A POWER IDENTITY FOR SECOND-ORDER RECURRENT SEQUENCES

V.E. Hoggatt, Jro, San Jose State College, San Jose, Calif. and D.A. Lind, University of Virginia, Charlottesville, Va.

1. INTRODUCTION

The following hold for all integers n and k :

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}+\mathrm{k}}= & \mathrm{F}_{\mathrm{k}} \mathrm{~F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{k}-1} \mathrm{~F}_{\mathrm{n}}, \\
\mathrm{~F}_{\mathrm{n}+\mathrm{k}}^{2}= & \left(\mathrm{F}_{\mathrm{k}} \mathrm{~F}_{\mathrm{k}-1}\right) \mathrm{F}_{\mathrm{n}+2}^{2}+\left(\mathrm{F}_{\mathrm{k}} \mathrm{~F}_{\mathrm{k}-2}\right) \mathrm{F}_{\mathrm{n}+1}^{2}-\left(\mathrm{F}_{\mathrm{k}-1} \mathrm{~F}_{\mathrm{k}-2}\right) \mathrm{F}_{\mathrm{n}}^{2}, \\
\mathrm{~F}_{\mathrm{n}+\mathrm{k}}^{3}= & \left(\mathrm{F}_{\mathrm{k}} \mathrm{~F}_{\mathrm{k}-1} \mathrm{~F}_{\mathrm{k}-2} / 2\right) \mathrm{F}_{\mathrm{n}+3}^{3}+\left(\mathrm{F}_{\mathrm{k}} \mathrm{~F}_{\mathrm{k}-1} \mathrm{~F}_{\mathrm{k}-3}\right) \mathrm{F}_{\mathrm{n}+2}^{3}-\left(\mathrm{F}_{\mathrm{k}} \mathrm{~F}_{\mathrm{k}-2} \mathrm{~F}_{\mathrm{k}-3}\right) \mathrm{F}_{\mathrm{n}+1}^{3} \\
& -\left(\mathrm{F}_{\mathrm{k}-1} \mathrm{~F}_{\mathrm{k}-2} \mathrm{~F}_{\mathrm{k}-3} / 2\right) \mathrm{F}_{\mathrm{n}}^{3}
\end{aligned}
$$

These identities suggest that there is a general expansion of the form

$$
\begin{equation*}
F_{n+k}^{p}=\sum_{j=0}^{p} a_{j}(k, p) F_{n+j}^{p} \tag{1.1}
\end{equation*}
$$

Here we show such an expansion does indeed exist, find an expression for the coefficients $a_{j}(k, p)$, and generalize (1.1) to second order recurrent sequences.

2. A FIBONACCI POWER IDENTITY

Define the Fibonomial coefficients $\left[\begin{array}{c}m \\ r\end{array}\right]$ by

$$
\left[\begin{array}{c}
m \\
r
\end{array}\right]=\frac{F_{m} F_{m-1} \cdots F_{m-r+1}}{F_{1} F_{2} \cdots F_{r}} \quad(r>0) ;\left[\begin{array}{c}
m \\
0
\end{array}\right]=1
$$

Jarden [4] proved that the term-by-term product z_{n} of p sequences each obeying the Fibonacci recurrence satisfies
[Oct. 1966]
A POWER IDENTITY FOR
SECOND-ORDER RECURRENT SEQUENCES

$$
\sum_{j=0}^{p+1}(-1)^{j(j+1) / 2}\left[\begin{array}{c}
p+1 \\
j
\end{array}\right]_{n-j}
$$

for integral n. In particular, $z_{n}=F_{n}^{p}$ obeys (2.1). Carlitz, [1, Section 1] has shown that the determinant

$$
\mathrm{D}_{\mathrm{p}}=\left|\mathrm{F}_{\mathrm{n}+\mathrm{r}+\mathrm{s}}^{\mathrm{p}}\right|(\mathrm{r}, \mathrm{~s}=0,1, \cdots, \mathrm{p})
$$

has the value

$$
D_{p}=(-1)^{p(p+1)(n+1) / 2} \prod_{j=0}^{p}\binom{p}{j} \cdot\left(F_{1}^{p} F_{2}^{p-1} \cdots F_{p}\right)^{2} \neq 0
$$

implying that the $p+1$ sequences $\left\{F_{n}^{p}\right\},\left\{F_{n+1}^{p}\right\}, \cdots,\left\{F_{n+p}^{p}\right\}$ are linearly independent over the reals. Since each of these sequences obeys the $(p+1)^{\text {th }}$ order recurrence relation (2.1), they must span the space of solutions of (2.1). Therefore an expansion of the form (1.1) exists.

To evaluate the coefficients $a_{j}(k, p)$ in (1.1) we first put $k=0,1, \cdots, p$, giving $\mathrm{a}_{\mathrm{j}}(\mathrm{k}, \mathrm{p})=\delta_{\mathrm{jk}}$ for $0 \leq \mathrm{j}, \mathrm{k} \leq \mathrm{p}$, where δ_{jk} is the Kronecker delta defined by $\delta_{j k}=0$ if $j \neq k, \quad \delta_{k k}=1$. Next we show that the sequence

$$
\left\{\mathrm{a}_{\mathrm{j}}(\mathrm{k}, \mathrm{p})\right\}_{\mathrm{k}=0}^{\infty}
$$

obeys (2.1) for $j=0,1, \cdots, p$. Indeed from (1.1) we find

$$
\begin{aligned}
0 & =\sum_{r=0}^{p+1}(-1)^{r(r+1) / 2}\left[\begin{array}{c}
p+1 \\
r
\end{array}\right] F_{n+k-r}^{p} \\
& =\sum_{j=0}^{p}\left\{\sum_{r=0}^{p+1}(-1)^{r(r+1) / 2}\left[\begin{array}{c}
p+1 \\
r
\end{array}\right] a_{j}(k-r, p)\right\} F_{n+j}^{p} .
\end{aligned}
$$

But the $F_{n+j}^{p}(j=0,1, \cdots, p)$ are linearly independent, so that

$$
\sum_{r=0}^{p+1}(-1)^{r(r+1) / 2}\left[\begin{array}{c}
p+1 \\
r
\end{array}\right] a_{j}(k-r, p)=0(j=0,1, \cdots, p)
$$

[Oct.
Now consider $b_{j}(k, p)=\left(F_{k} F_{k-1} \cdots F_{k-p}\right) / F_{k-j}\left(F_{j} F_{j-1} \cdots F_{i-1} F_{j-p}\right)$ for $j=0,1, \cdots, p-1, b_{p}(k, p)=\left[\begin{array}{l}k \\ p\end{array}\right]$, together with the convention that $F_{0} / F_{0}=1$. Clearly $b_{j}(k, p)=\delta_{j k}$ for $0 \leq j, k \leq p$. Since $\left\{b_{j}(k, p)\right\}_{k=0}^{\infty}$ is the term-byterm product of p Fibonacci sequences, it must obey (2.1). Thus $\left\{\mathrm{a}_{\mathrm{j}}(\mathrm{k}, \mathrm{p})\right\}_{\mathrm{k}=0}^{\infty}$ and $\left\{b_{j}(k, p)\right\}_{k=0}^{\infty}$ obey the same $(p+1)^{\text {th }}$ order recurrence relation and have their first $p+1$ values equal $(j=0,1, \cdots, p)$, so that $a_{j}(k, p)=b_{j}(k, p)$. Since $F_{-n}=(-1)^{n+1} F_{n}$, it follows that

$$
F_{-1} \cdots F_{j-p}=F_{p-j} \cdots F_{1}(-1)^{(p-j)(p-j+3) / 2}
$$

so that for $j=0,1, \cdots, p-1$, we have

$$
\begin{aligned}
a_{j}(k, p) & =(-1)^{(p-j)(p-j+3) / 2}\left(\frac{F_{k} F_{k-1} \cdots F_{k-p+1}}{F_{p} F_{p-1} \cdots F_{1}}\right)\left(\frac{F_{p} F_{p-1} \cdots F_{1}}{\left(F_{j} \cdots F_{1}\right)\left(F_{p-j} \cdots F_{1}\right)}\right)\left(\frac{F_{k-p}}{F_{k-j}}\right) \\
& =(-1)^{(p-j)(p-j+3) / 2}\left[\begin{array}{l}
k \\
p
\end{array}\right]\left[\begin{array}{l}
p \\
j
\end{array}\right]\left(F_{k-p} / F_{k-j}\right),
\end{aligned}
$$

which is also valid for $j=p$ using the convention $F_{0} / F_{0}=1$. Then (1.1) becomes

$$
F_{n+k}^{p}=\sum_{j=0}^{p}(-1)^{(p-j)(p-j+3) / 2}\left[\begin{array}{l}
k \tag{2.2}\\
p
\end{array}\right]\left[\begin{array}{l}
p \\
j
\end{array}\right]\left(F_{k-p} / F_{k-j}\right) F_{n+j}^{p}
$$

for all k. We remark that since consecutive $p^{\text {th }}$ powers of the natural numbers obey

$$
\sum_{j=0}^{p+1}(-1)^{p-j}\binom{p+1}{j}(n+j)^{p}=0
$$

a development similar to the above leads to

$$
\begin{equation*}
(\mathrm{n}+\mathrm{k})^{\mathrm{p}}=\sum_{j=0}^{\mathrm{p}}(-1)^{\mathrm{p}-\mathrm{j}}\binom{\mathrm{k}}{\mathrm{p}}\binom{\mathrm{p}}{\mathrm{j}}\binom{\mathrm{k}-\mathrm{p}}{\mathrm{k}-\mathrm{j}}(\mathrm{n}+\mathrm{j})^{\mathrm{p}} \tag{2.3}
\end{equation*}
$$

a result parallel to (2.2)

3. EXTENSION TO SECOND-ORDER RECURRENT SEQUENCES

We now generalize the result of Section 2. Consider the second-order linear recurrence relation

$$
\begin{equation*}
y_{n+2}=p y_{n+1}-q y_{n} \quad(q \neq 0) \tag{3.1}
\end{equation*}
$$

Let a and b be the roots of the auxiliary polynomial $x^{2}-p x+q$ of (3.1), Let w_{n} be any sequence satisfying (3.1), and define u_{n} by $u_{n}=\left(a^{n}-b^{n}\right) /$ $(a-b)$ if $a \neq b$, and $u_{n}=n a^{n-1}$ if $a=b$, so that u_{n} also satisfies (3.1). Following [4], we define the u-generalized binomial coefficients $\left[\begin{array}{c}\mathrm{m} \\ \mathrm{r}\end{array}\right]_{\mathrm{u}}$ by

$$
\left[\begin{array}{c}
m \\
r
\end{array}\right]_{u}=\frac{u_{m} u_{m-1} \cdots u_{m-r+1}}{u_{1} u_{2} \cdots u_{r}} \quad(r>0) ;\left[\begin{array}{c}
m \\
0
\end{array}\right]_{u}=1 .
$$

Jarden [4] has shown that the product x_{n} of p sequences each obeying (3.1) satisfies the $(p+1)^{\text {th }}$ order recurrence relation

$$
\sum_{j=0}^{p+1}(-1)^{j} q^{j(j-1) / 2}\left[\begin{array}{c}
p+1 \tag{3.2}\\
j
\end{array}\right]_{u} x_{n-j}=0
$$

If all of these sequences are w_{n}, then it follows that $x_{n}=w_{n}$ obeys (3.2).
It is our aim to give the corresponding generalization of (1.1) for the sequence w_{n}; that is, to show there exists coefficients $a_{j}(k, p, u)=a_{j}(k)$ such that

$$
\begin{equation*}
w_{n+k}^{p}=\sum_{j=0}^{p} a_{j}(k) w_{n+j}^{p} \tag{3.3}
\end{equation*}
$$

and to give an explicit form for the $\mathrm{a}_{\mathbf{j}}(\mathrm{k})$. Carlitz [1, Section 3] proved that

$$
D_{p}(w)=\left|w_{n+r+s}^{p}\right| \quad(r, s=0,1, \cdots, p)
$$

is nonzero, showing that the $p+1$ sequences

$$
\left\{w_{n}^{p}\right\},\left\{w_{n+1}^{p}\right\}, \cdots,\left\{w_{n+p}^{p}\right\}
$$

are linearly independent. Reasoning as before, we see these sequences span the space of solutions of (32), so that the expansion (3.3) indeed exists. Putting $k=0,1, \cdots, p$ in (3.3) gives $a_{j}(k)=\delta_{j k}$ for $0 \leq j, k \leq p$. It also follows as before that the sequence

$$
\left\{\mathrm{a}_{\mathrm{j}}(\mathrm{k})\right\}_{\mathrm{k}=0}^{\infty}
$$

satisfies (3.2). Now consider

$$
b_{j}(k, p, u)=b_{j}(k)=u_{k} u_{k-1} \cdots u_{k-p} / u_{k-j}\left(u_{j} u_{j-1} \cdots u_{1} u_{-1} \cdots u_{j-p}\right)
$$

for $j=0,1, \cdots, p-1, b_{p}(k)=\left[\begin{array}{l}k \\ p\end{array}\right]_{u}$, along with the convention $u_{0} / u_{0}=1$. Then $b_{j}(k)=\delta_{j k}$ for $0 \leq j, k \leq p$. Also $\left\{b_{j}(k)\right\}_{k=0}^{\infty}$ obeys (3.2) because it is the product of p sequences each of which obeys (3.1). Since $\left\{a_{j}(k)\right\}_{k=0}^{\infty}$ and $\left\{b_{j}(k)\right\}_{k=0}^{\infty}(j=0,1, \cdots, p)$ obey the same $(p+1)^{\text {th }}$ order recurrence relation and agree in the first $p+1$ values, we have $a_{j}(k)=b_{j}(k)$. Now $a b=a$. so that $u_{-n}=\left(a^{-n}-b^{-n}\right) /(a-b)=-q^{n} u_{n}$. Then

$$
u_{-1} \cdots u_{j-p}=u_{p-j} \cdots u_{1}(-1)^{p-j} q^{(p-j)(p-j+1) / 2}
$$

and thus for $j=0,1, \cdots, p-1$ we see

$$
\begin{align*}
a_{j}(k) & =(-1)^{p-j_{q}}(p-j)(p-j+1) / 2 \tag{3.4}\\
& \left(\frac{u_{k} u_{k-1} \cdots u_{k-p+1}}{u_{p} u_{p-1} \cdots u_{1}}\right)\left(\frac{u_{p} u_{p-1} \cdots u_{1}}{\left(u_{j} \cdots u_{1}\right)\left(u_{p-j} \cdots u_{1}\right)}\right)\left(\frac{u_{k-p}}{u_{k-j}}\right) \\
& =(-1)^{p-j} q_{q}^{(p-j)(p-j+1) / 2}\left[\begin{array}{l}
k \\
p
\end{array}\right]_{u}\left[\begin{array}{c}
p \\
j
\end{array}\right]_{u}\left(u_{k-p} / u_{k-j}\right),
\end{align*}
$$

which is also valid for $j=p$ using the convention $u_{0} / u_{0}=1$. Therefore (3.3) becomes

$$
{\underset{w}{n+k}}_{p}^{p} \sum_{j=0}^{p}(-1)^{p-j} q^{(p-j)(p-j+1) / 2}\left[\begin{array}{l}
k \tag{3.5}\\
p
\end{array}\right]_{u}\left[\begin{array}{l}
p \\
j
\end{array}\right]_{u}\left(u_{k-p} / u_{k-j}\right) w_{n+j}^{p}
$$

Carlitz has communicated and proved a further extension of this result. Let

$$
x_{n}^{(p)}=w_{n+a_{1}} w_{n+a_{2}} \cdots w_{n+a_{p}}
$$

where the a_{j} are arbitrary but fixed nonnegative integers. Then we have

$$
x_{n+k}^{(p)}=\sum_{j=0}^{p}(-1)^{p-j_{q}(p-j)(p-j+1) / 2}\left[\begin{array}{l}
k \tag{3.6}\\
p
\end{array}\right]_{u}\left[\begin{array}{l}
p \\
j
\end{array}\right]_{u}\left(u_{k-p} / u_{k-j}\right) x_{n+j}^{(p)}
$$

where u_{0} / u_{0} still applies. We note that putting $a_{1}=a_{2}=\cdots=a_{p}=0$ reduces (3.6) to (3.5).

To prove (3.6) using previous techniques requires us to show that the sequences

$$
\left\{x_{n}^{(p)}\right\},\left\{x_{n+1}^{(p)}\right\}, \cdots,\left\{x_{n+p}^{(p)}\right\}
$$

are linearly independent. To avoid this, we establish (3.6) by induction on $\mathrm{k}_{\text {. }}$ Now (3.6) is true for $k=0$ and all n. Assume it is true for some $k \geq 0$ and all n, and replace n by $n+1$, giving

$$
\begin{aligned}
x_{n+k+1}^{(p)} & =\left[\begin{array}{l}
k \\
p
\end{array}\right]_{u} \sum_{j=0}^{p}(-1)^{p-j_{q}(p-j)(p-j+1) / 2}\left[\begin{array}{l}
p \\
j
\end{array}\right]_{u} \frac{u_{k-p}}{u_{k-j}} x_{n+j+1}^{(p)} \\
& =\left[\begin{array}{l}
k \\
p
\end{array}\right]_{u} \sum_{j=1}^{p}(-1)^{p-j+1} q^{(p-j+1)(p-j+2) / 2}\left[\begin{array}{c}
p \\
j-1
\end{array}\right]_{u} \frac{u_{k-p}}{u_{k-j+1}} x_{n+j}^{(p)}+\left[\begin{array}{l}
k \\
p
\end{array}\right]_{u} x_{n+p+1}^{(p)} \quad .
\end{aligned}
$$

It follows from (3.2) that

$$
\begin{aligned}
x_{n+p+1}^{(p)} & =-\sum_{j=1}^{p+1}(-1)^{j} q^{j(j-1) / 2}\left[\begin{array}{c}
p+1 \\
j
\end{array}\right]_{u} x_{n+p+1-j}^{(p)} \\
& =\sum_{j=0}^{p}(-1)^{p-j} q^{(p-j)(p-j+1) / 2}\left[\begin{array}{c}
p+1 \\
j
\end{array}\right]_{u} x_{n+j}^{(p)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& x_{n+k+1}^{(p)}=\left[\begin{array}{l}
k \\
p
\end{array}\right]_{u} \sum_{j=0}^{p}(-1)^{p-j} q^{p-j)(p-j+1) / 2}\left[\begin{array}{c}
p \\
j-1
\end{array}\right]_{u} \frac{x_{n+j}^{(p)}}{u_{j} u_{k-j+1}} \\
& \cdot\left(u_{p+1} u_{k-j+1}-q^{p-j+1} u_{k-p} u_{j}\right) .
\end{aligned}
$$

Since

$$
u_{p+1} u_{k-j+1}-q^{p-j+1} u_{k-p} u_{j}=u_{k+1} u_{p-j+1}
$$

we have

$$
\begin{aligned}
x_{n+k+1}^{(p)} & =u_{k+1}\left[\begin{array}{c}
k \\
p
\end{array}\right]_{u} \sum_{j=0}^{p}(-1)^{p-j_{q}(p-j)(p-j+1) / 2}\left[\begin{array}{c}
p \\
j-1
\end{array}\right]_{u} \frac{u_{p-j+1}}{u_{j} u_{k-j+1}} x_{n+j}^{(p)} \\
& =\left[\begin{array}{c}
k+1 \\
p
\end{array}\right] \sum_{j=0}^{p}(-1)^{p-j_{q}}(p-j)(p-j+1) / 2\left[\begin{array}{l}
p \\
j
\end{array}\right]_{u}^{\frac{u_{k-p+1}}{u_{k-j+1}} x_{n+j}^{(p)},}
\end{aligned}
$$

completing the induction step and the proof.

4. SPECIAL CASES

In this section we reduce (3.5) to a general Fibonacci power identity and to an identity involving powers of terms of an arithmetic progression. First if we let $w_{n}=F_{n s+r}, u_{n}=F_{n s}$, where r and s are fixed integers with $s \neq 0$, then both w_{n} and u_{n} satisfy

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}+2}-\mathrm{L}_{\mathrm{s}} \mathrm{y}_{\mathrm{n}+1}+(-1)^{\mathrm{s}} \mathrm{y}_{\mathrm{n}}=0 \tag{4.1}
\end{equation*}
$$

The roots of the auxiliary polynomial of (4.1) are distinct for $s \neq 0$, so that w_{n} and u_{n} satisfy the conditions of the previous section. In this case the u generalized binomial coefficients $\left[\begin{array}{c}\mathrm{m} \\ \mathrm{r}\end{array}\right]_{\mathrm{u}}$ become the s-generalized Fibonacci coefficients $\left[\begin{array}{c}\mathrm{m} \\ \mathrm{t}\end{array}\right]_{\mathrm{S}}$ defined by

$$
\left[\begin{array}{l}
m \\
t
\end{array}\right]_{S}=\frac{F_{m s}{ }^{F}(m-1) s^{\cdots} \cdot F_{(m-t+1) s}}{F_{t s} F_{t s-\infty} \cdots F_{s}}(t>0):\left[\begin{array}{c}
m \\
0
\end{array}\right]_{S}=1
$$

A recurrence relation for these coefficients is given in［3］．Now here

$$
q=(-1)^{s} \text {, so }(-1)^{p-j}{ }_{q}(p-j)(p-j+1) / 2 \quad=(-1)^{(p-j)[s(p-j+1)+2] / 2} .
$$

Then（3．5）yields
（4．3）$\quad F_{(n+k) s+r}^{p}=\sum_{j=0}^{p}(-1)^{(p-j)[s(p-j+1)+2] / 2}\left[\begin{array}{l}k \\ p\end{array}\right]_{S}\left[\begin{array}{l}p \\ \frac{F_{-j}}{F_{(k-p) s}}{ }_{(k-j) s} F_{(n+j) s+r}^{p} . ~\end{array}\right.$

Putting $s=1$ and $r=0$ gives equation（2．2）．
On the other hand，if we let $w_{n}=n s+r$ and $u_{n}=n$ ，where r and s are fixed integers，then w_{n} and u_{n} obey

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}+2}-2 \mathrm{y}_{\mathrm{n}+1}+\mathrm{y}_{\mathrm{n}}=0 \tag{4.4}
\end{equation*}
$$

Since the characteristic polynomial of（4．4）has the double root $\mathrm{x}=1$ ，both w_{n} and \dot{u}_{n} satisfy the conditions for the validity of（3．5）．In this case we have $\mathrm{q}=1$ and $\left[\begin{array}{c}\mathrm{m} \\ \mathrm{t}\end{array}\right]_{\mathrm{u}}=\binom{\mathrm{m}}{\mathrm{t}}$ ，the usual binomial coefficient．Then（3．5）becomes

$$
\begin{equation*}
([n+k] s+r)^{p}=\sum_{j=0}^{p}(-1)^{p-j}\binom{k}{p}\binom{p}{j}\left(\frac{k-p}{k-j}\right) \quad([n+j] s+r)^{p} \tag{4.5}
\end{equation*}
$$

This reduces to (2.3) by setting $s=1$ and $r=0$ 。

REFERENCES

1．L．Carlitz，＂Some Determinants Containing Powers of Fibonacci Numbers，＂ Fibonacci Quarterly，4（1966），No．2，pp 129－134．
2．V．E．Hoggatt，Jr．and A。P。Hillman，＂The Characteristic Polynomial of the Generalized Shift Matrix，＂Fibonacci Quarterly，3（1965），No．2， pp 91 － 94 ．
3. Problem H-72, Proposed by V. E. Hoggatt, Jr. Fibonacci Quarterly, 3(1965), No. 4, pp 299-300.
4. D. Jarden, "Recurring Sequences," Riveon Lematimatika, Jerusalem (Israel), 1958, pp 42-45.
5. Roseanna F. Torretto and J. Allen Fuchs, "Generalized Binomial Coefficients," Fibonacci Quarterly, 2(1964), No. 4, pp 296-- 302.

ACKNOWLEDGEMENT

The second-named author was supported in part by the Undergraduate Research Participation Program at the University of Santa Clara through NSF Grant GY-273.

REQUEST

The Fibonacci Bibliographical Research Center desires that any reader finding a Fibonacci reference send a card giving the reference and a brief description of the contents. Please forward all such information to:
Fibonacci Bibliographical Research Center, Mathematics Department,
San Jose State College,
San Jose, California.

The Fibonacci Association invites Educational Institutions to apply for Academic Membership in the Association. The minimum subscriptionfee is $\$ 25$ annually. (Academic Members will receive two copies of each issue and will have their names listed in the Journal.

