to close the gap between 1 and 3, 
we shall prove that Ln & x2 - 22 for any n. Unlike the cases considered above, this case presents a 
difficulty that precludes the possibility of establishing a bound on n for all k = 2m = 4 (mod M) for 
anyM. 

Lemma 3: If 3 jg , then Z,2«±3 = 5F2 (mod L2^). 
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Proof: We note first t h a t / ^ = 2. By (3), 
2L2g±3 = L2gL&+5F2gFi3 = \0F2g (mod L2g). 

Since 2\g9 L2g is odd, and the lemma follows. 

Lemma 4: If 31 g and t is odd, then (L2gt±3 + 4 | L2g) = (5F2g + 41 L2g). 
Proof: By (5) and Lemma 3, 

(L2gt±2+4\L2g) = (±L2g±3+4\L2g) = (5F2g +4\L2g) or(-5F2g + 41L2g). 

We prove that these latter two Jacobi symbols are equal by showing that their product is +1: 
(5F2g +4\L2g).(-5F2g +4\L2g) = (16-257% \L2g) 

= (l6-5(L\g-4)\L2g) = (36 \L2g) = +1. 

if u is odd and m = 1, or 
Lemma 5: Let u>4. Then 5Fyum + 2L0um = -1 (mod8) , 

2m 2m K J | if^isevenandw = 5. 
Proof: Letm>0. By (1) and (4), 

F2»m = F2«-2mL2"-2mL2«-lm = F2»~2m s F2"~4m ="°F4m®T F%m ( m ° d 8 ) , 

depending on whether u is even or odd, respectively. Using (4), Fs = '2l, and F20 = 6765 proves 
the lemma. 

Theorem 4: No term of the sequence {LJ is of the form x2 - 4 . 

Proof: Assume Ln - x2 - 4. By Lemma 2, we may assume that n is odd. Now • = Ln + 4 
modulo 25 only if w = 13 or 17 (mod 20), and modulo 11 only if n = 5, 7, 9 (mod 10). It follows 
that w = 1 (mod 4) and n = -3 (mod 5). For n = 1 (mod 4), • = Xw +4 modulo 7 and modulo 47 
only if n = -3 or 13 (mod 32). However Ln +4 has period of length 64 modulo 2207, and 13 and 
45 are quadratic nonresidues modulo 64; hence, n = -3 (mod 32). Combining this with n = -3 
(mod 5), we have n = -3 (mod 5-32). 

Let « = 2gf - 3 , with ^ odd, g = 2u if M is odd, and ^ = 2" • 5 if u is even (u > 4). We shall use 
(1), (4), Lemma 5, and the following observation: 

2L2g = 2{L2
g~2) = 2L2

g+5L\-L2
g = 5F2+L2

g. (6) 
By Lemma 4, 

(Ln + 4\L2g) = (5F2g+4\L2g) = (5F2g+2(Lg-L2g)\L2g) = (5F2g + 2L2
g\L2g) 

= (Lg | A^XSF, + 2 ^ |L2g) = -{L2g|Lg)(-l)(L2g \5Fg+2Lg) 
= (L2

g-2\Lg)(2\5Fg+2Lg)(2L2g\5Fg + 2Lg) 
= (-11 Lg)(5Fg

2+L2
g \5Fg +2Lg) [by (6)] 

= -(45Fg
2 - (25F2 - 4 I | ) 15Fg + 2Lg) = -(515Fg + 2Lg) 

= -(5Fg+2Lg\S) = -(2\5)(Lg\S) = (Lg\5). 
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Since Ls = 47 = 2 (mod 5), by (1), Ll6 = 2 (mod 5), and, by induction, LT = 2 (mod 5). 
Similarly, Z20 = 15127 = 2 (mod 5), implying Lr.5 = 2 (mod 5). Hence, (Lg\5) = (2\5) = -l, a 
contradiction. 
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