DETERMINANTS INVOLVING Kth POWERS FROM SECOND ORDER SEQUENCES

David A. Klarner
University of Alberta, Edmonton

INTRODUCTION

Let a_{n} be a sequence of complex numbers satisfying the difference equation
(1)

$$
a_{n+2}=a a_{n+1}-\beta a_{n} \text { for } n=0,1, \ldots
$$

where a and β are fixed complex numbers, for such a sequence we define

$$
A_{k}\left(a_{n}\right)=\left|\begin{array}{cccc}
a_{n}^{k} & a_{n+1}^{k} & \cdots & a_{n+k}^{k} \tag{2}\\
a_{n+1}^{k} & a_{n+2}^{k} & \cdots & a_{n+k+1}^{k} \\
\cdot & \cdots & & \cdot \\
\cdot & \cdot & & \vdots \\
a_{n+k}^{k} & a_{n+k+1}^{k} & \cdots & a_{n+2 k}^{k}
\end{array}\right| \text { for } n=0,1, \ldots
$$

It is the purpose of this note to prove

$$
\begin{equation*}
A_{k}\left(a_{n}\right)=\beta^{n k(k+1) / 2} A_{k}\left(a_{0}\right) \tag{3}
\end{equation*}
$$

and give examples of the result.

A DIFFERENCE EQUATION FOR $\left[\begin{array}{l}a_{n}^{k} \\ \hline\end{array}\right]$:
Let $\left(1-\theta_{1} x\right)\left(1-\theta_{2} x\right)=1-a x+\beta x^{2}$, so that $\boldsymbol{\theta}_{1}+\theta_{2}=a$ and $\boldsymbol{\theta}_{1} \boldsymbol{\theta}_{2}=\beta$, and assume $\boldsymbol{\theta}_{1} \neq \boldsymbol{\theta}_{2}$. Carlitz $[3]$ has proved that

$$
\begin{equation*}
p_{k}(x) / q_{k}(x)=\sum_{n=0}^{\infty} a_{n}^{k} x^{n} \tag{4}
\end{equation*}
$$

where

$$
q_{k}(x)=\prod_{i=0}^{k}\left(1-\theta_{1}^{i} \theta_{2}^{k-i} x\right)
$$

and $p_{k}(x)$ is a polynomial of degree less than the degree of $q_{k}(x)$. Letting

$$
\begin{equation*}
q_{k}(x)=1-\sum_{i=1}^{k} a_{k+1-i}(k) x^{i} \tag{6}
\end{equation*}
$$

(the constants $a_{j}(k)$ are polynomials symmetricin $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$ determined by (5)) we see after multiplying through (4) with $\mathrm{q}_{\mathrm{k}}(\mathrm{x}$) (as given in (6)) and equating coefficients of x^{n} in the right and left members that

$$
\begin{equation*}
a_{n+k+1}^{k}=a_{k+1}(k) a_{n+k}^{k}+a_{k}(k) a_{n+k-1}^{k}+\ldots+a_{1}(k) a_{n}^{k} \tag{7}
\end{equation*}
$$

for $n=0,1, \ldots$. We also know from (5) and (6) that

$$
\begin{align*}
& -a_{1}(k)=(-1)^{k+1}\left(\theta_{1} \theta_{2}\right)^{1+2+\ldots+k} \quad \text { or } \tag{8}\\
& a_{1}(k)=(-1)^{k+2} \beta^{k(k+1) / 2}
\end{align*}
$$

Now let k be a fixed natural number and consider for $n \geq 0$,

$$
\begin{align*}
& (-1)^{k}(-1)^{k+2} \beta^{k(k+1) / 2} A_{k^{(}\left(a_{n}\right)=(-1)^{k}} a_{1}(k) A_{k}\left(a_{n}\right) \tag{9}\\
& =\left|\begin{array}{lllll}
a_{n+1}^{k} & a_{n+2}^{k} & \cdots & a_{n+k}^{k} & a_{1}(k) a_{n}^{k} \\
a_{n+2}^{k} & a_{n+3}^{k} & \cdots & a_{n+k+1}^{k} & a_{1}(k) a_{n+1}^{k} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n+k+1}^{k} & a_{n+k+2}^{k} & \cdots & a_{n+2 k}^{k} & a_{1}(k) a_{n+k}^{k}
\end{array}\right|=A_{k}\left(a_{n+1}\right)
\end{align*}
$$

The second equality in (9) follows since we have interchanged k columns and multiplied the last column by $a_{1}(k)$. The last equality follows since appropriate multiples of the first columns can be added to
the last column to make it the last column of $A_{k}\left(a_{n+1}\right)$; the "appropriate multiples" are the $\mathrm{a}_{\mathrm{j}}(\mathrm{k})$ given in (7).

Thus, we have shown
$(-1)^{k}(-1)^{k+2} \beta^{k(k+1) / 2} A_{k}\left(a_{n}\right)=\beta^{k(k+1) / 2} A_{k}\left(a_{n}\right)=A_{k}\left(a_{n+1}\right)$,
so that (3) can be proved by induction on n.
As a corollary to (3) we note that if $\left\{a_{n}\right\}$ satisfies (l), then $\left\{a_{q n}+p\right\}$, where q and p are non-negative integers, is a second order sequence as well; in fact,

$$
\begin{equation*}
a_{q(n+2)}+p=\left(\theta_{1}^{q}+\theta \frac{q}{2}\right) a_{q(n+1)}+p-\beta^{q} a_{q n+p} \tag{10}
\end{equation*}
$$

for $n=0,1, \ldots$ Hence we can rewrite (3) to obtain

$$
\begin{equation*}
A_{k}\left(a_{q n+p}\right)=\beta^{q n k(k+1) / 2} A_{k}\left(a_{p}\right) \tag{11}
\end{equation*}
$$

EXAMPLES INVOLVING THE FIBONACCI SEQUENCES

When a_{n} is the Fibonaccisequence $\left\{F_{n}\right\}=\{0,1,1,2, \ldots\}$, $\beta=-1$ in (3) so that we have

$$
\begin{align*}
& \left|\begin{array}{ll}
F_{n} & F_{n+1} \\
F_{n+1} & F_{n+2}
\end{array}\right|=(-1)^{n}\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=(-1)^{n+1}, \tag{12}\\
& \left|\begin{array}{ccc}
F_{n}^{2} & F_{n+1}^{2} & F_{n+2}^{2} \\
F_{n+1}^{2} & F_{n+2}^{2} & F_{n+3}^{2} \\
F_{n+2}^{2} & F_{n+3}^{2} & F_{n+4}^{2}
\end{array}\right|=(-1)^{3 n}\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 4 \\
1 & 4 & 9
\end{array}\right|=(-1)^{n+1} 2, \tag{13}\\
& \left|\begin{array}{llll}
F_{n}^{3} & F_{n+1}^{3} & F_{n+2}^{3} & F_{n+3}^{3} \\
F_{n+1}^{3} & F_{n+2}^{3} & F_{n+3}^{3} & F_{n+4}^{3} \\
F_{n+2}^{3} & F_{n+3}^{3} & F_{n+4}^{3} & F_{n+5}^{3} \\
F_{n+3}^{3} & F_{n+4}^{3} & F_{n+5}^{3} & F_{n+6}^{3}
\end{array}\right|=(-1)^{6 n}\left|\begin{array}{cccc}
0 & 1 & 1 & 8 \\
1 & 1 & 8 & 27 \\
1 & 8 & 27 & 125 \\
8 & 27 & 125 & 512
\end{array}\right|=36 \tag{14}
\end{align*}
$$

The result in (12) is well known, Brother Alfred proposed (13) as a problem in the very first issue of the Fibonacci Quarterly [1], and Erbacker, Fuchs and Parker proposed (14) in a later issue [5].

If we redefine $a_{0}=F_{1}, a_{1}=F_{2}, \ldots$ we have $\left\{a_{n}\right\}=\left\{u_{n}\right\}$ in the standard notation; fixing $q=2$ and $p=1$ in (11) we obtain for $\mathrm{k}=1$ and 2 ,

$$
\begin{align*}
& A_{1}\left(u_{2 n+1}\right)=A_{1}\left(u_{1}\right)=-1 \tag{15}\\
& A_{2}\left(u_{2 n+1}\right)=A_{2}\left(u_{1}\right)=-18 \tag{16}
\end{align*}
$$

respectively; on the other hand if we fix $q=2$ and $p=0$ in (11) we have for $k=1$ and 2 ,

$$
\begin{align*}
& A_{1}\left(u_{2 n}\right)=A_{1}\left(u_{0}\right)=1 \tag{17}\\
& A_{2}\left(u_{2 n}\right)=A_{2}\left(u_{0}\right)=18 \tag{18}
\end{align*}
$$

respectively. Together (16)and (18) imply

$$
\left|\begin{array}{ccc}
u_{n}^{2} & u_{n+2}^{2} & u_{n+4}^{2} \tag{19}\\
u_{n+2}^{2} & u_{n+4}^{2} & u_{n+6}^{2} \\
u_{n+4}^{2} & u_{n+6}^{2} & u_{n+8}^{2}
\end{array}\right|=(-1)^{n+1} \quad 18
$$

which has also been proposed as a problem by Brother Alfred [2].

AN EXAMPLE INVOLVING A SEQUENCE OF POLYNOMIALS

Lorch and Moser [8] proposed that one prove

$$
\left|\begin{array}{cc}
v_{n} & v_{n+1} \tag{20}\\
v_{n+1} & v_{n+2}
\end{array}\right|=x \text { for } n=0,1,2, \ldots
$$

where $v_{0}=1$ and

$$
\begin{equation*}
v_{n}=\sum_{v=0}^{n}\binom{n+v}{n-v} x^{v} \quad \text { for } n=1,2, \ldots \tag{21}
\end{equation*}
$$

In proving (2), Carlitz [4] proved

$$
\begin{equation*}
\mathrm{v}_{\mathrm{n}+2}=(\mathrm{x}+2) \mathrm{v}_{\mathrm{n}+1}-\mathrm{v}_{\mathrm{n}} \text { for } \mathrm{n}=0,1,2, \ldots \tag{22}
\end{equation*}
$$

hence, we can prove (20) and obtaingeneralizations by using (3). For $\mathrm{k}=1$ and 2 we have respectively,

$$
\begin{align*}
& A_{1}\left(v_{n}\right)=A_{1}\left(v_{0}\right)=x \tag{23}\\
& A_{2}\left(v_{n}\right)=A_{2}\left(v_{0}\right)=2 x^{3}(x+2)^{2} \tag{24}
\end{align*}
$$

A second generalization of this problem was also given by Gould [6].

REFERENCES

1. Brother U. Alfred, Problem H-8, Fibonacci Quarterly, Feb., 1963, p. 48.
2. Brother U. Alfred, Problem H-52, Fibonacci Quarterly, Feb., 1965, p. 44.
3. L. Carlitz, "Generating Functions For Powers of Certain Sequences of Numbers", Duke Mathematical Journal, vol. 29, (1962) No. 4, pp. 521-538.
4. L. Carlitz, Solution to P-33, Canadian Mathematical Bulletin, vol. 4, (1961) No. 3, pp. 310-11.
5. J. Erbacker, J. A. Fuchs, F. D. Parker, Problem H-25, Fibonacci Quarterly, Dec., 1963, p. 47.
6. H. W. Gould, 'A Generalization of A Problem of L. Lorch and L. Moser", Canadian Mathematical Bulletin, vol. 4, (1961) No. 3, pp. 303-5.
7. D. A. Klarner, Chapters 3 and 4, "On Linear Difference Equations" (Master's Thesis), University of Alberta, Edmonton, Alberta, Canada, pp. 30-49.
8. L. Lorch and L. Moser, Problem 33, Canadian Mathematical Bulletin, vol. 4, (1961), No. 1, p. 310.
