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1. INTRODUCTION 

The Idea for this article was given by a problem in real analysis. We wanted to determine the 
one-dimensional Lebesgue-measure of the set fl(C)9 where C stands for the classical triadic 
Cantor set and/is the Cantor-function, which is also known as "devil's staircase." We could see 
immediately that to determine the above measure we needed to know which dyadic rationals were 
contained in C. We soon found that the solution is well known; namely, there are only two such 
fractions: \ and j . This inspired a question: Are there any other primes such that only finitely 
many fractions are contained in the classical triadic Cantor set, where the denominator is a power 
of/?? The aim of this paper is to verify the surprising result: every p&3 prime fulfills the condi-
tion. Charles R. Wall showed in [2] that the Cantor set contains only 14 terminating decimals. 
His article gave very important information regarding the proof. We may ask if the quality of 
containing "very few" rational numbers and that of having zero Lebesgue measure are in close 
connection for a Cantor set. The answer seems to be "yes" at first sight, but in [1] Duane Boes, 
Richard Darst, and Paul Erdos showed a symmetric Cantor set family which, for each X e [0,1], 
has a member of Lebesgue measure 1-A, but the sets of the family typically do not contain "any" 
rational numbers. 

2. DEFINITIONS, NOTATIONS, AND LEMMAS 

Definition 1: Let n be a positive integer and m a positive integer relatively prime to n. The order 
of n modulo m is the smallest positive exponent g such that ng = 1 (mod m). 

Notation 1: Since our proofs require only the case n = 3, for the reason of simplicity we omit n 
and denote the order of 3 modulo m by ord{m). 

Lemma 1: If/ and m are relatively prime to 3 and / divides m, then ord(/) divides ord(m). 

Proof: This follows immediately from the definition of the order. D 

Lemma 2: Let p > 3 be prime and ord(p) = d. If ord{pb) = d for an integer 4, then ovd(pb+l) 
either equals d, orp divides ord(pb+l). 

Proof: (We denote a divides b in the usual way by a\b and denote a does not divide b by 
a\b.) We observe that d\p-\. It is enough to verify that if p%ord(pb+l) then ord(pb+l) = d. 

It is well known that if m is relatively prime to 3 then ord(m) divides $(m)9 where (j> is 
Euler's function; hence, ord(pb+l)\0(pb+l) = (p-l)'pb and, furthermore, ord(pb+l)\p-l, since 
plord(pb+l). 

From Lemma 1, it follows that d\ord(pb+l); hence, there exists a positive integer t such that 
ordCp6*1) = </•/. 
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Now, 3d = 1 (mod pb) gives 3d'p = 1 (mod pb+l\ which Implies that d-t\d-p. But, since 
d-t divides both p-l mdd-p/it also divides their greatest common divisor d. Therefore t = 1, 
which completes the proof. D 

Lemma 3: Let p > 3 be a prime. If ord(p) = d, then there exists a unique positive integer n, for 
which otd(pk) = d whenever 1 < k < n and ord(pn+t) = d-pf whenever t is a positive integer. 

Proof: By Lemma 1 and Lemma 2, there exists a maximal exponent n such that ord(p") = d. 
We use mathematical induction on t. 

Let f = 1. We show that ord(pn+l) = d-p. 
From 3d = 1 (mod pn\ it follows that 3d'p = 1 (mod pn+l); hence, ord(>n+1)| £?•/?. On the 

other hand, using the first two lemmas, d\ord(pn+l) and p\ord(pn+l); therefore, J-^lord^""*"1). 
Next, supposing ord(pn+t) = d-p\wQ prove that ord(pn+t+l)\d-pt+l for any positive integer t. 

1. Let y denote 3d'p\ Then 

3d-pt+l-l = (3d'pt)p--l = yp-l = A'B, (1) 
where A = y-1 and B = yp~l +yp~2 + • • • + y +1. From y = 1 (mod /?*")> it follows that pn+t \A 
and p\B, since j = 1 (mod/?). Thus, 3^ / + 1 = 1 (mod pn+1+l), which implies ord(pn+t+l)\d-pt+l 

2. Next, we prove d-pt+l\ord(pn+t+l). First, rf-^|ordOw+/+1) and ord(^ ' + 1 ) | t f -y + 1 by 
Lemma 1 and the previous result. So ord(pn+t+l) can only be d-p* or d-pt+l. 

We now show that d • pt is impossible, that is, pw+f+1 j3J'^' - 1 . Let z denote 3d'pt~l. Then 

3d.P> _ j = (3^-i)P _ j = ZP _ j = ^ . B ^ (2) 

where ^ = z-1 and J?* = zp~l + zp~2 + • • • + z4-1. From the condition ord(pn+t) = d-pt follows 
/?w+/1 ̂ , so it Is enough to show that p2 \B+. To obtain this, we write B+- p as a product: 

B.-p = (zp~l-1) + (zp~2 -1) + (zp~3-1) +-... + (z-1) 
= (z-l)'(z/?-2+2-z/?-3 + . --+(p-2) .z + (>-a)). ~ 

We have z = \ (mod/?) and thus z^~2+2-z^~2 + —+(/?-2)-z + (/?-l) = (1 + 2 + --- +p-l) (mod 
/?). Since l + 2 + ~-+p-l = p--^ and - ^ is an integer, we obtain 

/?|z^2+2-z/7-2 + ---+(^-2).z + ( jp-l). (3) 

On the other hand, we have p\z-l; hence, p2 \B* - p. Then p2 cannot divide B*. • 

Notation 2: Given a positive Integer L relatively prime to 3, let 
N(L) = {K:l<K<L-l and (£,L) = 1}. (4) 

Remark 1: Observe that N(L) consists of all the possible numerators of simplified fractions in 
[0,1] with denominator L. It is also clear that N(L) has exactly </>{L) many elements. Recall 
from Charles Wall's article [2] that N(L) decomposes Into -~^ equivalence classes, each of 
which has ord(Z) many elements. These can be written In the form 

lk(L)] = {k,k-3>...,k-3ord(L)-1 : modZ}, (5) 
where k is an element of N(L). 
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Definition 2: We call the [k(L)] equivalence classes briefly the classes of N(L). 

Remark 2: In addition, we recall that, for each k e N(L)> either all the elements of a [k(L)] 
class, or none of them, are numerators of fractions in the Cantor set, so it is enough to find a 
k' G [k(L)] such that ^ £ C, that is, -j- was eliminated during the construction of the Cantor set. 
This guarantees that all the elements of [k(L)] are numerators of eliminated fractions. 

Definition 3: We call the class [k(L)] "eliminated" if there exists a k' e [k(L)] such that -^ <£ C. 

Remark 3: Now, let n be the positive integer determined in Lemma 3. Then N{pn) has 

or&(pn) d 

classes and, for each positive integer t, the set N{pnJtt) has 

0(Pn+t) = (P ~ 1) • Pn+t~l
 = (P -1) • Pn~l 

ord(pn+t) d-pf d 
classes. 

3. THE MAM RESULTS 

Theorem 1: Let p > 3 be a prime such that 3 is a primitive root modulo p2. Then there are no 
fractions f e C (where a and b are relatively prime numbers) such that h is a power of p. 

Proof: First, ord(/?2) = p-(p-l) immediately implies ord(p) = p -1. Thus, Lemma 3 with 
d = p -1 gives n = 1, so ord(pi+l) = (p-l)pt for each positive integer t. Then ^{p1) = ord(/?r), 
so JV(pf) consists of one class, for example, N(pt) = [l(pt)]. Therefore, N(pl) has (p-l)-p{~1 

elements and, for each prime p > 3 and positive integer t, 

(p-\yP^>2 3 
(6) 

(where [-£-] denotes the integer part of the real number —-). Thus, there exists an i e [!(/?')] s u ch 
that \ < -V < §, hence, #(/?') is eliminated. D 

Next, we show that if n is the largest integer for which ord(/?) = ord(/?w) then w is also the 
largest exponent such that the rfr power of/? can be the denominator of a fraction in C. 

Theorem 2: For each prime p > 3, there are finitely many fractions f e C such that 6 is a power 
Of/7. 

Proof: Let A: e N(pn+t) for any positive integer *. We show that [&(/?w+0] is eliminated. 
Suppose 

[*(/>-<- 1)]=fe...,Xcnl(p—>}. (7) 

Then 

[ ^ ^ ) ] = { ^ + J - J P w + / - 1 : / ^ . . . o r d O ^ ' - 1 ) , 7 = 0,1,... ,/?-!}. (8) 
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This can be seen easily concerning the following. For each number of the form k-3y, there exists 
a 1 < i < ordOw+/_1) such that # • y = xf (mod pn+t~l). Hence, there is a y e {0,1,...,/?-1} such 
that k-y = xf + j - / j * " - 1 (mod />»«). This implies 

[k(p^)]^{xi +j-p"+t-1 : / = 1,...,ordQ?*"-1), y -0 ,1 , . . . ,p-1}. (9) 

On the other hand, the two sets have the same number of elements, so they are equal. 
What does this mean? 

Take any element xi of[k(pn+t~1)] and observe the situation of the fractions 

x, x,+pn+t-1 x,+2«i?w+f-1 x ,+(i?- l ) .o"+ M 

pn+t pn+t pn+t pn+t V ' 

in the interval [0,1]. Writing them, respectively, in the form 

*—< ~ + —< f— + — <•••< ~ + - , (11) 
pn+t pn+t p pn+t p pn+t p > V > 

we can see that the difference of each neighboring fraction is j and, as p> 3, there must be at 
least one of them in the middle open third of [0,1]. Therefore, [k(pn+t)] is eliminated. D 
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