ON THE NUMBER OF MAXIMAL INDEPENDENT SETS OF VERTICES IN STAR-LIKE LADDERS

Dragan Stevanović

Dept. of Math., Faculty of Philosophy, Ćirila i Metodija 2, Niš 18000, Yugoslavia e-mail: dragance@bankerinter.net
(Submitted March 1999-Final Revision June 2000)

1. INTRODUCTION

Let MIS stand for the maximal independent set of vertices. Denote the number of MIS of G by M_{G}. Sanders [1] exhibits a tree $p\left(P_{n}\right)$, called an extended path, formed by appending a single degree-one vertex to each vertex of a path on n vertices, and proves $M_{p\left(P_{n}\right)}=F_{n+2}$. In this paper we introduce a new class of graphs, called star-like ladders, and show that the number of MIS in star-like ladders has a connection to the Fibonacci numbers. In particular, we show that $M_{L_{p}}=$ $2 F_{p+1}$, where L_{p} is the ladder with p squares.

Remember that the ladder $L_{p}, p \geq 1$, is the graph with $2 p+2$ vertices $\left\{u_{i}, v_{i} \mid i=0,1, \ldots, p\right\}$ and edges $\left\{u_{i} u_{i+1}, v_{i} v_{i+1} \mid i=0,1, \ldots, p-1\right\} \cup\left\{u_{i} v_{i} \mid i=0,1, \ldots, p\right\}$. Two end edges of the ladder L_{p} are the edges joining vertices of degree 2 .

The graph obtained by identifying an end edge of ladder L_{p} with an edge e of a graph G is denoted by $G[e, p]$. For the sake of completeness, we will put $G[e, 0]=G$. If $p_{1}, \ldots, p_{k} \in \mathbb{N}$ and e_{1}, \ldots, e_{k} are the edges of G, then we will write $G\left[\left(e_{1}, \ldots, e_{k}\right),\left(p_{1}, \ldots, p_{k}\right)\right]$ for $G\left[e_{1}, p_{1}\right] \ldots\left[e_{k}, p_{k}\right]$. The star-like ladder $S L\left(p_{1}, \ldots, p_{k}\right)$ is the graph $K_{2}\left[(e, \ldots, e),\left(p_{1}, \ldots, p_{k}\right)\right]$, where e is the edge of K_{2}. We have that $L_{p}=S L(p)=K_{2}[e, p], p \in \mathbb{N}$.

2. MIS IN GRAPHS WITH PENDANT LADDERS

Graph G has pendant ladders if there is a graph G^{*}, the edges e_{i} of G^{*} and $p_{i} \in \mathbf{N}, i=1, \ldots$, $k, k \geq 1$, such that $G=G^{*}\left[\left(e_{1}, \ldots, e_{k}\right),\left(p_{1}, \ldots, p_{k}\right)\right]$. In the next lemma, we give the recurrence formula for M_{G} when G has pendant ladders.

FIGURE 1. The Graph $G \llbracket e, p]$
Lemma 1: If e is an edge of a graph G and $p \in \mathbb{N}, p \geq 3$, then

$$
\begin{equation*}
M_{G[e, p]}=M_{G[e, p-1]}+M_{G[e, p-2]} \tag{1}
\end{equation*}
$$

Proof: Let M be MIS in $G[e, p]$. Then, for every vertex v of $G[e, p]$, either $v \in M$ or v has a neighbor in M; otherwise, $M \cup\{\nu\}$ is the independent set of vertices properly containing M. Further, exactly one of vertices A and B (see Fig. 1) belongs to M. Obviously, M cannot contain
both A and B, but if M contains neither A nor B, then from above it must contain both C and D, which is a contradiction.

Suppose that $A \in M$. Then $M-\{A\}$ is MIS in $G[e, p-1]$ or $G[e, p-2]$, but not both. For every MIS M^{\prime} in $G[e, p-1]$ containing D, we have that $M^{\prime} \cup\{A\}$ is MIS in $G[e, p]$. If $D \notin M$, then $F \in M$ and $M-\{A\}$ is MIS in $G[e, p-2]$. Also, for every MIS M^{\prime} in $G[e, p-2]$ containing F, we have that $M^{\prime} \cup\{A\}$ is MIS in $G[e, p]$. Similar holds if $B \in M$. Since every MIS in $G[e, p-1]$ contains exactly one of C and D, and every MIS in $G[e, p-2]$ contains exactly one of E and F, we conclude that (1) holds.

Let j_{i} denote the $i^{\text {th }}$ coordinate of the vector j.
Theorem 1: If e_{1}, \ldots, e_{k} are the edges of a graph G and $p_{1}, \ldots, p_{k} \in \mathbf{N} \backslash\{1,2\}$, then

$$
\begin{equation*}
M_{G\left[\left(e_{1}, \ldots, e_{k}\right),\left(p_{1}, \ldots, p_{k}\right)\right]}=\sum_{j \in\{1,2\}^{k}}\left(\prod_{i=1}^{k} F_{p_{i}-3+j_{i}}\right) M_{G\left[\left(e_{1}, \ldots, e_{k}\right), j\right]} \tag{2}
\end{equation*}
$$

Proof: First we prove (2) for $k=1$ by induction on p_{1}. If $p_{1}=3$, then

$$
M_{G\left[e_{1}, 3\right]}=F_{2} M_{G\left[e_{1}, 2\right]}+F_{1} M_{G\left[e_{1}, 1\right]} .
$$

Supposing that (2) is true for $k=1$ and all $p_{1}<p$ for some p, we have that

$$
\begin{aligned}
M_{G\left[e_{1}, p\right]} & =M_{G\left[e_{1}, p-1\right]}+M_{G\left[e_{1}, p-2\right]} \\
& =\left(F_{p-2} M_{G\left[e_{1}, 2\right]}+F_{p-3} M_{G\left[e_{1}, 1\right]}\right)+\left(F_{p-3} M_{G\left[e_{1}, 2\right]}+F_{p-4} M_{G\left[e_{1}, 1\right]}\right) \\
& =F_{p-1} M_{G\left[e_{1}, 2\right]}+F_{p-2} M_{G\left[e_{1}, 1\right]}
\end{aligned}
$$

Now we prove (2) by induction on k. Suppose that (2) is true for some $k=n$ and for all p_{1}, \ldots, $p_{n} \in \mathbf{N} \backslash\{1,2\}$. Let $p=\left(p_{1}, \ldots, p_{n}, p_{n+1}\right), p^{\prime}=\left(p_{1}, \ldots, p_{n}\right)$, and $e=\left(e_{1}, \ldots, e_{n}, e_{n+1}\right), e^{\prime}=\left(e_{1}, \ldots, e_{n}\right)$. We have that

$$
\begin{aligned}
M_{G[e, p]} & =M_{G\left[\left(e^{\prime}, p^{\prime}\right]\left[e_{n+1}, p_{n+1}\right]\right.}=\sum_{j \in\{1,2\}^{n}}\left(\prod_{i=1}^{n} F_{p_{i}-3+j_{i}}\right) M_{\left.G\left[e^{\prime}, j\right] \mid e_{n+1}, p_{n+1}\right]} \\
& =\sum_{j \in\{1,2\}^{n}}\left(\prod_{i=1}^{n} F_{p_{i}-3+j_{i}}\right)\left(F_{p_{n+1}-1} M_{\left.G\left[e^{\prime}, j\right] e_{n+1}, 2\right]}+F_{p_{n+1}-2} M_{G\left[e^{\prime}, j\right]\left[e_{n+1}, 1\right]}\right) \\
& =\sum_{j \in\{1,2\}^{n+1}}\left(\prod_{i=1}^{n+1} F_{p_{i}-3+j_{i}}\right) M_{G[e, j]} .
\end{aligned}
$$

If we define $F_{0}=F_{2}-F_{1}=0$ and $F_{-1}=F_{1}-F_{0}=1$, then we can drop the assumption that $p_{i} \neq 1,2, i=1, \ldots, k$ in the previous theorem.

3. MIS IN STAR-LIKE LADDERS

Theorem 2: If $p_{1}, \ldots, p_{k} \in \mathbf{N}$, then

$$
M_{S L\left(p_{1}, \ldots, p_{k}\right)}=\left(2^{k}-2\right) \prod_{i=1}^{k} F_{p_{i}}+2 \prod_{i=1}^{k} F_{p_{i}+1} .
$$

Proof: Let $j \in\{1,2\}^{k}$ with $j_{(1)}$ coordinates equal to 1 , and $j_{(2)}$ coordinates equal to 2 . We prove that

$$
\begin{equation*}
M_{K_{2}[(e, \ldots, e), j]}=2^{k}+2 \cdot 2^{j_{(2)}}-2, \tag{3}
\end{equation*}
$$

where e is the edge of K_{2}. Let M be MIS of $K_{2}[(e, \ldots, e), j]$ (see Fig. 2). If $X \in M$, then $A_{i} \in M$ for $i=1, \ldots, j_{(1)}$, and either $C_{i} \in M$ or $D_{i}, E_{i} \in M$ for $i=1, \ldots, j_{(2)}$. Similar holds if $Y \in M$, and this gives $2 \cdot 2^{J^{(2)}}$ MIS of $K_{2}[(e, \ldots, e), j]$. If $X, Y \notin M$, then either $A_{i} \in M$ or $B_{i} \in M$ for $i=1$, $\ldots, j_{(1)}$ and either $C_{i}, F_{i} \in M$ or $D_{i}, E_{i} \in M$ for $i=1, \ldots, j_{(2)}$, giving 2^{k} possibilities. Here we must exclude sets $\left\{A_{1}, \ldots, A_{j_{(1)}}, D_{1}, E_{1}, \ldots, D_{j_{(2)}}, E_{j_{(2)}}\right\}$ and $\left\{B_{1}, \ldots, B_{j_{(1)}}, C_{1}, F_{1}, \ldots, C_{j_{(2)}}, F_{j_{(2)}}\right\}$ which are not MIS, and so it follows that (3) holds. Now

$$
\begin{aligned}
M_{S L\left(p_{1}, \ldots, p_{k}\right)} & =\sum_{j \in\{1,2\}^{k}}\left(\prod_{i=1}^{k} F_{p_{i}-3+j_{i}}\right) M_{K_{2}[(e, \ldots,), j]} \\
& =\sum_{j \in\{1,2\}^{k}}\left(\prod_{i=1}^{k} F_{p_{i}-3+j_{i}}\right)\left(2^{k}+2 \cdot 2^{j(2)}-2\right) \\
& =\left(2^{k}-2\right) \prod_{i=1}^{k}\left(F_{p_{i}-2}+F_{p_{i}-1}\right)+2 \prod_{i=1}^{k}\left(F_{p_{i}-2}+2 F_{p_{i}-1}\right) \\
& =\left(2^{k}-2\right) \prod_{i=1}^{k} F_{p_{i}}+2 \prod_{i=1}^{k} F_{p_{i}+1} .
\end{aligned}
$$

FIGURE 2. The Graph $K_{2}[(e, \ldots, e),(1, \ldots, 1,2, \ldots, 2)]$
As an immediate consequence, we get
Corollary 1: If $p \in \mathbf{N}$, then $M_{L_{p}} \stackrel{=}{2} F_{p+1}$.

REFERENCE

1. L. K. Sanders. "A Proof from Graph Theory for a Fibonacci Identity." The Fibonacci Quarterly 28.1 (1990):48-55.
AMS Classification Numbers: 05C69, 05A15, 11B39
