CORRIGENDUM FOR "SOME CONVERGENT RECURSIVE SEQUENCES, HOMEOMORPHIC IDENTITIES, AND INDUCTIVELY DEFINED COMPLEMENTARY SEQUENCES"

John C. Holladay, Institute for Defense Analysis, Washington, D.C.

On the above-entitled paper, appearing in the February 1966 volume of the Fibonacci Quarterly, please note the following changes:

Page 13. The last two lines of the Corollary should read:
\ldots and only one homeomorphism g such that $g \geq 1$ and

$$
\begin{equation*}
\mathrm{h}+\mathrm{h}^{-1}=\mathrm{g}+\mathrm{g}^{-1} \tag{2,9}
\end{equation*}
$$

Page 14. Equation (2.27) should read:

$$
\begin{equation*}
\left(h \cup h^{-1}\right)(t)=t \text { for all }\left(h \cup h^{-1}\right)^{-1}(x) \leq t \leq x \tag{2.27}
\end{equation*}
$$

Equation (2.30) should read:

$$
\begin{equation*}
h_{n+1}=p-h_{n}^{-1} \tag{2.30}
\end{equation*}
$$

$$
\mathrm{n}>1_{0}
$$

Equation (2.31) should read:

$$
\begin{equation*}
h \|\left(\frac{\alpha+\sqrt{\alpha^{2}-4}}{2}\right) \mathrm{I} \tag{2.31}
\end{equation*}
$$

Page 15. Equation (2.36) should read
(2.36) $\quad h\left(\frac{\beta+\sqrt{\beta^{2}-4}}{2}\right) I$

Page 16. Equations (2.39) and (2.40) should read as follows:
$(2.39) \quad v=\lim _{n \rightarrow \infty} v_{n}=\left(\frac{\beta+\sqrt{\beta^{2}-4}}{2}\right)$

$$
\begin{equation*}
\mathrm{h}=\left(\frac{\alpha+\sqrt{\alpha^{2}-4}}{2}\right) \mathrm{I} \tag{2.40}
\end{equation*}
$$

Page 21. After proof for the Corollary, add a Reference [5].
Page 23. The first line of the Corollary should read:
Corollary: Let $P(n) \neq 2 n$ for some integer $n>0$. Then
Page 24. Change the last line of Theorem 16 to read:
$\left\{x_{n}\right\}$ be inductively defined by
Equation (3.26) should read:

$$
\text { (3.26) } \quad x_{0} \leq a\left(x_{-1}\right)-x_{-1}
$$

Page 26. Equation (4.13) should read:

$$
\begin{equation*}
F(x)=\left(\alpha-\sqrt{\alpha^{2}-1}\right) x+\beta-\beta \sqrt{\alpha^{2}-1} /(\alpha-1) \tag{4.13}
\end{equation*}
$$

Page 27. Equation (4.19) should read:

$$
\begin{equation*}
(\mathrm{x}-\beta)\{(\alpha-1) \mathrm{x}+\beta \alpha+\beta\}>\alpha^{2} \epsilon /(\alpha+1) \tag{4.19}
\end{equation*}
$$

Equation (4.24) should begin with the line
$(4.24) \quad h^{-1}(x)=x F(1) \quad 0 \leq x \leq 1$

Page 28. The first line on the page should read:
If $\beta \geq 1_{2}^{1}$, then $F(1)>0$ implies that $-\epsilon<(\beta-1)^{2}$. It may be
Page 29. Equation (5.3) should read:
$(5.3) \quad \mathrm{hh}(\mathrm{t})<\mathrm{gh}(\mathrm{t})$
Page 33. Change the first line of Theorem 22 to read:
Let $\mu \leq 1$ and $\mathrm{P}+\mu \mathrm{I}>\mathrm{I}$. Let g_{1} be any
Page 34. The last three lines before the Corollary should read:
for h_{1} has been proven. To prove convergence for g_{1}, insert μ into the proper positions of (1.39) and (1.40), and continue the argument of the paragraph containing (1.39) and (1.40). Uniqueness of h is obtained from Theorem 21.

Page 36. Add References below.
11. J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly, 61 (1954), 454-458.
12. H. W. Gould, "Non-Fibonacci Numbers," Fibonacci Quarterly, Vol. 3, No. 3, October 1965, pp. 177-183.

