ON THE NUMBER OF MAXIMAL INDEPENDENT SETS OF VERTICES IN STAR-LIKE LADDERS

Dragan Stevanović

Dept. of Math., Faculty of Philosophy, Ćirila i Metodija 2, Niš 18000, Yugoslavia e-mail: dragance@bankerinter.net (Submitted March 1999-Final Revision June 2000)

1. INTRODUCTION

Let MIS stand for the maximal independent set of vertices. Denote the number of MIS of G by M_G . Sanders [1] exhibits a tree $p(P_n)$, called an *extended path*, formed by appending a single degree-one vertex to each vertex of a path on n vertices, and proves $M_{p(P_n)} = F_{n+2}$. In this paper we introduce a new class of graphs, called *star-like ladders*, and show that the number of MIS in star-like ladders has a connection to the Fibonacci numbers. In particular, we show that $M_{L_p} = 2F_{n+1}$, where L_p is the ladder with p squares.

Remember that the ladder L_p , $p \ge 1$, is the graph with 2p+2 vertices $\{u_i, v_i | i = 0, 1, ..., p\}$ and edges $\{u_iu_{i+1}, v_iv_{i+1} | i = 0, 1, ..., p-1\} \cup \{u_iv_i | i = 0, 1, ..., p\}$. Two end edges of the ladder L_p are the edges joining vertices of degree 2.

The graph obtained by identifying an end edge of ladder L_p with an edge e of a graph G is denoted by G[e, p]. For the sake of completeness, we will put G[e, 0] = G. If $p_1, ..., p_k \in \mathbb{N}$ and $e_1, ..., e_k$ are the edges of G, then we will write $G[(e_1, ..., e_k), (p_1, ..., p_k)]$ for $G[e_1, p_1] ... [e_k, p_k]$. The star-like ladder $SL(p_1, ..., p_k)$ is the graph $K_2[(e, ..., e), (p_1, ..., p_k)]$, where e is the edge of K_2 . We have that $L_p = SL(p) = K_2[e, p], p \in \mathbb{N}$.

2. MIS IN GRAPHS WITH PENDANT LADDERS

Graph G has *pendant ladders* if there is a graph G^* , the edges e_i of G^* and $p_i \in \mathbb{N}$, $i = 1, ..., k, k \ge 1$, such that $G = G^*[(e_1, ..., e_k), (p_1, ..., p_k)]$. In the next lemma, we give the recurrence formula for M_G when G has pendant ladders.

FIGURE 1. The Graph G[e, p]

Lemma 1: If e is an edge of a graph G and $p \in \mathbb{N}$, $p \ge 3$, then

$$M_{G[e, p]} = M_{G[e, p-1]} + M_{G[e, p-2]}.$$
 (1)

Proof: Let M be MIS in G[e, p]. Then, for every vertex v of G[e, p], either $v \in M$ or v has a neighbor in M; otherwise, $M \cup \{v\}$ is the independent set of vertices properly containing M. Further, exactly one of vertices A and B (see Fig. 1) belongs to M. Obviously, M cannot contain

2001]

211

both A and B, but if M contains neither A nor B, then from above it must contain both C and D, which is a contradiction.

Suppose that $A \in M$. Then $M - \{A\}$ is MIS in G[e, p-1] or G[e, p-2], but not both. For every MIS M' in G[e, p-1] containing D, we have that $M' \cup \{A\}$ is MIS in G[e, p]. If $D \notin M$, then $F \in M$ and $M - \{A\}$ is MIS in G[e, p-2]. Also, for every MIS M' in G[e, p-2] containing F, we have that $M' \cup \{A\}$ is MIS in G[e, p]. Similar holds if $B \in M$. Since every MIS in G[e, p-1] contains exactly one of C and D, and every MIS in G[e, p-2] contains exactly one of E and F, we conclude that (1) holds. \Box

Let j_i denote the i^{th} coordinate of the vector j.

Theorem 1: If $e_1, ..., e_k$ are the edges of a graph G and $p_1, ..., p_k \in \mathbb{N} \setminus \{1, 2\}$, then

$$M_{G[(e_1, \dots, e_k), (p_1, \dots, p_k)]} = \sum_{j \in \{1, 2\}^k} \left(\prod_{i=1}^k F_{p_i - 3 + j_i} \right) M_{G[(e_1, \dots, e_k), j]}.$$
 (2)

Proof: First we prove (2) for k = 1 by induction on p_1 . If $p_1 = 3$, then

$$M_{G[e_1,3]} = F_2 M_{G[e_1,2]} + F_1 M_{G[e_1,1]}.$$

Supposing that (2) is true for k = 1 and all $p_1 < p$ for some p, we have that

$$\begin{split} M_{G[e_1, p]} &= M_{G[e_1, p-1]} + M_{G[e_1, p-2]} \\ &= (F_{p-2}M_{G[e_1, 2]} + F_{p-3}M_{G[e_1, 1]}) + (F_{p-3}M_{G[e_1, 2]} + F_{p-4}M_{G[e_1, 1]}) \\ &= F_{p-1}M_{G[e_1, 2]} + F_{p-2}M_{G[e_1, 1]}. \end{split}$$

Now we prove (2) by induction on k. Suppose that (2) is true for some k = n and for all $p_1, ..., p_n \in \mathbb{N} \setminus \{1, 2\}$. Let $p = (p_1, ..., p_n, p_{n+1}), p' = (p_1, ..., p_n)$, and $e = (e_1, ..., e_n, e_{n+1}), e' = (e_1, ..., e_n)$. We have that

$$\begin{split} M_{G[e, p]} &= M_{G[(e', p'][e_{n+1}, p_{n+1}]} = \sum_{j \in \{1, 2\}^n} \left(\prod_{i=1}^n F_{p_i - 3 + j_i} \right) M_{G[e', j][e_{n+1}, p_{n+1}]} \\ &= \sum_{j \in \{1, 2\}^n} \left(\prod_{i=1}^n F_{p_i - 3 + j_i} \right) (F_{p_{n+1} - 1} M_{G[e', j][e_{n+1}, 2]} + F_{p_{n+1} - 2} M_{G[e', j][e_{n+1}, 1]}) \\ &= \sum_{j \in \{1, 2\}^{n+1}} \left(\prod_{i=1}^{n+1} F_{p_i - 3 + j_i} \right) M_{G[e, j]}. \end{split}$$

If we define $F_0 = F_2 - F_1 = 0$ and $F_{-1} = F_1 - F_0 = 1$, then we can drop the assumption that $p_i \neq 1, 2, i = 1, ..., k$ in the previous theorem.

3. MIS IN STAR-LIKE LADDERS

Theorem 2: If $p_1, \ldots, p_k \in \mathbb{N}$, then

$$M_{SL(p_1,\dots,p_k)} = (2^k - 2) \prod_{i=1}^k F_{p_i} + 2 \prod_{i=1}^k F_{p_i+1}.$$

JUNE-JULY

Proof: Let $j \in \{1, 2\}^k$ with $j_{(1)}$ coordinates equal to 1, and $j_{(2)}$ coordinates equal to 2. We prove that

$$M_{K_2[(e, \dots, e), j]} = 2^k + 2 \cdot 2^{j_{(2)}} - 2, \tag{3}$$

where *e* is the edge of K_2 . Let *M* be MIS of $K_2[(e, ..., e), j]$ (see Fig. 2). If $X \in M$, then $A_i \in M$ for $i = 1, ..., j_{(1)}$, and either $C_i \in M$ or $D_i, E_i \in M$ for $i = 1, ..., j_{(2)}$. Similar holds if $Y \in M$, and this gives $2 \cdot 2^{j_{(2)}}$ MIS of $K_2[(e, ..., e), j]$. If $X, Y \notin M$, then either $A_i \in M$ or $B_i \in M$ for $i = 1, ..., j_{(1)}$ and either $C_i, F_i \in M$ or $D_i, E_i \in M$ for $i = 1, ..., j_{(2)}$, giving 2^k possibilities. Here we must exclude sets $\{A_1, ..., A_{j_{(1)}}, D_1, E_1, ..., D_{j_{(2)}}, E_{j_{(2)}}\}$ and $\{B_1, ..., B_{j_{(1)}}, C_1, F_1, ..., C_{j_{(2)}}, F_{j_{(2)}}\}$ which are not MIS, and so it follows that (3) holds. Now

$$M_{SL(p_1, \dots, p_k)} = \sum_{j \in \{1, 2\}^k} \left(\prod_{i=1}^k F_{p_i - 3 + j_i} \right) M_{K_2[(e, \dots, e), j]}$$

= $\sum_{j \in \{1, 2\}^k} \left(\prod_{i=1}^k F_{p_i - 3 + j_i} \right) (2^k + 2 \cdot 2^{j_{(2)}} - 2)$
= $(2^k - 2) \prod_{i=1}^k (F_{p_i - 2} + F_{p_i - 1}) + 2 \prod_{i=1}^k (F_{p_i - 2} + 2F_{p_i - 1})$
= $(2^k - 2) \prod_{i=1}^k F_{p_i} + 2 \prod_{i=1}^k F_{p_i + 1}$.

FIGURE 2. The Graph $K_2[(e, ..., e), (1, ..., 1, 2, ..., 2)]$

As an immediate consequence, we get

Corollary 1: If $p \in \mathbb{N}$, then $M_{L_p} \stackrel{\text{\tiny def}}{=} 2F_{p+1}$.

REFERENCE

1. L. K. Sanders. "A Proof from Graph Theory for a Fibonacci Identity." *The Fibonacci Quarterly* 28.1 (1990):48-55.

AMS Classification Numbers: 05C69, 05A15, 11B39

2001]