SOME BINOMIAL COEFFICIENT IDENTITIES*

L. CARLITZ, Duke University, Durham, No. Carolina
1.

Put

$$
H(m, n)=\sum_{i=0}^{m} \sum_{j=0}^{n}\binom{i+j}{j}\binom{m-i+j}{j}\binom{i+n-j}{n-j}\binom{m+n-i-j}{n-j}
$$

The formula

$$
\begin{equation*}
H(m, n)-H(m-1, n)-H(m, n-1)=\binom{m+n}{m}^{2} \tag{1}
\end{equation*}
$$

was proposed as a problem by Paul Brock in the SLAM Review [1]; the published solution by David Slepian established the identity by means of contour integration. Another proof was subsequently given by R. M. Baer and the proposer [2].

The writer [3] gave a proof of (1) and of some related formulas by means of generating functions. The proof of (1) in particular depended on the expansion
(2) $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty}\binom{i+j}{j}\binom{j+k}{k}\binom{k+\ell}{\ell}\binom{\ell+i}{i} u^{i} v^{j} w^{k} x^{\ell}$
$=\left\{[(1-v)(1-x)-w+u(1-w)]^{2}-4 u(1-v-w)(1-w-x)\right\}^{-(1 / 2)}$
If we take $u=w, v=x$ we get
*Supported in part by NSF grant GP-1593. (Received by the editors Oct., 1964.)
(3) $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} H(m, n) u^{m} v^{n}=(1-u-v)^{-1}\left(1-2 u-2 v+u^{2}-2 u v+v^{2}\right)^{-(1 / 2)}$,
which implies (1). We now take $u=-w, v=-x$. Then the left member of (2) becomes

$$
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty}(-1)^{i-j}\binom{i+j}{j}\binom{j+k}{k}\binom{k+\ell}{\ell}\binom{\ell+i}{i} w^{i+k} x^{j+\ell}
$$

$$
=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \bar{H}(m, n) w^{m} x^{n}
$$

where

$$
\bar{H}(m, n)=\sum_{i=0}^{m} \sum_{j=0}^{n}(-1)^{i+j}\binom{i+j}{j}\binom{m-i+j}{j}\binom{i+n-j}{n-j}\binom{m+n-i-j}{n-j}
$$

The right member of (2) becomes

$$
\left\{\left[(1-u)^{2}-x^{2}\right]^{2}+4 w(1-u+x)(1-u-x)\right\}^{-\frac{1}{2}}=\left(1-2 w^{2}-2 x^{2}+w^{4}-2 w^{2} x^{2}+x^{4}\right)^{-\frac{1}{2}}
$$

It is proved in [3] that

$$
\left(1-2 w-2 x+w^{2}-2 w x+x^{2}\right)^{-(1 / 2)}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\binom{m+n}{m}^{2} w^{m} x^{n}
$$

We therefore get
(4)

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \bar{H}(m, n) w^{m} x^{n}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\binom{m+n}{m}^{2} w^{2 m} x^{2 n}
$$

so that $\bar{H}(m, n)=0$ if either m or n is odd, while
(5)

$$
\overline{\mathrm{H}}(2 \mathrm{~m}, 2 \mathrm{n})=\binom{m+n}{m}^{2}
$$

2.

If in (2) we take $u=v, \quad w=x$, it is proved in [3] that
(6) $\quad \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} J(m, n) v^{m} x^{n}=(1-2 v)^{-(1 / 2)}(1-2 x)^{-(1 / 2)}(1-2 v-2 x)^{-(1 / 2)}$,
where

$$
J(m, n)=\sum_{i=0}^{m} \sum_{k=0}^{n}\binom{m}{i}\binom{n}{k}\binom{m-i+k}{k}\binom{i+n-k}{i}
$$

Since

$$
\begin{gathered}
(1-2 v)^{-(1 / 2)}(1-2 x)^{-(1 / 2)}(1-2 v-2 x)^{-(1 / 2)}=(1-2 v)^{-1}(1-2 x)^{-1}\left\{1-\frac{4 v x}{(1-2 v)(1-2 x)}\right\}^{-(1 / 2)} \\
=\sum_{r=0}^{\infty}\binom{2 r}{r} \frac{v^{r} x^{r}}{(1-2 v)^{r+1}(1-2 x)^{r+1}} \\
\\
=\sum_{r=0}^{\infty}\binom{2 r}{r} v^{r} x^{r} \sum_{m=0}^{\infty}\binom{m+r}{r}(2 v)^{m} \sum_{n=0}^{\infty}\binom{n+r}{r}(2 x)^{n} \\
\\
=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} 2^{m+n} v^{m} x^{n} \sum_{r=0}^{m i n}(m, n) \\
2^{-2 r}\binom{2 r}{r}\binom{m}{r}\binom{n}{r}
\end{gathered}
$$

so that

$$
\begin{aligned}
J(\mathrm{~m}, \mathrm{n}) & \left.=2^{\mathrm{m}+\mathrm{n}} \sum_{\mathrm{r}=0}^{\min (\mathrm{m}, \mathrm{n})} 2^{-2 \mathrm{r}}\binom{2 \mathrm{r}}{\mathrm{r}}\binom{\mathrm{~m}}{\mathrm{r}}_{2}^{\mathrm{n}}\right) \\
& =2^{\mathrm{m}+\mathrm{n}} 3^{\mathrm{F}} 2^{2}\left[\begin{array}{rrr}
1 / 2, & -\mathrm{m}, & -\mathrm{n} \\
1, & 1
\end{array}\right]
\end{aligned}
$$

in the usual notation for generalized hypergeometric function. This may be compared with [3, (4.3)]。

We now take $u=-v, \quad w=-x$ in (2). Then the left member of (2) becomes

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \bar{J}(m, n) v^{m} x^{n}
$$

where

$$
\bar{J}(m, n)=\sum_{i=0}^{m} \sum_{k=0}^{n}(-1)^{i+k}\binom{m}{i}\binom{n}{k}\binom{m-i+k}{k}\binom{i+n-k}{i}
$$

As for the right member of (2) we get

$$
\left\{(1-2 \mathrm{v})^{2}+4 \mathrm{v}(1-\mathrm{v}+\mathrm{x})\right\}^{-(1 / 2)}=(1+4 \mathrm{vx})^{-(1 / 2)}
$$

so that

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \bar{J}(m, n) v^{m} x^{n}=(1+4 v x)^{-(1 / 2)}
$$

Since

$$
(1+4 v x)^{-(1 / 2)}=\sum_{n=0}^{\infty}(-1)^{n}\binom{2 n}{n} v^{n} x^{n}
$$

it follows that

$$
\begin{equation*}
\bar{J}(\mathrm{~m}, \mathrm{n})=(-1)^{\mathrm{n}}\binom{\mathrm{~m}+\mathrm{n}}{\mathrm{~m}} \delta_{\underline{m n}} \tag{9}
\end{equation*}
$$

It follows from (7) that

$$
\begin{aligned}
\bar{J}(m, n) & =(-1)^{n} \sum_{i=0}^{m} \sum_{k=0}^{n}(-1)^{i+k}\binom{m}{i}\binom{n}{k}\binom{i+k}{k}\binom{m+n-i-k}{n-k} \\
& =(-1)^{n} \sum_{i=0}^{m} \sum_{k=0}^{n}(-1)^{i+k}\binom{m}{i}^{2}\binom{n}{k}^{2} \frac{(i+k)!(m+n-i-k)}{m!n!}
\end{aligned}
$$

Thus (9) may be replaced by
(10)

$$
\sum_{i=0}^{m} \sum_{k=0}^{n}(-1)^{i+k} \frac{\binom{m}{i}^{2}\binom{n}{k}^{2}}{\binom{m+n}{i+k}}=\delta_{m n}
$$

3.

The left member of (3) is equal to
$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty}\binom{i+j}{j}\binom{j+k}{k}\binom{k+\ell}{\ell}\binom{\ell+i}{i} u^{i+k} v^{j+\ell}$

$$
=\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} u^{i+k} \sum_{j=0}^{\infty}\binom{i+j}{j}\binom{k+j}{j} v^{j} \sum_{\ell=0}^{\infty}\binom{i+\ell}{\ell}\binom{k+\ell}{\ell} v^{k}
$$

$$
\begin{aligned}
& \text { COE FFICIENT IDENTITIES } \\
& =\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} u^{i+k}\left\{\sum_{j=0}^{\infty} \frac{(i+1)_{j}(k+1)}{j!j!} v^{j}\right\}^{2} \\
& =\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} u^{i+k}\{F(i+1, k+1 ; 1 ; v)\}^{2}
\end{aligned}
$$

where $F(i+1), k+1 ; 1 ; v)$ is the hypergeometric function. If we put

$$
G_{m}(v)=\sum_{k=0}^{m}\{F(m-k+1, k+1 ; 1 ; v)\}^{2}
$$

then (3) becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} u^{m} G_{m}(v)=(1-u-v)^{-1} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\binom{m+n}{m}^{2} u^{m} v^{n} \tag{11}
\end{equation*}
$$

Multiplying by $1-u-v$ and comparing coefficients of u^{m} we get
(12) $\quad(1-v) G_{m}(v)-G_{m-1}(v)=\sum_{n=0}^{\infty}\binom{m+n}{m}^{2} v^{n}=F(m+1, m+1 ; 1 ; v)$.

This identity is evidently equivalent to (1).
In a similar manner, it follows from (4) that

$$
\begin{aligned}
& \sum_{i=0}^{\infty} \sum_{k=0}^{\infty}(-1)^{i} u^{i+k} F(i+1, k+1 ; 1 ; v) F(i+1, k+1 ; 1 ;-v) \\
&=\sum_{m=0}^{\infty} u^{2 m} \sum_{n=0}^{\infty}\binom{m+n}{m}^{2} v^{2 n}
\end{aligned}
$$

which yields the identity
(13) $\sum_{i=0}^{2 m}(-1)^{i} F(i+1,2 m-i+1,1 ; v) F(i+1,2 m-i+1 ; 1 ;-v)=\sum_{n=0}\binom{m+n}{n}^{2} v^{2 n}$.

The identities corresponding to (7) and (9) seem less interesting.
4.

With a little manipulation the right member of (2) reduces to

$$
\left\{(1-u-v-w-x-u w-v x)^{2}-4 u v w x\right\}^{-(1 / 2)}
$$

We have therefore

$$
\begin{array}{r}
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty}\binom{i+j}{j}\binom{j+k}{k}\binom{k+\ell}{\ell}\binom{\ell+i}{i} u^{i} v^{j} w^{k} x^{\ell} \tag{14}\\
=\left\{(1-u-v-w-x+u w+v x)^{2}-4 u v w x\right\}^{-(1 / 2)}
\end{array}
$$

Note that the right side is unchanged by the permutation (uvwx) and also by each of the transpositions (uw) and (vx) and therefore by the permutations of a group of order eight. The same symmetries are evident from the left member.

It maybe of interest to remark that in the case of three variables we have the expansion

$$
\begin{align*}
& \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\binom{i+j}{j}\binom{j+k}{k}\binom{k+i}{i} u^{i} v_{w}{ }^{k} \tag{15}\\
& \left.=\left\{(1-u-v-w)^{2}-4 u v w\right)\right\}^{-(1 / 2)}
\end{align*}
$$

Each side is plainly symmetric in u, v, w. As a special case of (15) we may mention $v=\epsilon u, w=\epsilon^{2} u$, where ϵ, ϵ^{2} are the primitive cube roots of unity。

The right member reduces to $\left(1-4 u^{3}\right)^{-(1 / 2)}$ and therefore

$$
\sum_{i+j+k=3 n}\binom{i+j}{j}\binom{j+k}{k}\binom{k+i}{i} \epsilon^{j+2 k}=\binom{2 n}{n}
$$

while

$$
\sum_{i+j+k=n}\binom{i+j}{j}\binom{j+k}{k}\binom{k+i}{i} \epsilon^{j+2 k}=0 \quad(3 \nmid n)
$$

If we expand the right member of (15) and compare coefficients we get

$$
\sum_{r}\binom{2 r}{r} \frac{(i+j+k-2 r)!}{r!(i-r)!(j-r)!(k-r)!}=\binom{i+j}{j}\binom{j+k}{k}\binom{k+i}{i}
$$

which can also be written in the form

$$
\begin{equation*}
\sum_{r} \frac{\binom{i}{r}\binom{j}{r}\binom{k}{r}}{\binom{i+j+k}{2 r}}=\frac{(i+j)!(j+k)!(k+i)!}{i!j!k!(i+j+k)!} \tag{16}
\end{equation*}
$$

5.

In the case of six variables a good deal of computation is required. Making use of 3 , (5.1) we can show that

$$
\begin{equation*}
\sum_{i_{1}, \cdots, i_{6}=0}^{\infty}\binom{i_{1}+i_{2}}{i_{2}}\binom{i_{2}+i_{3}}{i_{3}}\binom{i_{3}+i_{4}}{i_{4}}\binom{i_{4}+i_{5}}{i_{5}}\binom{i_{5}+i_{6}}{i_{6}}\binom{i_{6}+i}{i_{1}} \tag{17}
\end{equation*}
$$

$$
\cdot u_{1}^{i_{1}} u_{2}^{i_{2}} u_{3}^{i_{3}} u_{4}^{i_{4}} u_{5}^{i_{5}} u_{6}^{i_{6}}
$$

$$
=\left\{\left[1-u_{1}-u_{2}-u_{3}-u_{4}-u_{5}-u_{6}+u_{1} u_{3}+u_{1} u_{4}+u_{1} u_{5}+u_{2} u_{4}+u_{2} u_{5}+u_{2} u_{6}+u_{3} u_{5}+u_{3} u_{6}+u_{4} u_{6}-u_{1} u_{3} u_{5}-u_{2} u_{4} u_{6}\right]^{2}\right.
$$

$\left.-4 u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}\right\}^{-\frac{1}{2}}$

On the right of (17) the bilinear terms satisfy the following rule: in the cycle (123456) adjacent subscripts are not allowed; thus, for example $u_{1} u_{2}$ and $u_{1} u_{6}$ do not appear.

If we take $u_{1}=u_{4}, u_{2}=u_{5}, u_{3}=u_{6}$, the right member of (7) reduces to

$$
\begin{aligned}
& \left\{\left[1-2 u_{1}-2 u_{2}-2 u_{3}+\left(u_{1}+u_{2}+u_{3}\right)^{2}-2 u_{1} u_{2} u_{3}\right]^{2}-4 u_{1}^{2} u_{2}^{2} u_{3}^{2}\right\}^{-(1 / 2)} \\
& =\left\{\left[\left(1-u_{1}-u_{2}-u_{3}\right)^{-1}\left[\left(1-u_{1}-u_{2}-u_{3}\right)^{2}-4 u_{1} u_{2} u_{3}\right]^{-(1 / 2)}\right.\right.
\end{aligned}
$$

in agreement with $[3,(5.2)]$.
For five variables we find that

$$
\begin{aligned}
& \text { (18) } \sum_{i_{1}, \cdots, i_{5}=0}\binom{i_{1}+i_{2}}{i_{2}}\binom{i_{2}+i_{3}}{i_{3}}\binom{i_{3}+i_{4}}{i_{4}}\binom{i_{4}+i_{5}}{i_{5}}\binom{i_{5}+i_{1}}{i_{1}} u_{1}^{i_{1}} u_{2} i_{2} u_{3} i_{3} u_{4} i_{5} i_{5} \\
& =\left\{\left[1-u_{1}-u_{2}-u_{3}-u_{4}-u_{5}+u_{1} u_{3}+u_{1} u_{4}+u_{2} u_{4}+u_{2} u_{5}+u_{3} u_{5}\right]^{2}-4 u_{1} u_{2} u_{3} u_{4} u_{5}\right\}^{-(1 / 2)}
\end{aligned}
$$

The bilinear terms on the right are determined exactly as in (17); in the cycle (12345) adjacent subscripts are not allowed.

REFERENCES

1. Problem 60-2, SIAM Review, Vol. 4 (1962), pp. 396-398.
2. R. M. Baer and Paul Brock, "Natural Sorting," Journal of SIAM, Vol. 10 (1962), pp. 284-304.
3. L. Carlitz, "A Binomial Identity Arising from a Sorting Problem," SIAM Review, Vol. 6 (1964), pp. 20-30.

The Fibonacci Association invites Educational Institutions to apply for academic Membership in the Association. The minimum subscription fee is $\$ 25$ annually. (Academic Members will receive two copies of each issue and will have their names listed in the Journal.)

