# A NEW RECURRENCE FORMULA FOR BERNOULLI NUMBERS 

## Harunobu Momiyama

Dept. of Math., School of Education, Waseda University, 1-6-1 Nishi-Waseda, Sinjuku-ku, Tokyo, 169-8050, Japan
(Submitted May 1999-Final Revision September 1999)

## 1. INTRODUCTION

Let $B_{n}$ be the Bernoulli numbers defined by the expansion

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} .
$$

Kaneko [3] proved a recurrence formula for $B_{n}$,

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n+1}{j}(n+j+1) B_{n+j}=0 \quad(n \geq 1) \tag{1}
\end{equation*}
$$

which needs only half the number of terms to calculate $B_{2 n}$ in comparison with the usual recurrence (cf. [5], §15, Lemma 1):

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n+1}{j} B_{j}=0 \quad(n \geq 1) . \tag{2}
\end{equation*}
$$

The aim of this paper is to prove the following recurrence formula that yields Kaneko's formula when $m=n$ and also the usual one.

Theorem: For nonnegative integers $m$ and $n$ with $m+n>0$, we have the formula

$$
\sum_{j=0}^{m}\binom{m+1}{j}(n+j+1) B_{n+j}+(-1)^{m+n} \sum_{k=0}^{n}\binom{n+1}{k}(m+k+1) B_{m+k}=0 .
$$

As an application of our theorem, we can derive the Kummer congruence. The proof of our theorem uses the Volkenborn integral (whose properties are found in [4]).

## 2. PROOF OF THE THEOREM

Let $p$ be a prime number and let $\mathbb{Z}_{p}$ and $\mathbb{Q}_{p}$ denote the ring of $p$-adic integers and the field of $p$-adic numbers, respectively. For any uniformly differentiable function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$, we define the Volkenborn integral of $f$ by

$$
\int_{\mathbb{Z}_{p}} f(x) d x:=\lim _{n \rightarrow \infty} p^{-n} \sum_{j=0}^{p^{n}-1} f(j) .
$$

In particular, the Bernoulli number $B_{n}$ is given by the formula

$$
\begin{equation*}
B_{n}=\int_{\mathbb{Z}_{p}} x^{n} d x \tag{3}
\end{equation*}
$$

Let $m$ and $n$ be nonnegative integers with $m+n>0$. If we define the polynomial function $G(x)$ on $\mathbb{Z}_{p}$ by

$$
G(x):=x^{m+1}(x-1)^{n+1}+(-1)^{n+m} x^{n+1}(x-1)^{m+1}
$$

then we have $G^{\prime}(x+1)=-G^{\prime}(-x)$. Therefore, we have

$$
\int_{\mathbb{Z}_{p}} G^{\prime}(x+1) d x=0
$$

(see [4], Proposition 55.7). To calculate the left-hand side of this equation, we write $G(x+1)$ in the form

$$
G(x+1)=\sum_{j=0}^{m+1}\binom{m+1}{j} x^{n+j+1}+(-1)^{m+n} \sum_{k=0}^{n+1}\binom{n+1}{k} x^{m+k+1} .
$$

Applying formula (3) to the derivative $G^{\prime}(x+1)$, we obtain

$$
\sum_{j=0}^{m+1}\binom{m+1}{j}(n+j+1) B_{n+j}+(-1)^{m+n} \sum_{k=0}^{n+1}\binom{n+1}{k}(m+k+1) B_{m+k}=0 .
$$

Since $B_{j}=0$ for odd $j>1$ and, hence, the terms involving $B_{n+m+1}$ vanish, this gives the formula of . our theorem.

Remark: For a positive integer $s$, we consider the polynomial function

$$
F(x):=x^{m+1}(x-s-1)^{n+1}+(-1)^{n+m} x^{n+1}(x-s-1)^{m+1}
$$

on $\mathbb{Z}_{p}$. Then we have $F(x+s+1)=F(-x)$. It follows from Propositions 55.5 and 55.7 in [4] that

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} F^{\prime}(x+s+1) d x & =\sum_{j=1}^{s} \int_{\mathbb{Z}_{p}}\left(F^{\prime}(x+j+1)-F^{\prime}(x+j)\right) d x+\int_{\mathbb{Z}_{p}} F^{\prime}(x+1) d x \\
& =\sum_{j=1}^{s} F^{\prime \prime}(j)+\int_{\mathbb{Z}_{p}} F^{\prime}(-x) d x \\
& =\sum_{j=1}^{s} F^{\prime \prime}(j)-\int_{\mathbb{Z}_{p}} F^{\prime}(x+s+1) d x .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
& \sum_{j=0}^{n}\binom{n+1}{j}(s+1)^{n+1-j}(m+j+1) B_{m+j} \\
& \quad+(-1)^{m+n} \sum_{k=0}^{m}\binom{m+1}{k}(s+1)^{m+1-k}(n+k+1) B_{n+k}=\frac{1}{2} \sum_{j=1}^{s} F^{\prime \prime}(j) .
\end{aligned}
$$

If $s=1$ and $m=n$, then we have the formula

$$
\sum_{k=0}^{n}\binom{n+1}{k} 2^{n+1-k}(n+k+1) B_{n+k}=(-1)^{n}(n+1) \quad(n \geq 1)
$$

which resembles the well-known formula (see [2], §15, Theorem 1)

$$
\sum_{k=0}^{n}\binom{n+1}{k} 2^{n+1-k} B_{k}=n+1
$$

## 3. SEVERAL CONSEQUENCES

We shall derive the usual formula (2) from our theorem. If $m=0$, we obtain

$$
\begin{equation*}
(-1)^{n} \sum_{k=0}^{n}\binom{n+1}{k}(k+1) B_{k}=-(n+1) B_{n} \quad(n \geq 1) \tag{4}
\end{equation*}
$$

For convenience, we put

$$
C_{n}:=(-1)^{n}(n+2) \sum_{k=0}^{n}\binom{n+1}{k} B_{k}
$$

It is obvious that the usual formula is equivalent to $C_{n}=0$ for $n \geq 1$. Substituting the identity

$$
(k+1)\binom{n+1}{k}=(n+2)\binom{n+1}{k}-(n+1)\binom{n}{k}
$$

into equation (4) yields

$$
C_{n}+C_{n-1}=-(n+1)\left(1-(-1)^{n}\right) B_{n}
$$

Since $B_{j}=0$ for odd $n>1$, the right-hand side of this equation vanishes for $n \geq 2$. It is clear that $C_{1}=0$, hence $C_{n}=0$ for $n \geq 1$.

We next show Kummer's congruence

$$
\frac{B_{n}}{n} \equiv \frac{B_{n+(p-1)}}{n+(p-1)} \quad\left(\bmod p \mathbb{Z}_{p}\right)
$$

when $p$ is a prime number with $p \geq 5$ and $n$ is an integer with $1 \leq n \leq p-2$. Our argument is similar to Agoh's argument [1].

If $m=p-1$, the formula of our theorem is

$$
\begin{equation*}
\sum_{j=0}^{p-1}\binom{p}{j}(n+j+1) B_{n+j}+(-1)^{n} \sum_{k=0}^{n}\binom{n+1}{k}(p+k) B_{p-1+k}=0 \tag{5}
\end{equation*}
$$

Note that $1 \leq n+j<2(p-1)$ for $0 \leq j \leq p-1$. From the well-known fact (see von Staudt and Clausen [2], §15, Corollary to Theorem 3) that

$$
p B_{n+j} \equiv\left\{\begin{array}{lll}
-1 & \left(\bmod p \mathbb{Z}_{p}\right) & \text { if } n+j=p-1  \tag{6}\\
0 & \left(\bmod p \mathbb{Z}_{p}\right) & \text { otherwise }
\end{array}\right.
$$

we have

$$
\binom{p}{j}(n+j+1) B_{n+j} \equiv 0 \quad\left(\bmod p \mathbb{Z}_{p}\right)
$$

for $j \neq 0$. Thus, equation (5) yields

$$
(n+1) B_{n}+(-1)^{n} \sum_{k=0}^{n}\binom{n+1}{k}(p+k) B_{p-1+k} \equiv 0 \quad\left(\bmod p \mathbb{Z}_{p}\right)
$$

Applying congruence (6) to the above, we have

$$
(n+1) B_{n}+(-1)^{n} \sum_{k=1}^{n}\binom{n+1}{k} k B_{p-1+k} \equiv(-1)^{n} \quad\left(\bmod p \mathbb{Z}_{p}\right)
$$

We remark that combining equation (2) with (4) gives

$$
(n+1) B_{n}=(-1)^{n+1} \sum_{k=1}^{n}\binom{n+1}{k}(k+p-1) B_{k}+(-1)^{n+1}(p-1) B_{0} .
$$

Since $B_{0}=1$, we have

$$
\sum_{k=1}^{n}\binom{n+1}{k}\left(k B_{p-1+k}-(k+p-1) B_{k}\right) \equiv 0 \quad\left(\bmod p \mathbb{Z}_{p}\right) .
$$

From these congruences, we have by induction on $n$ that

$$
n B_{p-1+n} \equiv(p+n-1) B_{n} \quad\left(\bmod p \mathbb{Z}_{p}\right)
$$

for $1 \leq n \leq p-2$. This yields Kummer's congruence as desired.

## REFERENCES

1. T. Agoh. "On Bernoulli Numbers I." C. R. Math. Rep. Acad. Sci. Canada 10.1 (1988):7-12.
2. K. Ireland \& M. Rosen. A Classical Introduction to Modern Number Theory. Graduate Texts in Math. New York: Springer-Verlag, 1982.
3. M. Kaneko. "A Recurrence Formula for the Bernoulli Numbers." Proc. Japan Acad. Ser. A. Math. Sci. 71 (1995):192-93.
4. W. H. Schikhof. Ultrametric Calculus. Cambridge: Cambridge University Press, 1984.

AMS Classification Number: 11B68

