## GERERALIZED FIBONACCI SEQUENCES

 ASSOCIATED WITH A GENERALIZED PASCAL TRIANGLEV.C. Harris and Carolyn C. Styles, San Diego State College \& San Diego Mesa College

## 1. INTRODUCTION

In this paper we introduce the numbers

$$
\left\{\begin{array}{l}
\left.u_{n}=u_{n}(p, q, s)=\sum_{i=0}^{\left[\frac{n}{p+s q}\right.}\right]\left(\left[\begin{array}{c}
\left.\frac{n-i p}{s}\right] \\
i
\end{array}\right] \quad n=1,2, \ldots\right.  \tag{1.1}\\
u_{0}=u_{0}(p, q, s)=1
\end{array}\right.
$$

where $n, p, q$, $s$ are positive integers and $[x]$ is the largest integer in $x$. The characteristic equation and a generating function are developed and the relation to a generalized Pascal's triangle is exhibited in Section 2. An interesting feature is the repetition of each term $g$ times where $g=(p, s)$. Certain sums and some properties relating to congruence are established in Sections 3 and 4.

The numbers corresponding to the case $s=1$ are developed in our previous paper [2]. Thus the Fibonacci numbers are those for $p=q=s=1$. The numbers in Dickinson [1] are the special case $p=a, q=1, s=c-a$. By multiplying the binomial coefficients

$$
\binom{\left[\frac{n-i p}{s}\right]}{i}
$$

by $\mathrm{a}^{\mathrm{n}-\mathrm{i} q_{\mathrm{b}} \mathrm{iq}}{ }^{*}$ before summing, the numbers could be generalized further.
*A more appropriate choice of exponents, suggested by Dr. David Zeitlin, appears in a paper by him which will follow.

## 2. THE CHARACTERISTIC EQUATION AND GENERATING FUNCTION

We note that
or zero, from properties of binomial coefficients. Hence, if $E f(x)=f(x+1)$ we have $\left(E^{S}-1\right) u_{n}$ is a sum of binomial coefficients with first coefficient involving iq -1 . After repeating $q$ times there results

$$
\left(E^{s}-1\right)^{q} u_{n}(p, q, s)=u_{n-p}(p, q, s), n-p \geq 0
$$

or
(2.1) $u_{n+p+q s}=\binom{q}{1} u_{n+p+(q-1) s}-\binom{q}{2} u_{n+p+(q-2) s}+\cdots+(-1)^{q+1} u_{n+p}+u_{n}$

Hence the characteristic equation is

$$
\begin{equation*}
x^{p}\left(x^{s}-1\right)^{q}-1=0 \tag{2.2}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u_{0}=u_{1}=\cdots=u_{p+q s-1}=1 \tag{2.3}
\end{equation*}
$$

It may be remarked that $u_{p+q s}=2$.
Suppose the arithmetic triangle to be written but with each row repeated $s$ times. Then one sees that $u_{n}(p, q, s)$ is the sum of the term in the first column and $\mathrm{n}^{\text {th }}$ row (counting the top row as the zero ${ }^{\text {th }}$ row) and the terms obtained by starting from this term and taking steps $p, q$ - that is, $p$ units up and $q$ units to the right.

When $(p, s)=g>1$ the sequences $\left\{u_{n g}\right\},\left\{u_{n g+1}\right\}, \cdots,\left\{u_{n g+(g-1)}\right\}$
are the same since each sequence is determined by the same recursion formula and the same initial conditions.

Let $f(x)=x^{p}\left(x^{s}-1\right)^{q}-1$ so that $f^{\prime}(x)=x^{p-1}\left(x^{s}-1\right)^{q-1}\left[(p+q s) x^{s}-p\right]$. The roots of $f^{\prime}(x)=0$ are the roots of

$$
x=0, \quad x^{s}=1 \quad \text { and } \quad x^{s}=\frac{p}{p+q s}
$$

None of the roots of $f^{\prime}(x)=0$ is a root of $f(x)=0$ and $f(x)$ has no multiple root. If the $p+s q$ roots of $f(x)$ are $x_{1}, x_{2}, x_{3}, \cdots, x_{p+s q}$ then the determinant of the coefficients $c_{1}, c_{2}, \cdots, c_{p+q s}$ in

$$
\sum_{i=1}^{p+q s} c_{i} x_{i}^{n+1}=u_{n} \quad n=0,1, \cdots, p+s q-1
$$

is different from zero. The system can be solved by Cramer's rule using Vandermondians. It results that $c_{i}=\left(x_{i}^{S}-1\right) /\left[\left(x_{i}-1\right)\left\{[p+s q] x_{i}^{s}-p\right\}\right]$ and hence

$$
\begin{equation*}
u_{n}=\sum_{i=1}^{p+s q} \frac{\left(x_{i}^{s}-1\right) x_{i}^{n+1}}{\left(x_{i}-1\right)\left[(p+s q) x_{i}^{S}-p\right]}, n=0,1,2, \cdots \tag{2.4}
\end{equation*}
$$

To obtain a generating function, write

$$
S=\sum_{i=0}^{\infty} u_{i} x^{i}
$$

Then by multiplying $S$ by each of

$$
(-1)\binom{q}{1} x^{s},(-1)^{2}\binom{q}{2} x^{2 s}, \cdots,(-1)^{q}\binom{q}{q} x^{q s} \quad \text { and } \quad-x^{p+q s}
$$

and adding, one finds

$$
\left[\left(1-x^{s}\right)^{q}-x^{p+s q}\right] S=\sum_{k=0}^{q-1} \sum_{i=0}^{s-1} \sum_{j=0}^{k}(-1)^{j}\binom{q}{j} x^{k s+i}
$$

Note we have used $\dot{u}_{0}=u_{1}=\cdots=u_{p+s q-1}=1$ and (2.1). Hence

$$
\sum_{n=0}^{\infty} u_{n} x^{n}=\frac{\sum_{k=0}^{q-1} \sum_{i-0}^{s-1} \sum_{j=0}^{k}(-1)^{j}\binom{q}{j} x^{k s+i}}{\left(1-x^{s}\right)^{q}-x^{p+s q}}
$$

The numerator is equal to

$$
\begin{aligned}
\sum_{i=0}^{S-1} x^{i}\left\{\sum_{k=0}^{q-1}(-1)^{k}\binom{q-1}{k}\left(x^{S}\right)^{k}\right\} & =\sum_{i=0}^{S-1} x^{i}\left(1-x^{S}\right)^{q-1} \\
& =\left(1-x^{S}\right)^{q} /(1-x)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{n=0}^{\infty} u_{n} x^{n}=\frac{\left(1-x^{s}\right)^{q} /(1-x)}{\left(1-x^{s}\right)^{q}-x^{p+s q}} \tag{2.5}
\end{equation*}
$$

As an example, for $p=2, q=2, s=3$, this gives

$$
\sum_{n=\theta}^{\infty} u_{n}(2,2,3) x^{n}=\frac{1+x+x^{2}-x^{3}-x^{4}-x^{5}}{1-2 x^{3}+x^{6}-x^{8}}
$$

This gives the sequence
$\left\{u_{n}(2,2,3)\right\}=1,1,1,1,1,1,1,1,2,2,2,4,4,4,7,7,8,12,12,16,21,21,31,37, \cdots$
3. SUMS
(3.1)

$$
\begin{aligned}
\sum_{i=0}^{n} u_{i}= & \sum_{i=0}^{q-1}\left\{( - 1 ) ^ { i } ( \begin{array} { c } 
{ q - 1 } \\
{ i }
\end{array} ) \left[u_{n+p+s(q-i)}+\right.\right. \\
& \left.\left.u_{n+p+s(q-i)-1}+\cdots+u_{n+p+s(q-i)-s+1}\right]\right\}-s \delta_{1 q}
\end{aligned}
$$

where $\delta_{i j}$ is Kronecker's $\delta$.

This is seen to be true for $q=1$ and all $n$ by summing $u_{0}=u_{p+s}-$ $u_{p} ; u_{1}=u_{p+s+1}-u_{p+1} ; \cdots ; u_{n}=u_{p+s+n}-u_{p+n^{0}}$ Since $u_{0}=u_{1}=\cdots=$ $u_{p+s q-1}=1$, this gives

$$
\sum_{i=0}^{n} u_{i}=\sum_{i=0}^{n+p+s} u_{i}-(p+s)-\sum_{i=0}^{n+p} u_{i}+p
$$

which is the result. Also this is true for $n=0$ and all $q$. We have to show

$$
u_{0}=\sum_{i=0}^{q-1}(-1)^{i}\binom{q-1}{i}\left[u_{p+s(q-i)}+\cdots+u_{p+s(q-i)-(s-1)}\right]
$$

But $u_{p+s q}=2$ so that by separating the term corresponding to $i=0$ we get $1+s(1-1)^{q-1}=1=u_{0}$.

It remains to show the result in general. Assume (3.1) to be true for $\mathrm{q} \geq 2$ and $\mathrm{n}=\mathrm{k}$; then

$$
\begin{aligned}
\sum_{i=0}^{k+1} u_{i}= & u_{k+1}+\sum_{i=0}^{k} u_{i}=\sum_{i=0}^{q}(-1)^{i}\binom{q}{i} u_{k+p+(q-i) s+1}+ \\
& \sum_{i=0}^{q-1}(-1)^{i}\binom{q-1}{i}\left[u_{k+p+s(q-i)}\right.
\end{aligned} \begin{aligned}
& u_{k+p+s(q-i)-1}+\cdots \\
& \left.+u_{k+p+s(q-i)-s+1}\right]
\end{aligned}
$$

By combining terms

$$
u_{k+1+p+s(q-i)}=u_{k+p+s(q-i)+1}
$$

using

$$
\binom{q}{j}-\binom{q-1}{j-1}=\binom{q-1}{j}
$$

the result follows and the theorem is proved.
$\sum_{i=0}^{n}(-1)^{n-i} u_{i}=\left\{\begin{array}{l}\sum_{k=0}^{q} \sum_{i=n+1}^{n+p+s(q-k)}(-1)^{n+p+s(q-k)+k-i}\binom{q}{k} u_{i}, s \text { even } \\ \frac{1}{1-(-1)^{p+s q_{2} q}}\left[\sum_{k=0}^{q} \sum_{i=n+1}^{n+p+s(q-k)}(-1)^{n+p+s(q-k)+k-i}\binom{q}{k} u_{i}+\right.\end{array}\right.$

$$
+\left\{\begin{array}{ccc}
0 & p \equiv q \equiv 1 & (\bmod 2)  \tag{3.2}\\
(-1)^{n+1} & 2^{q-1} & p \equiv q \equiv 0 \\
(-1)^{n} & 2^{q-1} & p \neq q \\
(\bmod 2) & (\bmod 2)
\end{array}\right] \text { s odd }
$$

Proof: Solve (2.1) for $u_{n}$ and write $(-1)^{n-i} u_{i}$ for $i=n, n-1, \cdots, 0$. The sum of the $(k+1)$ st column formed by the expansions is

$$
\begin{aligned}
& \sum_{i=0}^{n}(-1)^{k+i}\binom{q}{k} u_{n+p+s(q-k)-i}=\sum_{i=0}^{n+p+s(q-k)}(-1)^{n+p+s(q-k)-i+k}\binom{q}{k} u_{i} \\
&-(-1)^{k+n+1}\binom{q}{k}\left[1-1+\cdots+(-1)^{p+s(q-k)-1}\right]
\end{aligned}
$$

since the terms added to obtain the sum on the right have $u_{i} \equiv 1$ in each case. Hence this gives

$$
\begin{aligned}
\sum_{i=0}^{n}(-1)^{k+i}\binom{q}{k} u_{n+p+s(q-k)-i}=\sum_{i=0}^{n+p+s(q-k)}(-1)^{n+p+s(q-k)+k-i}\binom{q}{k} u_{i} \\
+(-1)^{n+k}\binom{q}{k} \cdot \epsilon
\end{aligned}
$$

where $\epsilon=0, \mathrm{p}+\mathrm{s}(\mathrm{q}-\mathrm{k}) \equiv 0(\bmod 2)$ and $=1$ otherwise.
$\sum_{i=0}^{n}(-1)^{n-i} u_{i}=\sum_{k=0}^{q} \sum_{i=n+1}^{n+p+s(q-k)}(-1)^{n+p+s(q-k)+k-i}\binom{q}{k} u_{i}$

$$
\begin{gathered}
+\sum_{k=0}^{q} \sum_{i=0}^{n}(-1)^{n+p+s(q-k)+k-1}\binom{q}{k} u_{i}+ \\
\sum_{k=0}^{q}(-1)^{n+k}\binom{q}{k} \epsilon(k), p+s(q-k) \neq 0(\bmod 2) \\
0 \quad, p+s(q-k) \equiv 0(\bmod 2)
\end{gathered}
$$

But
$\sum_{k=0}^{q} \sum_{i=0}^{n}(-1)^{n+p+s(q-k)+k-i}\binom{q}{k} u_{i}=$

$$
\begin{cases}0, & s \equiv 0(\bmod 2) \\ (-1)^{p+s q} 2^{q} \sum_{i=0}^{n}(-1)^{n-i} u_{i}, s \equiv 1(\bmod 2)\end{cases}
$$

and
$\sum_{n=0}^{q}(-1)^{n+k}\binom{q}{k} \in(p, q, s, k)=$

$$
\left\{\begin{array}{cl}
(-1)^{\mathrm{n}+1} 2^{\mathrm{q}-1}, & \text { s odd } \mathrm{p} \equiv \mathrm{q} \equiv 0(\bmod 2) \\
(-1)^{\mathrm{n}} 2^{\mathrm{q}-1} & , \text { s odd } \mathrm{p} \neq \mathrm{q} \quad(\bmod 2) \\
0, & \text { otherwise }
\end{array}\right.
$$

Combining these results gives the theorem.

It may be remarked that

$$
\sum_{i=0}^{n} u_{2 i} \text { and } \sum_{i=0}^{n} u_{2 i+1}
$$

can be obtained from (3.1) and (3.2).

## 4. DIVISIBILITY PROPERTIES

Using methods similar to those of our previous paper, one can show the following: Any $p+s q$ consecutive terms are relatively prime。 The least nonnegative residues modulo any positive integer $m$ of $u_{n}(p, q, s)$ are periodic with a period $P$ not exceeding $\mathrm{m}^{\mathrm{p}+\mathrm{Sq}}$. There is no preperiod and each period begins with $p+s q$ terms all unity. Any prime divides infinitely many $u_{n}(p, q, s)$ since

$$
u_{P-p} \equiv \sum_{i=0}^{q}(-1)^{i}\binom{q}{i} u_{P+s(q-i)} \equiv 0(\bmod m) .
$$

## REFERENCES

1. David Dickinson, "On Sums Involving Binomial Coefficients," American Mathematical Monthly, Vol. 57, 1950, pp 82-86.
2. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 2, 1964, pp 277-289.

## $\star \star * * *$ <br> REQUEST

The Fibonacci Bibliographical Research Center desires that any reader finding a Fibonacci reference send a card giving the reference and a brief description of the contents. Please forward all such information to:
Fibonacci Bibliographical Research Center, Mathematics Department San Jose State College San Jose, California

