
ON THE DETERMINATION OF THE ZEROS OF THE FIBONACCI SEQUENCE " 
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In Ms article [ l ] , Brother U, Alfred has given a table of periods and 
zeros of the Fibonacci Sequence for primes in the range 2,000 < p < 3,000, 
The range p < 2,000 has been investigated by D, D, Wall [2] , The present 
author has studied the extended range p < 5, 000 by computer, and has found 
that approximately 68% of the primes have zeros which are maximal or half 
maximal/ i. e , , Z(F,p) = p + 1, p ~ I, (p + l ) /2 or (p - l ) /2 , 

It would seem profitable, then, to seek a formula which gives the values 
of Z(F,p) for some of these "time-consuming" primes* If these can be taken 
care of this way, the average time per prime would decrease since there are 
large primes with surprisingly small periodse 

We have succeeded in producing a formula for two sets of primes, A 
table of zeros of the Fibonacci Sequence for primes in the range 3,000 < p < 
< 10,000 discovered by these formulas is included at the end of this paper, 
It is not known whether these formulae apply to more than a finite set of primes, 
See [3] for some discussion on this point, 

To develop the ideas in a somewhat more general context, we introduce 
the Primary Numbers F defined by the recurrence relations 

Fn+2 = a F n + 1 + b F n ; F0 = 0, Ft = 1 , 

where a and b are integral, F may be given explicitly in the Binet form; 

oft - 0n 

where a and /3 are the (assumed distinct) roots of the quadratic equation 
x2 - ax - b = 0, In a like manner, we may define the Secondary Numbers 
which play the same role as the well known Lucas Numbers do to the Fibonacci 
Numbers, Thus the Secondary Numbers L are defined by the recurrence 
relations 
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Ln+2 "" a Ln+i + bL n ; L0 - 2, Lj 

L may also be given explicitly in the Binet form as t 

(2) L n = a n + pn 

The following three properties of the Pr imary Sequences may easily be estab-
lished by induction, or by using formula (1). 

1) F r = -(~b) rF_r 

2) If (a,b) = 1, then (Fn,b) = 1 
3) If (a,b) = 1/ then ( F ^ F n + J ) = 1 .' 

Using formula (1), it is a simple algebraic exercise to prove the next result. 
Lemma 1. F = F.,«F . + bF.F . 4 

*• m 1+1 m - i i m - i - i 

Proof: Since a and p a re the roots of x2 - ax - b = 0, we have 
ap = -b. 

R.H.S. = (far -p )(a - P ) - ap (a - p )far -p ))/{a-p)2 

= bm+i - * i + 1 . pm^ - a*1"1 • 0 i + I + / P + * - pam + ai+1. f l + a
m~l 

• pi+1 -apm)/(a-p)2 

, m+i , nm+i « m />m,/, m 9 = (a + P -pa - ap )/{a - P)2 

= (a~p)(am - / ? m ) / ( * -p)2 = fom - i3 m ) / (a - 0) = L.H.S. 
Making use of properties 1) and 3) and Lemma 1, we may prove the following 
Theorem which tells us that the factors of Pr imary Sequences occur in similar 
patterns to those encountered in the Fibonacci Sequence i tself 

Theorem "ta Let (a,'b) = 1. Chose a prime p and an integer j such 
that p3 exactly divides F , (d > 0), but no Pr imary Number with smaller 

i subscript. Then pJ divides F (not necessarily exactly) if and only if n = 
dt for some integer t» Ors F , | F iff n = dt for some integer t. 

Proof. Suppose that n = dt. We prove by induction on t that p3 divides 
F n . t = 1. p3 divides Fd # 

Assume true for t = t9 t > X. 

*i .e . , pj}Fd but pi+1-fF 
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Putting m = d(t + 1) and i = d in Lemma lf we have the identity? 

F % = F F • + hF F 
d(t+i) *d+jrdt d^dt- i 

p3 divides F , and F , . , so by (l)f divides F, . , + » 9 

Conversely* suppose that p3 divides F s where n = dt + r for some r sat-
isfying 0 < r < d. We seek a contradiction* forcing r to equal 0. 

Putting m = dt and i = - r in Lemma l s we have the identity % 

F = F F + hF F 
*dt -r+i dt+r - r dt+r-l ° 

r—i r 
Multiplying through by ~(-b) and using the fact that F = -(-b) F , we 
haves 

~(-b)r~ F d t = V i F d t + r - F r F d t + r w l . 

Since p3 divides both F ^ and F d t + r it divides F
r

F
d t + r _ > However, if 

(af b) = 1, consecutive Primary Numbers are co-^prime, and so p does not 
divide F j . . J@ Thus p3 divides F which is a contradiction* dt+r-i r 

Another result which we will need is contained in the next Theorem. This r e -
sult is a direct generalization of the well-known result appHed to Fibonacci 
Numbers* The proof follows precisely the one given by Hardy and Wright in 
[4 ] , and so need not be repeated here. 

Theorem 2. Let k = a2 + 4b ^ 0 and p be a prime such that p / 2b, 
then p divides F f F or F + according as the Legendre Symbol (k/p) 
is +1, 0 or ~le 

Proof. Let the roots of the quadratic equation x2 - ax - b = 0 bes 

a = (a + Va2 + 4b)/2 and p = (a - Va2 + 4b)/2 

Hence 

F - <T ~ SU - ( a + V k ) n - ( a - \ ^ ) n 
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Case 1. (k/p) = +1 

2P~2F _ = ((a + VE)**""1 - (a - Nkf'1)/(2Nk) 

I r odd ^ r ' 
\ l < r < p - 2 

P _ ! ) / 2 / P - I \ 

(2^ + 1) ^ - M m o d p ) f o r s = 0 , l , o o ° , (p - 3)/2, we find that 

ap r"1(^k)r\/(Vk) 

=r^p-2 
(p-3) /2 

P-2S-2, S 
2? k 

\ 2s + 1 / 
S=0 

since 

(p-3)/2 
2P~Vi s " Z aP"2S"2kS(m°dp) 

s=o 

Summing this geometric progression, we have: 

2pbFp_1 H ap - akk-1*72 (mod p) . 

Making use of Euler?s Criterion k^" 1 ' ' 2 = (k/p) (mod p) for the quadratic 
character of k (modp), assuming that p - 2b, (k/p) = +1 and knowing that 
sF = a (mod p), we have: 

F p _ t = 0 (mod p) 

Case 2. (k/p) = 0 

2P~1F = ((a+ Mkf - (a - vI)P)/(2Vk) 

r odd \ / / / s=o 
, l ^ r < p 
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p divides each Binomial Coefficient except the last and so: 

2 P - V . k ^ " ^ 2 (mod p) . 

Since p ^ 2b and (k/p) = 0, we have 

F s o (mod p) 

Case 3. (k/p) = -1 

2PFp+1 = ((a +Vk)p+1 - (a -Vk)^V(2Vic) 
> i / n i i \ P + 1 

. ~w \ r / 
3-r+1(V4E)r | / V5 

r odd 
v l<r ^p 

(p-i)/2 

s a P~2S, S 2? k 

All the Binomial Coefficients except the first and last are divisible by p and 
so: 

2 P F = aP + ak*" 1 ^ 2 (mod p) . 
p+i x 

Since p { 2b, (k/p) = -1 and ap = a (mod p), we have: 

F p + i = 0 (mod p) 

Yet another well-known result which can be extended to the Primary Se-
quences is given in Lemma 28 A proof may be constructed on the model pro-
vided by Glenn Michael in [ 5 ] , and is a simple exercise for the reader, 



318 ON THE DETERMINATION OF THE ZEROS [Dec. 

Lemma 2. If (a,b) = 1 and e,d are positive integers, then (F 9FJ 

| F (c ,d) 
Proof. Let e = (c,d) and D = (F , F , ) . e[c and e[d hence by Theorem 

1, F,JF and F JF , . Thus F [DC ' e c eE d e1 

There exist integers x and y (given by the Euclidean Algorithm) such 
that e = xc + yd. Suppose without loss of generality that x > 0 and y ^ 0. 
Using Lemma 1 with m = xc and i = e we have: 

F = F F , + b F F , xc e-i -yd e -yd-i 

D | F and F , and so by Theorem 1, DJF and F ,. Thus DlbF F , 1 c d J ' ' xc -yd s e -yd-i 
but by property 2), (D,b) = 1, and by property 3), (D, F_ , ) = 1„ Thus 

This, to 
Lemma 3„ 

D [ F . This, together with F O | D gives the result 

F 0 - F L = (-b)n 1 

2n-i n-i n v ' 

Proof. 

_ „ G / 2n-i 2n-i , n-i 0 n - i . n A w 
L. H. S. = (a - p - (a - p ){a + p ))/(a - p) 

. 2n-i 2n-i 2n-i n-i n j i - i n J n - i W / oX = (a - p^ -a - a P + p a + p )/(a - p) 
= (-a p + p a )/(a - P) 

= (a - pHapf^/ia - p) = (a/3)11""1 = (-b)11"1 = R.H.S. 

MAIN RESULTS 

We shall divide the main results of this paper into 6 parts — four Lemmas 
in which the essential ideas are proven, a Theorem utilizing these ideas and a 
Corollary applying them in particular to the Fibonacci Numbers. It will be im-
plicitly understood that from now on, (a,b) = 1 and p j ' 2abk. 

Lemma4. If (-b/p) = (k/p) = +1 (LegendreSymbols), then p | F , W „ 
Proof. Using Lemma 3 with n = (p + l) /2 gives 

F p - i Lp+i _ / M(P-1)/2 
F p ~ ~2 2~~ ~ ( " b ) 
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In the proof of Theorem 2 we find that 

2 P _ 1 F p a F p s (k/p) (mod p) . 

Thus: 

F T 
(3) (k/p) - - E d JE±i = (_b/p) (mod p) 

Putting (-b/p) = (k/p) = +1 we have: 

F L 
~ ^ p - ^ r - = 0 (mod p) . 

Suppose, now, that p divides L, , jWft. Since L, ,4. , = F , / F , , j W , 
^ F F (p+i)/2 (p+i)/2 P+i (p+i)/2 

p divides F ,,. Theorem 2 tells us that p divides F since (k/p) = +1. * p+i ^ p-1 v v ^ ' 
Applying Lemma 2, we see that p divides F, . which is F2 . 

But F2 = a and so we have a contradiction. 
Lemma 5. If (-b/p) - (k/p) = - 1 , then p j F

( p + 1 ) / 2 • 
Proof. Using (3) with (-b/p) = (k/p) = -1 we have: 

_jpl J±i s o (mod p) 

Suppose that p J F . . . . Therefore pJF _ r By Theorem 2, P ! F
D + 1 » a n d 

so as before, we find that p[F2 = a a contradiction. Hence pJL,D+1w2 • 
Since L = aF + 2bF . any prime divisor common to F and L n n n-iJ J n n 

must divide 2b by property 3). These primes are excluded, and so PfF/I>!_1\/2 

as asserted. 
Lemma 6. If (-b/p) = +1, (k/p) = - 1 , then p | F ( p + 1 ) / 2 . 
Proof. Putting (-b/p) = +1 and (k/p) = -1 in (3) we have: 

F T 
- ^ - ^ H - 2 (mod p) 
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Thus P'fL/D+1\/2 since p fi 2. Suppose, to the contrary, that pfF, +1w2. 
By Theorem 2, p | F _,,, and so p[F , / F , j j W = L, , . , a contradiction. J ' ^ ' p+i ' ^ p+i (p+l)/2 (P+W2 

Lemma 7. If (-b/p) = -1 and (k/p) = +1, then p^F __ . , . 
Proof. Similarly we have: 

!|± i±i B +2 (mod p) 

Clearly 
P/ fF(p-D/2 • 

To distinguish from the Fibonacci case, we shall employ the terminology 
Z(F;a,b;p) for the first non-trivial zero (mod p) of the Primary Sequence with 
parameters a and b. Thus Z(F;l , l ;p) = Z(F,p) following the notation used 
by Brother U. Alfred in [ l ] . Similar remarks apply to Z(L;a,b;p). 

Main Theorem. 
1) If r is a prime and p = 2r + 1 is a prime such that (-b/p) = (k/p) 

= +1, then Z(F;a,b;p) = r. 
2) If s is a prime and p = 2s - 1 is a prime such that (-b/p) = (k/p) 

= - 1 , then Z(F;a,b;p) = p + 1. 
3) If s is a prime and p = 2s - 1 is a prime such that (-b/p) = +1, 

and (k/p) = - 1 , then Z(F;a,b;p) = s. 
4) If r is a prime and p = 2r + 1 is a prime such that (-b/p) = - 1 , 

and (k/p) = +1, then Z(F;a,b;p) = p - 1. 
Proof of the Main Theorem. 
1) Since (k/p) - +1, we see from Theorems 1 and 2 that p [ F , ,where 

d is a divisor of p - 1 = 2r. The only divisors of 2r are l , 2 , r and 2r 
since r is prime. Clearly p |FA = 1 and by assumption p^F2 = a. Lem-
ma 4 tells us that p[F and so Z(F;a,b;p) = r. 

2) Since (k/p) = - 1 , p J F , ,where d[p + 1 = 2s. The divisors of 2s 
are l , 2 , s and 2s. p|F< and p^Fo. Lemma 5 then tells us that p/fF and 

s 
so p must divide F2 S = F , i . e . , Z(F;a,b;p) = p + 1. 

3) Since (k/p) = - 1 , p | F d , w h e r e djp + 1 = 2s. Thus d must be 1, 
2 ,s or 2s because of theprimality of s. p / |F1 and p/fF2. Lemma 6 tells us 
that p | F and SO Z(F;a,b;p) = s. 

s 
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4) Since (k/p) = + 1 , p | F , where d | p - 1 = 2r . Again d mus t be 

one of: l , 2 , r or 2r s ince r i s p r i m e . p f F j and p f F 2 . Lemma 7 te l l s us 

that p/fF and so p mus t divide F = F _ . Hence Z(F;a ,b ;p) = p - 1. 

Specializing the above r e s u l t s to the ca se of the Fibonacci Sequence 

(F = F + + F ; F 0 = 0, F 1 =*• 1) by choosing a = b = 1 and hence k = 

5, we find that p a r t s 1) and 2) of the Main Theo rem a r e now vacuous. Indeed, 

1) r e q u i r e s p to be of the form 20k + 1 o r 9, and thus r to be of the form 

10k + 0 or 4 which cannot be p r i m e ; 2) r e q u i r e s p to be of the form 20k + 

3 o r 7, and thus s to be of the form 10k + 2 or 4 giving only the p r i m e 2; 

3) r e q u i r e s p to be of the form 20k + 13 or 17 requ i r ing s to be of the form 

10k + 7 or 9 which may now be p r i m e and 4) r e q u i r e s p to be of the form 20k 

+11 or 19 and thus r to be of the form 10k + 5 or 9 g'ving p r i m e s 5 and 10k +9. 

Thus we have es tabl ished the following r e su l t : 

Corol lary . Employing the symbol Z(F ,p) to denote the f i r s t non- t r iv ia l 

z e r o (mod p) among the Fibonacci Sequence (F = F + F ; F 0 = 0, F 1 

= 1) we have: 
1) s = 2 and p = 2s - 1 = 3 a r e both p r i m e , and so Z(F ,3 ) = 4a 

2) If s = 7 o r 9 (mod 10) and p = 2s - 1 a r e both p r i m e , then 

Z(F ,p ) = s. 

3) r = 5 and p = 2r + 1 = 11 a r e both p r i m e , and so Z(F,11) = 10. 
4) If r = 9 (mod 10) and p = 2r + 1 a r e both p r i m e , then Z(F ,p ) = 

p - 1 . 

It would be in te res t ing to d iscover other s e t s of p r i m e s which have d e t e r -

minable pe r iods and z e r o s . One such se t i s the se t of Mersenne p r i m e s M = 

2 P - 1, where p i s a p r i m e of the form 4t + 3. Since ( -1 /M ) = p / M ) = - 1 , 

L e m m a 5 t e l l s u s t h a t M ^F24t + 2 a n d s o MJfF 2 g for 0 < g < 4t + 2, o t h e r -

wise we could obtain a contradict ion from Theorem 1. However, T h e o r e m 2 

t e l l s us that M | F 2 p , and so Z ( F , M ) = 2 P . 

A. definite formula for Z(F ,p) i s not to be expected for the s ame r e a s o n 

that one would not expect to find a formula for the exponent to which a given 

in teger c belongs modulo p . However, some p r o b l e m s , such as that of c l a s -

sifying the se t of p r i m e s for which Z(F ,p) i s even (the se t of d iv i so rs of the 

Lucas Numbers (p r 2)) may have pa r t i a l or complete solut ions , and so we 

leave the r e a d e r to invest igate them. 
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3119 
3217 
3253 
3313 
3517 
3733 
3779 
4057 
4079 
4139 
4177 
4259 
4273 
4357 
4679 
4799 
4919 
4933 
5077 
5099 
5113 
5233 

Z(F,p) 

3118 
1609 
1627 
1657 
1759 
1867 
3778 
2029 
4078 
4138 
2089 
4258 
2137 
2179 
4678 
4798 
4918 
2467 
2539 
5098 
2557 
2617 

TABLE OF ZEROS 

P Z(F,p) 

5399 
5413 
5437 
5639 
5879 
5939 
6037 
6073 
6133 
6217 
6337 
6373 
6599 
6637 
6659 
6719 
6779 
6899 
6997 
7057 
7079 
7213 

Z(F,p) 

5398 
2707 
2719 
5638 
5878 
5938 
3019 
3037 
3067 
3109 
3169 
3187 
6598 
3319 
6658 
6718 
6778 
6898 
3499 
3529 
7078 
3607 

7393 
7417 
7477 
7537 
7559 
7753 
7933 
8039 
8053 
8317 
8353 
8677 
8699 
8713 
8819 
8893 
9013 
9133 
9277 
9817 
9839 
9973 

3697 
3709 
3739 
3769 
7558 
3877 
3967 
8038 
4027 
4159 
4177 
4339 
8698 
4357 
8818 
4447 
4507 
4567 
4639 
4909 
9838 
4987 
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