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PROBLEMS PROPOSED IN THIS ISSUE
H-574 Proposed by José Luis Diaz-Barrero, University of Catalunya, Barcelona, Spain
Let n be a positive integer greater than or equal to 2. Determine
E+LP __ L+Rh  _ R+EL
F-LYF-F) L,-F)L,-F) (F-F)F-L)

where F, L, and P, are, respectively, the n Fibonacci, Lucas, and Pell numbers.
H-S75 Proposed by N. Gauthier, Department of Physics, Royal Military College of Canada
Problem Statement: "Four Remarkable Identities for the Fibonacci-Lucas Polynomials”
For n a nonnegative integer, the following Fibonacci-Lucas identities are known to hold:
Lypiz =5~ Loy, Fopiz = Lypia = Fopr-

The corresponding identities for the Fibonacci {F,(#)},, and the Lucas {L (#)}>, polynomials,
defined by
Fy@)=0, F@)=1, Fuy(6) = uFyu () + Fy(a),

LO(u) - 2, Ll(u) =u, Ln+2(u) - uLn+1(u) + Ln(u)’
respectively, are:

L2n+2 (u) = (u2 + 4)I72n+1(u) - L2n (ll), F‘2n+3(u) = L2n+2(u) - 5n+1(u)' (1)

For m, n nonnegative integers, with the convention that a discrete sum with a negative upper limit
is identically zero, prove the following generalizations of (1).

Casea: (2n+2)*"L,, (u)= (* + 4)[ f (2’”) (n+ 1)2’] F,,. (1)

-1
+"[, (2l+1)(2"+Dzm]Lz"ﬂ(")—[(2n)2"']Lz,,(u>.

Caseb: (2n+3)""F,, ., (u)= [ 2 (22’7 (2n+ 2)21}L2n+2(”)
1=0

m~1
+u[2(2,+1)(2n+2>”“] P ) ~[@0+ 1P By (@),

=0
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m
Case c: (zn+z)2'"+‘Fz,,+z(u)=u[Z(z”éZ’ 1)(2n+1>2’}ﬁ;,,+1<u>
1=0

| B f)<zn+1)2’*‘}%“1@:)—[<zn)2'"“m,,<u>.

=0
m

Cased: (2n+3)*™[, .(u)= u[ > (2”57 1) (2n+ 2)21]LG+2 (u)
1=0

s 4>[ S (37 ans Z)ZMJFM*Z(")

—[@n+ D™ L, ().

H-576 Proposed by Paul S. Bruckman, Sacramento, CA
Define the following constant,

G EH{l—l/(P—l)z}

p>2
as an infinite product over all odd primes p.
(A) Show that

C, =3 u@n-11{p@n-np,
n=1

where p(n) and ¢(n) are the Mobius and Euler functions, respectively.
(B) Let R(m) =2, u(n /d)2?. Show that

G =Ty =™,
n=2
where (1) =2, k™" is the Riemann zeta function (with n> 1), and
$*my= 2,2k =(1-27") (@),
k=1

Note: C, is the "twin-primes" constant that enters into Hardy and Littlewood's "extended" con-
jectures regarding the distribution of twin primes and Goldbach's conjecture.

SOLUTIONS

Comment by H.-J. Seiffert
In my solution to Prob. H-562, I gave a valid proof for the identity

G
n 2n+1
Lyp=4"-5 Z (n—Sk——Z)’
k=0

n a nonnegative integer, as stated in the original proposal. Therefore, the word "corrected" is
meaningless.
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Symmetry
H-564 Proposed by Stanley Rabinowitz, Westford, MA
(Vol. 38, no. 4, August 2000)

Let & be a positive integer and let a, =1. Find integers a;,a,,...,a, and b, b,,b,, ..., b, such
that

3 k
2% _ 2k
Z al= Z b F.;
i=0 i=0

is true for all integers n. Prove that your answer is unique.
For example, when £ =4, we have the identity

L +2118,, +561 ,+ 2118 + I8, = 625(F2 +21F%  +56F° , + 21F° , + FX. ).

14 12 n

Solution by L. A. G. Dresel, Reading, England
Symmetry and Unigueness

Let X, denote the sum from i =0 to £.

Let I, (4@, b),n) denote X,{a,(L,,)* —b(F,,)*}. Then, if I,({a,b),n)=0 for all n and
we put n=-m—k, we have £ {a(L_, )*-b(F_, .)*}=0, and because (L_)*=(L,)* and
(F_)*=(F,)* for all t, we obtain T,{a,(L,.; ) ~b,(F,.1_)**} =0 for all m. Finally, putting
j=k—i, weobtain T {a, (L,,)*-b, (F,, )"} =0. Thisshows that, if J,((a, b),n) =0 for
all n, then we also have 1, ((a,_;, b,_;), m) = 0 for all m. For this to represent the same identity, we
must have a,_, = Aa,,, b,_, = Ab,, which leads to 2> =1. This gives either the "symmetric" solu-
tion, a,_; = a;, b,_; = b;, or the "anti-symmetric" solution a,_, = -a,, b,_, = —b,. In general, if, say,
the identity 7, ((p,, g,), n) = 0 is true, we also have I, ({p,_,, g,_;), n) =0, and since these identities
are linear and homogeneous in the coefficients, it follows that we also have the "symmetric" iden-
tity 1, ({p; + Py_i» G + Gi_;), 1) = O and the "anti-symmetric" identity 1, ((p, - py_i» @ — 91— )» 1) =0.
Therefore, we can prove the uniqueness of our solution for a particular & if we can show that
there is only one symmetric solution and no anti-symmetric solution.

We shall also use the notation 4, = a, +57%b, and D, = a,~5"b,, and we note that 4, and D,
then have the same symmetry property as a;.

For k=1, the simplest case, we have,
(L) =(@"+p")? = L, +2(-1)" and S5(F)* =(a"~ ") = L,,~ 2(-1)",
so that
Za(L,)’ - b(F,,,)*} = D)Ly, + DLy +2(=1)"{4,— 4} = 0.

Since this is to be true for all n, we must have Dy =D, =0 and 4,= 4,, so that we have the
unique solution

(L) + (L)’ = SUEY + (5,07
The Reduction Algorithm for Even &

By rearranging the terms in the binomial expansion (Z,)* = (a" + ™), or using equations
(79) and (81) of [1], when k is even, say k = 2h, we obtain
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(L) = cyLyy + e (-1)" Lye-ny 2 Lgneny + o+ (1L, + ¢,
and

5* (E)Zk =Ly — (- Dann(k-x) + CZLQn(k—Z) == (D" Ly, + ¢,
where ¢, ¢, ..., ¢, are the first & +1 coefficients in the binomial expansion (1+ Z)%* .
We note that the right sides of these formulas differ only in the signs of the terms involving
the factor (—1)". Therefore, if A=a+5%b and D=a-5"%b, we have
{a(L)* - b(F)*} = DicoLyy, + Lozt G+ (=D A Lyge_yya+ o+ 6y Loy}
for all n. For large n, each of the £ +1 terms on the right is of a different order of magnitude, so
that to satisfy the identity Z,{a,(L,,)* - b,(F,,)*}=0 we must satisfy the k+1 equations
Zil)iLZY(nH) =0 (for s=k,k-2,..,2), 2,D,=0, and Ei(_l)iAiLZs(nH) =0 (for s=k-1,k-3,

..., ). Letting y = L, ., we have the recurrence given by (17a) of [1], namely,
Lysineiy = YLosinriery ¥ Logineivz) = 0.

We can use this to eliminate the first and last terms in each of the summations involving Ly,

and then repeat this process until we are left with only the middle three terms. For simplicity, we
put C, = (—1)' 4,, and note that C; has the same symmetry as 4, because, when % is even, (=1)*~ =
(-1Y. Now consider the reduction of Z,C, L, iy = 0, first to

(VCo + C) Loy + (G = Gl Lgyneny + Gloggmazy + =0,
and more generally to

R Loy + (Gt = RoDLoggiiny + o Lagnasny =0
fori=12,...,h—1, where Ry=Cy, R_;=0, and R,=yR_,—R,_,+C, for i>1. Thus, R, is a
polynomial in y of degree i. For a symmetric solution, the final reduction gives

Ry Lasneny ¥ (Co= 2R ) Loty R Lasnrieny = 0,

where the middle term includes a contribution of R,_, from both the left and the right. This final
reduction must be a multiple of the recurrence relation, so that we have yR, ;+C, -2R, ,=0,
giving R, — R,_, =0, an equation of degree # which must have the /4 roots y = L, for s=1,3,

...,k —1. This determines the A +1 coefficients C, to C,, except for an arbitrary factor, while the
remaining coefficients are determined by the symmetry condition C,_, = C,.

If, on the other hand, the C, were anti-symmetric, our reduction would lead to
Rh—-lLZs(n+h—l) + ChLZS(n+h) _Rh—lLZS(n-o-hH) =0

with C, =0, giving R,_, =0. This is an equation of degree A1 in y, which cannot have A roots
unless C, =0 for all i, giving the only anti-symmetric solution for C;. Similarly, the only anti-
symmetric solution for D, is D, = 0 for all 7.

Finally, we have to look for symmeiric solutions for the coefficients D,. But then we cannot
satisfy the additional equation 2,0, =0, unless D, =0 for all i. Hence, we have , = 5*a,, so that
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our symmetric solution for C, = (-1)' 4, = 2(-1)'a;, as determined by the equation R,—R,_,=0,
gives the unique solution for the coefficients ;.

Defining P, = R, - R,_, and using the recurrence R, = yR, ;- R,_, +C,, we obtain a recurrence
for P, namely, P, = yP_, - P_, +(C, -C,_,), a polynomial of degree i. Hence, we have £ =,
B=yC+C, B=y(0C+C)+(C,-2C), B=y*(yCy+C)+y(C,-3C)+(C-2C), and
B =Y (0Cy+ ) + Y2 (C, = 4Cp) + (G = 3C) +(C, —2C, +2Cy).

We now consider the equation 7, = 0, identifying its roots for k =2h=2,4,6, and 8.

For k=2, we have F, = yC, +C, =0, giving y4,— A,=0 for y =L, =3. Thus, {(a,)=(1,3,1),
so that (L,)* +3(L,.)* + (L) = 25{(F)" +3(F)* + (50"

For k=4, we have P, = y(yC, +C)) +(C, -2C,) =0, giving y(y4,— 4,)+(4,—-24,) =0 for
y=L, and L;. Hence, taking a,=1, we obtain a, = L,+ L;=3+18=21 and a, = L, =54,
giving (@) =1, 21,56, 21, 1) and b, = 5*a,, which agrees with the solution given by the proposer.

For k=6, we have B, = y*(Coy+C) +Y(C, -3Cy) +(C;-2C) =0 for y= L,, L, L,,. This
leads to ay=1, @ = L+ Lg+ Ly =21+123=144, a,—3=L,Le+(L,+ L)L,y =54+21-123=
2637, a; —2a, = 54-123 = 6642. Therefore, we obtain (a,) = (1, 144, 2640, 6930, 2640, 144, 1) and
b, =5,

For k=8, we have y*(Coy+C))+y*(C,—4Cy) + W(C;—3C)) +(C, = 2C, +2C,) =0 for y = L,,
Ly, Ly, Ly, leading to a, =1, a, =144+ 843 =987, a, -4 =2637 +144-843 = 124029, a, - 3q, =
6642 +2637-843 = 2229633, a, —2a, +2 = 6642-843 = 5599206. Thus, we obtain b, = 5, with
(a,)=(1,987,124033, 2232594, 5847270, 2232594, 124033, 987, 1).

The Reduction Algorithm for Odd &
Proceeding as before, when k =2h+1 we have
(L) = oLy +,(-1)" Lyuk-1y+ G Lange-ny + -+ + Coi Loy + (=D,
and
S*(F, n)2k =CoLou —i(-1)" Lype-1y+t S Lange-2y =+ + Cmr Loy — (-D"¢.
Taking A=a+ 57%b and D =a—5*b as before, we now have
{a(L)* ~b(F)**} = D{co Lo+ & Lygozyn+++ + CpeaLagy + (" ALy, + - +6,}-
To satisfy the identity Z,{a,(L,,;)* —b,(F,,;)**} =0 we have the k +1 equations Z,D, Ly, =0
(for s=k, k-2,...,1), Z,(-14L,y,,,=0 (for s=k-1, k-3,...,2) and Z,(-1)'4,=0. The
last equation will require 4, to be symmetric, and therefore C, = (—1)' 4, will be anti-symmetric, as

kis odd. The formulas for R; in the reduction algorithm are the same as before, and at the pen-
ultimate stage we have four middle terms remaining, namely,

Rh—lLZs(n+h—l) + (Ch - Rh-—z)L2s(n+h) - (Ch - Rh-Z)LZs(n+h+l) - Rh—lLZx(n+h+2) =0.

This finally reduces to (R, + R_;) Ly — (B + Ryey) Logiensyy = O for all m, giving R, + R, ; =0,
an equation of degree 4 with the hroots y = L, for s=2,4,...,k—1. This determines C, to C,,
and hence the symmetric 4, = (-1)'C,.
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Turning to the equations for D, they also reduce to an equation of degree 4 in y with roots
Yy = L,,, but now we have the #+1 values s=1,3,..., k. Hence, D, =0 for all 7, and we have
b, =5*a,, and our symmetric solution for A4;=(-1)'C,. gives the unique solution for the coeffi-
cients g; and b,.

Defining O, = R; + R;_; and using the recurrence R, = yR,_;— R,_,+C,, we obtain Q, = yQ,_, -
O, +(G+C_)), a polynomial in y of degree i. Hence, we have Q) =C,, 0, =(y+1)C,+C,,
0,= y(¥Co+Co+C)+(Cy+ C = Cy), Oy= Y2(yCo+ Cy+ C)+ W(Cy+ Cy=2C o) +(C3+ C, - C, - Cy).

We now consider the equation 0, = 0, identifying its roots for k =2h+1=3,5,7.

Fork=3, O =(y+D)Cy+C =(y+1)A4,~ 4,=0 for y=L,=7, giving 4, =84, and, finally,
(@)=(1,8,8,1y and b, = 5a,.

Fork=3, 0,= y(yCy+Cy+C)+(Cy,+C, - Cy) =0, thus y(yAy+ Ay— A)+ (A, — 4,— 4)) =0
for y=1L;=47 and y=L,. Therefore, (4,— A))=(47+7)4, and (4,— 4,— Ay) =7-474,, so
we have the solution (g,) =1, 55,385, 385,55,1) and b, = Sa,.

For k=17, 0y= y*(yCy+ Cy+ C)+ Y(Cy+ C;=2C o) +(C3+ C, — C,— Cy) = 0 for y =7,47, and
y=L,,=322. Hence, (4, — 4)) = (54+322)4,, (A,— A;—24,) = (7-47+54-322)4,=17717A4,),
and (A;—A,— A+ Ay) =7-47-3224,=1059384,, so we have the solution (a,) =(1,377, 18096,
124410, 124410,18096,377,1) and b, =5 a,.

Concluding Remarks

It is clear that, using these methods, we can obtain a unique solution for the coefficients for
any value of £, and that a,_, = a, and b, = 5*a,.

We also have a, = F,, for all k. When £ is odd, we have a,(k) =1+ L,+---+ L,,_,, while for
k even we have a;(k) = L, + Lg+ - + L,,_,. Therefore, a,(k)—a,(k—2) = L,,_, for all k. But

Lopa=Fyy+ Py = By = Fyp g+ (Fya = Foia) = Fop — Py,
and we have g,(2) =3 = F, and q,(3) =8 = Fy. Hence, by induction, a,(k) = F,, for all £.

In the numerical results for even k = 2h =4, 6, 8, we note that the coefficients a, to a, are all
divisible by F,,_,, whereas for odd k =2h+1=5,7 we find a, to g, are divisible by F),. We
conjecture that these results are true for all £, but time does not permit us to pursue this further
here.

Reference
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood
Ltd., 1989.

Also solved by P. Bruckman, H.-J. Seiffert, and the proposer.

A Prime Example

H-565 Proposed by Paul S. Bruckman, Berkeley, CA
(Vol. 38, no. 4, August 2000)

Let p be a prime with p = -1 (mod 2m), where m >3 is an odd integer. Prove that all resi-
dues are m'" powers (mod p).
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Solution by the proposer
Given any residue x (mod p), let y = (x/ p)xP*V'?" (mod p). Clearly, y is a well-defined resi-
due (mod p). We make use of the well-known result: (x/p) = x*»"Y'2 (mod p). Then

y™ = (x/ p)"xPV2 = (x | p)mxP D2y = (x / p)™Dx = x (mod p),
since m is odd. We then see that x [an arbitrary residue (mod p)] is an m™ power (mod p). Q. ED.
Also solved by L. A. G. Dresel, R. Martin, and H.-J. Seiffert.
Late Acknowledgment: H.-J. Seiffert solved H-563.
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FIBONACCI NUMBERS AND THEIR APPLICATIONS
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LOCAL COMMITTEE INTERNATIONAL COMMITTEE
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email: calvinlong@nau.edu Fax: 928-523-5847 Phone: 928-527-4466

CALL FOR PAPERS

The purpose of the conference is to bring together people from all branches of mathematics and science who are interested
in Fibonacci numbers, their applications and generalizations, and other special number sequences. For the conference
Proceedings, manuscripts that include new, unpublished results (or new proofs of known theorems) will be considered. A
manuscript should contain an abstract on a separate page. For papers not intended for the Proceedings, authors may submit
Jjust an abstract, describing new work, published work or work in progress. Papers and abstracts, which should be submit-
ted in duplicate to F.T. Howard at the address below, are due by May 1, 2002. Authors of accepted submissions will be
allotted twenty minutes on the conference program. Questions about the conference may be directed to:

Professor F.T. Howard
Wake Forest University
Box 7388 Reynolda Station
Winston-Salem, NC 27109 (USA)

howard@mthcesc.wfu.edu
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