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1. INTRODUCTION 
Let |a, I denote a sequence of natural numbers which satisfies the dif-

ference equation \+o ~ \+i + ak ^ o r k = 1,2, • '• •. ^ is easy to prove by 
induction that a

x
 + a

2
 + " ' + a

n
 = a

n+2 " a2 f o r n = 1,2 ?«• •; we use this fact 
in defining 

k=l k=0 
(1) P(x) = I I (1 + x ~ l = V A(k)xk 

and 

an+2 a2 n - \ *™ * 

^n«=n(1+^)= E An (2) P n « = J I II,+ x - j = ^ A^(k)^ 
k=l k=0 

It follows from these definitions that A(k) enumerates the number of r ep re -
sentations 

(3) a i t + ai2 + • • •+ a .̂ = k with 0 < i < • • • < i. f 

and that A (k) enumerates the number of these representations with i. < n. 
Hoggatt and Basin [9] found recurrence formulae satisfied by {A (k)| 

and {A(k) J when | a I is the Fibonacci sequence; in Section 2 we give general -
izations of these results,, 

Hoggatt and King [lo] defined a complete sequence of natural numbers 
ia I as one for which A(n) > 0 for n = 1,2,«-- and found that (i) JF I is 
complete, (ii) JF I with any term deleted is complete, and (iii) | F I with any 
two terms deleted is not complete. Brown [ l ] gave a simple necessary and 
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290 REPRESENTATIONS OF N AS A SUM OF [Dec. 

sufficient condition for completeness of an arbitrary sequence of natural num-
bers and showed that the Fibonacci sequence is characterized by properties (ii) 
and (iii) already mentioned. Zeckendorf [l 3] showed that if F1 is deleted 
from the Fibonacci sequence, then the resulting sequence has the property that 
every natural number has exactly one representation as a sum of elements from 
this sequence whose subscripts differ by at least two. Brown [2] has given an 
exposition of this paper and Daykin [4] showed that the Fibonacci sequence is 
the only sequence with the properties mentioned in Zeckendorf s Theorem. 
More on the subject of Zeckendorf s Theorem can be found in another excellent 
paper by Brown [3] . Ferns [5] , Lafer [ l l ] , and Lafer and Long [12] have 
discussed various aspects of the problem of representing numbers as sums of 
Fibonacci numbers. Graham [6] has investigated completeness properties of 
jF + (-1) ^ and proved that every sufficiently large number is a sum of d is -
tinct elements of this sequence even after any finite subset has been deleted. 

In Section 3 we take up the problem of determining the magnitude of A(n) 
when la 1 is the Fibonacci sequence; in this case we write A(n) = R(n). 
Hoggatt [7] proposed that it be shown that R(F2 - 1) = n and that R(N) > n 
if N > F 2 n - 1. We will show that 

and that F < N < F J L l » l implies n - n+1 ^ 

[ H 1 ] ^ ROT < 2 F(n+1) /2 

if n is odd and 

J-n^_2j < R(N) < F(n+4>/2 

if n is even. 

In Section 4 we investigate the numbers of representations of k as a sum 
of distinct Fibonacci numbers, writing a = F . and T(n) for A(n) in this 
case. The behavior of the function T(n) is somewhat different from that of 
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R(n) of Section 3. For example, we show that there exist infinitely many n 
for which T(n) = k for a fixed k5 and in particular we find the solution sets • 
for each of the equations T(n) = 1, T(n) = 2, T(n) = 3. By definition T(n) 
< R(n) so that T(N) < n - 1 if N < F n + 1 - 1. We show that 

T<F„+1> - [ 4 - 1 ] 
and T ( F n + 1 + 1) = [n /2 ] for n = 3 , 4 , " • . 

Hoggatt [8] proposed that one show that M(n), the number of natural 
numbers less than n which cannot be expressed as a sum of distinct Lucas 
numbers 1^(1^ = 1, L2 = 3, L n + 2 = L n + 1 + LQ) has the property M(Ln) = 
F -; also, he asked for a formula for M(n). In Section 5, we give a solution 
to the same question involving any incomplete sequence satisfying a « = a -
+ a with a1 < a^ < • • • . In a paper now in preparation we have shown that 
the only complete sequences of natural numbers which satisfy the Fibonacci r e -
currence are those with initial terms (i) a~ = a« = 1, (ii) a- = 1, a^ = 2, 
or (iii) a- = 2, a,, = 1. 

2. RECURRENCE RELATIONS 

See Section 1 for definitions and notation. 

Lemma 1. A (k) = A
n ( a n + 2 " a2 •" k^ f o r k = °» 1 >""> n -

Proof. Using the product notation for P we see 

The symmetric property of A now follows on equating coefficients of the 
powers of x in (4). 

Lemma 2. 
(a) An+1(k) = An(k) if 0 < k < a n + 1 - 1. 
(b) An+1(k) = An(k) + An(k - an + 1) if a n + 1 < k < an + 2 - ^ 
(c) An+1(k) = An(k - an + 1) if an + 2 - a2 + 1 < k < a n + 3 - v 

Proof. Each of these statements is obtained by equating coefficients of 
x in the identity 
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(5) P„+1 (*) = (l + x n + 1 j PQ(X) n+r 

Lemma 3. 

(a) An+1(k) = A(k) if 0 4 k 4 an + 2 - 1. 
(b) An+1(k) = A(an + 2 - a2 - k) + A(k - an + 1) if an + 1 4 k 4 an + 2 - a2. 
(c) An+1(k) = A(an + 3 - a2 - k) if an + 2 - a2 + 1 4 k 4 a ^ - v 

Proof, (a) This follows by induction on part (a) of Lemma 2. 
(c) Using Lemma 1 we have A +1(k) = A + 1 (a + 3 - a^ - k) and assum-

ing an + 2 - a2 + 1 < k < a n + 3 - a2 we have 0 4 aQ+3 - a£ - k 4 aQ+1 - 1, so 
that we can apply (a) of this lemma to get A + 1 (a „ - su - k) = A(a « - a2 - k) 
for k in the range under consideration and this is (c). 

(b) Statement (b) of Lemma 2 asserts A _ (k) = A (k) + A (k - a ..) for 
A 1 4 k 4 a + 2 - a2; but by (c) of this lemma wehave A (k) = A(a ? • - a2 - k) 
for k in the range under consideration. Also, if a - 4 k 4 a 2 - a . we 
have 0 4 k - a + 1 - a2? so by (a) of this lemma we have A (k - a -) = A(k 
" an+i) ' Combining these results gives part b. 

Lemma 4. 
(a) A(k) = A(an+2 - a 2 - k) + A(k - an + 1) if a n + 1 < k < an + 2 - a2 and 

n = 2 , 3 , " - . 
(b) A(k) = A(an + 3 - a2 - k) if an + 2 - a£ + 1 < k < \ + 2 - 1 and n = 

2 , 3 , - - - . 
(c) A(an+2 - a2 + k) = A(an - a2 + k) if 1 < k < a2 - 1. 

(Note that in (b) and (c) the range of k is the empty set unless a 2 > 2.) 
Proof. 
(a) This is merely a combination of (a) and (b) in Lemma 3. 
(b) If a n + 2 - a 2 + l < k < a n + 2 - l ? then a n + 1 - a^ + 1 < a n + 3 - a£ - k 

- an+l ~ ±9 S 0 t h a t b y ( a ) o f L e m m a 3 > A( a
n+3 " \ ~ k ) = An+l( an+3 ~ a2 " k ^ 

By Lemma 1, A
n + i ( a

n + 3 - a2 - k) = 'A -(k) and using (a) of Lemma 3 again 
we see that A +1(k) = A(k) for k in the proposed range. 

(c) Writing k = a + 2 - a2 + j with 1 < j < a2 - 1 in (b) we get 

(6). A(an+2 - a2 + j) = A(an + 3 - a2 - aQ+2 + ^ - j) = A(an + 1 - j) ; 
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b u t an+l " ^ = an+l " a2 + ^a2 " ^ w h e r e 1 < &2 " ^ - a2 " X s o t h a t w e c a n 

use (6) to obtain 

( 7 ) A<an+1 " j ) = A < V l " a2 + <«2 " j ) ) = A<an " <a2 " »> • 

Combining (6) and (7) we obtain (c). 
Lemma 5. A(an + 1 + j) = A(an+2 - a2 - j) for 0 < j < an - a2 and n = 

2 ,3 , 

3 < a +2 " a2 s o ^ a t ^ v ^ °^ ^ e m m a ^ w e have 

Proof. For j in the range under consideration we have a , n < a , .. + 

(8) A(an+1 + j) = A(an+2 - a2 - an+1 - j) + A(an+1 + j - an+1) 

= A(an - a2 - j) + A(j) . 

But we also have a .. < a „ - a„ - j < a „ - a~ for the assumed range of 
j , so that we can apply Lemma 4 again to write 

^ A < V 2 " a2 ' j ) = A ( a n + 2 - a2 " an+2 + a2 + j ) + A ( a n + 2 " a2 ^ 
~ an+1) = A(j) + A(an - a£ - j) . 

Since the right members of (8) and (9) are the same, so are the left members. 
Using Lemmas 4 and 5 it is not hard to calculate A(k) for a given s e -

quence ja l. Of particular interest to us are the cases when | a I is the 
Fibonacci sequence, the Fibonacci sequence with the first term deleted, and 
the Lucas sequence; we write A(k) = R(k), T(k) and S(k) respectively in 
these cases. A table Is provided for each of these functions in order to i l l u s -
trate some of our results. 

3. SOME PROPERTIES OF R(k) 

In light of Lemma 4, it is natural to consider the behavior of H(k) in the 
intervals [F , F - 1] ; thus, as a matter of convenience we write 

(10) I n = {R(Fn) ,R(Fn + 1), • - - , R (F n + 1 - 1)} 
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and note that Lemma 4 implies 

(11) I n + 1 = (R(0) + R(Fn - 1), R(l) + R(Fn - 2), • • •, R(Fn - 1) + R(0)}. 

As we mentioned in the introduction, Hoggatt has proposed that one prove 
R(F2 - 1) = n and that R(k) > R(F - 1) if k > F £ - 1. This problem 
has led us to prove a result involving special values of R(k) and to find the 
maximum and minimum of R(k) in I . 

Theorem 1. 

(a) R(Fn) = [ - f 1 ] for n > 1 , 

(b) R(Fn - 1) = p ^ p ] for n > 0 , 

(c) R(F - 2) = n - 2 for n > 2 , 

(d) R(F - 3) = n - 3 for n > 4. 

Proof. We prove only (b) (the other proofs are analogous) which implies 
the first part of Hoggattfs proposal. First , we observe that (b) is true for 
small values of n by consulting Table 1. Next, suppose 

R(Ft - 1) = p * X1 for t = n and n + 1 

and take k = F ~ - 1 in (a) of Lemma 4 to obtain 

(12) R(Fn + 2 - 1) = R(0) + R(Fn - 1) = 1 + [ ' H f 1 ] 

m 
Thus, the assertion follows by induction on n. 

Theorem 2. 

*<*»> • [H*\ 
is a minimum of R(k) in I . 
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Proof. We can verify the theorem for small values of n by inspection 
in Table 1. Suppose the theorem holds for all n < N - 1. We know by Theo-
rem 1 that 

«<v • [H*\ 

so that we are assuming 

(13) PHr^l = R ( F
n ) - R( k ) for F

n - k - F
n +1 " X and n = 1,2, • • • , N - 1. 

Now suppose F N 4 k 4 F N + 1 - 1 and write n = N - 1 in (a) of Lemma 
4 to obtain 

(14) R(k) = R(F N + 1 - 1 - k) + R(k - FN) ; 

but F N 4 k 4 F N + 1 - 1 implies 0 4 F N + 1 - 1 - k 4 F^_± - 1 and 0 4 k -
F N < F N _ 1 - 1 . Suppose 

(15) F t < F N + 1 - 1 - k < F t + 1 - 1 , 

where of course F t + 1 - 1 < F N - 1 - 1 or 0 < t £ N - 2 (we are taking FQ 

0). Now 

(16) F N - F m < k + F N - F N _ t < F N - F t - 1 , 

but with 0 < t < N - 2 we must have F N _ 2 < F N - F t + 1 and F N - F t - 1 < 
F N 1 - 1 so that evidently 

<1?) FN-2 ^ k " F N S F N-1 - 1 

Using (16) and (17) along with (13) we have 

(18) [ f ] < R(k - F N ) 
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and 

(19) 1 < p T ^ l ~ R ( F N + 1 " * " k ) s i n c e t ~ ° ' 

Combining (18) and (19) in (14) gives 

(20) -« ^ [I] + ' - [H*\ 
for FAT — k — F X T | 1 - 1. Hence the t heo rem follows by induction on N. 

N N+l J 

Coro l l a ry . R(k) > R ( F 2 n - 1) = n if k > F 2 n - 1. 

Proof. We know from T h e o r e m 2 that the min imum value of R(k) in 

I 2 and I 2 .-I i s n + 1 in each of them; hence the minimum of R(k) in J 2 

U L i s n + 1. Thus, every value of R(k) in I ? 2 U I 2 ,« i s a t leas t 
n + 2 so that we can conclude by induction on n that R(k) > R ( F 2 - 1) if k 
> F 0 - 1 . 2n 

Theorem 3. The max imum of R(k) in I 2 is F 2 and the max imum 

of R(k) in I 2 n + 1 i s 2 F n + 1 for n = 1,2, • • • ; a l so , 

(21) F 3 ^ 2 F 2 < F 4 < 2 F 3 < ••• < F ^ < 2 F n + 1 < F n + 3 <• • • 

for n = 2 , 3 , - - • . 
Proof. The r e su l t in (21) follows by a s imple induction. 
The r e s u l t s concerning the maximum values of R(k) in I 2 and I 

can be ver i f ied for smal l n by us ing Table 1. Suppose these r e s u l t s hold for 

al l n ^ N; then we have by (a) of L e m m a 4, 

(22) R ( F
n + 1

 + *) = R ( F
n - t - 1) + R(t) for 0 < t < F n - 1 . 

Also , .we know by (b) of Lemma 4 that R(k) is s y m m e t r i c in I - , so it is 

enough to cons ider the values of only the f i rs t half of the e lements of I - in 

o r d e r to de te rmine the max imum e lements . More than the f i rs t half of the 
e lements of I M a r e contained in the s e t s n+l 

(23) { R ( F n + 1 + t ) | t = 0 , ! , - • • , F n _ 1 - l } a n d { R ( F n + 1 + t ) | t = F n ^ , - - , F n - l } . 
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Consider first the maximum of the first of the two sets in (23); evidently, 

m a x R(F + t) = m a x {R(F^ - t - 1) + R(t)} 
0<t<F , - 1 n i 0<t<F , - 1 n 

n-1 n-1 
(24) ^ m a x R(F - t - 1) + m a x R(t) 

0<t<F , - 1 V 0<t<F , - 1 
n-1 n-1 

•=' 2 m a x ! . 
n-Z 

Next, we have for the second set in (23) 

m a x R(F ,. + t) 
F - t ^ F -1 n + 1 

11 ^ m a x R(F - t - 1) + m a x R(t) 
(25) F ^ t ^ F -1 F , ^ t ^ F -1 x ' n-1 n n-1 n 

= max I o + m a x I . . n-3 n-1 

Together (24) and (25) imply 

(26) max I + 1 < max {max I _1 + max I „, 2 max I 2 } * 

Writingn = 2N + 1 in (26) and applying the induction hypothesis we have 

(27) max I 2 N + 2 £ max { F N + 3 , 4FN> = F N + 3 ; 

similarly, n = 2N + 2 in (26) gives 

(28) m a x I 2 N + 3 £ max {2F N + 2 , 2F N + 2 } = 2F N + 2 . 

In order to finish the proof of Theorem 3 we need to show that F N + 3 e 
T2N+2 *** 2 F N+2 e Ws" 

Since 0 ^ F 2 N + t £ F 2 N + 3 - 1 for t = 0,1, • • • , F , ^ - 1, we can 
use (22) and (b) of Lemma 4 to find 

(29) R(F 2 N + 3 + F 2 N + t) = R(F 2 N + 1 - t - 1) + R(F2 N + t) = 2R(F2 N + t) , 
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for t = 0 ,1 , • • •, F 2 N - - 1. From this we gather that all of the elements of 
I 2 N multiplied by 2 occur in I 2 N + T n e n c e > twice the maximum in I 2 N is 
in Iovr+o an(* this is precisely 2 F N + 2 . 

It is not so obvious that F N + ~ € Io N + 2 ; t o Pr°ve this we let X. denote 
an integer such that R ( F 2 N + X ) = F + 2 for n ^ N. We will also include 
in our induction hypothesis that an admissible value of \ - for n < N is 
given by X - = F 2 - -• X - 1. Now consider 

R(F2N+2 + F2N-1 ~ XN " 1 ) 

n m
 = R ( F2N+1 " F2N-1 + V + R ( F 2N-1 " XN " X) 

( } = R<F2N + XN> + R<F2N-2 + W 
FN+2 + FN+1 = FN+3 

The second equality in (30) follows from (22). It is now clear that an admissible 

value for XN + 1 is F oN-l " XN ~ 1 a n d t n a t F N + 3 € I2N+2* T h i s c o m P l e t e s 

the proof of Theorem 3. 

4. T(n), THE NUMBER OF REPRESENTATIONS OF n AS A SUM 
OF DISTINCT FIBONACCI NUMBERS 

For the moment we are taking a = F ,. in the lemmas of Section 2 
n n+l 

and write A(k) = T(k) in this case. The following theorem can be proved in 
the same way we proved Theorem 1, so we leave out the proof. 

Theorem 4. 
(a) Pn+1> = [ - 2 - ] * n = 1'2'' 
(b) T(Fn+1 + 1) = [|] if n = 3 ,4 ," 
Theorem 5. 
(a) T(N) = 1 if and only if N = F n + 1 - 1 for n = 1,2, • • • . 
(b) T(N) = 2 if and only if N = F n + 3 + F n - 1 or F R + 4 - F - 1 for n = 

1,2, ' •" . 
(c) T(N) >• 0 if N 2= 0. 
(d) T(N) = 3 i f andonlyi fN = F ^ + F n - 1, F n + 5 + F n + 1 - 1 , ^ 6 " 

Fn-^ Ve^Vl"1 f o r n = 1.2,--- . 
Proof, (a) and (c): We can check Table 2 to see that T(F - 1) = 1 

if n = 1,2,3,4. Suppose T(F +- - 1) = 1 for all n less than N > 4. Then 
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by (c) of Lemma 4 we have T (F N - F 3 + 1) = T(F N - 1) = T(F N _ 3 - 1) which 
is 1 by assumption. Next, the table shows that the only values of N < F r for 
which T(N) = 1 are N = F 2 - 1, F 3 - 1, F 4 - 1 and F 5 - 1. Suppose for 
all 4 ^ n < N, where N > 5, that F n < k < F - 1 implies T(k) > 1. 
Then by (a) of Lemma 4 we have for FXT ^ k < FATl1 - 1, T(k) = T(FXT . -

JN J N + 1 N + l 
F 3 - k) + T(k - FN) > 2. This completes the proofs of both (a) and (c). 

(b) By Lemma 5, we have T ( F n + 3 + FQ - 1) = T ( F n + 4 - F n - F 3 + 1), 
and since F n + 3 ^ F n + 3 + F n - 1 < F n + 4 - F 3 we can apply (a) of Lemma 4 to 
get T ( F n + 3 + F n - 1) = T ( F n + 4 - F 3 - F ^ - F Q + 1) + T(F n + 3 + V 1 - Fn + 3) 
= T (F n + 1 - 1) + T(F n - 1). By (a) of this lemma, the last sum is 2. To prove 
the "only if' part of (c), we use induction with (a) of Lemma 4 just as in the 
proof of the "only if" part of (a). 

(d) The proof can be given using induction and (a) of Lemma 4 just as (a) 
and (b) were proved. 

Theorem 6. For every natural number k there exist infinitely many N 
such that N has exactly k representations as a sum of distinct Fibonacci num-
bers , in fact, 

(31) T ( F n + k + 2 + 2 F n + 2 - 1) = k for n = 1,2,— and k = 4 , 5 , ' • • . 

Proof. The theorem is true for k = 1,2, 3, by (a), (b),and{d)of Theo-
rem 5. We will verify the theorem for k = 4 and leave the verification for 
k = 5 as an exercise. 

Since F n + 6 ^ F n + 6 + 2 F n + 2 - 1 < F n + 7 - F 3 we can apply (a) of Lemma 
4 to obtain 

T<Fn+6 + 2 F n + 2 " *> = T < F n + 7 " F 3 ' F n + 6 " 2 F n + 2 + X> 
<32> + T ( F n + 6 + 2 F n + 2 - 1 - F n + 6 ) 

= T ( F n + 5 " 2 F n + 2 " *> + T < 2 F n + 2 " *> 

h o w e v e r , 2 F ^0 = F ^ 0 + F ^ + F = F ^ 0 + F so tha t n+2 n+2 n+l n n+3 n 

(33) T ( 2 F n + 2 - 1 ) = T ( F n + 3 + F n - l ) = 2 , 
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(34) T(F n + 5 - 2 F n + 2 - 1) = T ( F n + 4 - F j i - 1) = 2 

by (b) of Theorem 5; combining (33) and (34) in the last member of (32) gives the 
desired result. 

Now suppose (31) holds for all k < N where N > 5. Since F, + N + o -
Fn+N+2 + 2 Fn+2 " X ~ Fn+N+3 ~ F 3 ' w e c a n u s e ^ o f L e m m a 4 t o o b t a i n 

T<Fn+N+2 + 2 F n + 2 " X> = T<Fn+N+3 " F 3 " Fn+N+2 - 2 F n + 2 + 1 > 

< 3 5 > + T<Fn+N+2 + 2 F n + 2 " * ~ F n W 

= T<Fn+N+l " 2 F n + 2 " !> + T<2 Fn+2 " ^ 

Since 0 < 2F 2 - 1 ^ F + N + 1 - F~ we can use Lemma 5 to write 

T ( F n + N + l " F 3 " 2 F n + 2 + *> = T<Fn+N+l " 2 F n + 2 " X> 
(36) = T < V N + 2Fn+2 - !) ' 

but, this last quantity is n - 2 by assumption and recalling (33) we see that the 
sum in the last member of (35) is (N - 2) + 2 = N. This concludes the proof. 

5. INCOMPLETE SEQUENCES 

In what follows, N(n) denotes the number of non-negative integers k < 
n for which A(k) = 0. 

Lemma 6. Let 0 < v1 < v2 <• • • denote the sequence of numbers k 
for which A(k) = 0 and suppose v, - , v, 9, • • • ,v, is a complete listing of 
the vTs between a and a + k + i < a ,- for n > 2; then v , , . = a + v. n n J n+1 J t+j n j 
for j = l , 2 , , # , , s and v is the largest v not exceeding k + 1. 

s 
Proof. The lemma can be verified for n = 2 and 3 by determining 

A(k) for 0 < k < a . ^ using P^(x), since by (a) of Lemma 3 we have A(k) = 
A s (k) for k in the supposed range. 

Suppose for some N ^ 3 that the v.Ts between a and a - are given 
by a + v r j a + vOJ«®», a + v« where v. is the largest v. not exceeding J n V n 2' ' n i I i 
a 1 and n ^ N. We will show that this implies the v. between aN and a „ 
+ k < a N + 1 are given by aN + v p a N + v2 , • • • , a

N + v
s
 w h e r e v

s
 i s t h e 

largest v. not exceeding k + 1 . 
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Case 1. Let a„ < a^ + v. ;£ ^NT+I ~ ao> then by (a) of Lemma 4 we 
have 

A(aN + v.) = A(aN + 1 - ag - aN - v.) + A(aN + v. - aN) 

(37) = A(aN_1 - a2 - v.) + A(v.) 

= A(aN_1 - a2 - v.) ; 

but for aXT + v. in the range being considered we have 0 ^ v. ^ aXT ., - a0 so 
N 3 & & j N-l 2 

that by Lemma 5 

(38) A(a N - 1 - a2 - v.) = A ( a ^ 2 + v.) 

and the right member is zero by assumption, so that A(a~, + v.) = 0 is a 
consequence. 

Now suppose there is a t not a v. such that aN ^ aN + t ^ ^ . i ~ ao 
and A(aN + t) = 0; then by (a) of Lemma 4 we would have 

(39) A(aN + t) = A(aN__1 - a2 ~ t) + A(t) . 

But this is a contradiction since A(t) 4= 0 (t is not a v^ and we assumed 
A(aN + t) = 0. 

Thus a^ + vv aN + v2> '•9 , a N + v g < a^ + k <; a ^ ^ - a£ is a complete 
listing of the v. between a N and a^ + k ^ a^+ 1 - a2-

Case 2. Let a N + 1 - a2 < aN + v. < ^ 4 4 » t h e n b ^ (c) o f Lemma 4 we 
have 

(40) A(a^ + v.) = A(aN__2 + v.) 

which is zero by assumption. If we suppose there is a t such that t is not 
a v. and a N + 1 - a£ < aN + t < a ^ ^ implies A(aN + t) = 0, we obtain a 
contradiction since A(a^ + t) = A(aN 2 + t) = 0 would imply t is a v.. 

Thus, a~, + v., • .• -, a^ + v*, with v. the smallest v. not less than 
aM~i> c o m P r i s e s a complete listing of the v. between aN . - a~ and 3^ , - , . 
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Taken together, the results proved in Cases 1 and 2 imply Lemma 6 by 
induction. 

Corollary. If A(k) > 0 for k ^ a9, then {a } is complete; this is 
dt n 

equivalent to saying .(a. , a2) = (2,1), (1,2) or (1,1). 
Proof. This follows from Lemma 6 and induction. Also, note that if 

{a } is not complete, then there exist infinitely many k such that A(k) = 0. 
Lemma 7. 
(a) N(an + k) = N(a ) + N(k) if .0 < k < a and n = 2, 3, 4, • • • . 
(b) N(k) = k if 0 < k < a1 . 
(c) N(k) = k - 1 if ax ^ k < a2 . 
(d) N(k) = k - 2 if a2 < k ̂  a3 . 
(e) N ( a n - 1 ) - N(an) if n = 1,2,-•• . 
Proof, (a) Suppose n > 2, then by Lemma 6, the v. such that a < 

v. ^ a + k with 0 ^ k -̂  a n are given by a + v n , a + vOJ • • • ,a + v., i n n-1 & J n 1' n 2' ' n j ' 
where v. is the smallest v. not exceeding k. Hence there are N(k) v. in 
the supposed range. By definition the number of v. % a is N(a ) so N(a 
+ k) = N(an) + N(k). 

(b) (c) (d) follow from the fact that A(k) 4 0 with k < a3 only if k = 0, 
al' V 

(e) Since a is never a v., N(a - 1) = N(a ). 
v 7 n I x n ' x n' 
Lemma 8. N(a-) = a- - 1, N(a2) = a2 - 2 , N(a„) = a„ - 3 and N(a -) 

= N(an) + N ( a n ^ ) if n = 3,4,- •• . 
Proof. N(a1) = N(a- - 1) = a1 - 1 by (e) and (b) of Lemma 7 respectively; 

the second and third statements follow by (e) and (c) and (e) and (d) of the same 
lemma respectively. The last statement follows by writing k = a - in (a) of 
Lemma 7. 

Lemma 9. N(a ) = a - F ,- if n = 1 ,2 , . . . and F denotes the n 
Fibonacci number. 

Proof. The statement is clearly true for n = 1,2,3 and can be seen by 
the first part of Lemma 8. If we suppose the statement true for all n < k(k >: 3) 
we can write 

N V i > = N ( a k > + N ( ak- i> = \ ' F k + i + V i - F k 
(41) 

\+l ~ Fk+2 
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by the last part of Lemma 8; so Lemma 9 follows by induction on k. 
Lemma 10. Every natural number can be written in the form 

(42) n = a k l + ak 2 +" • • + ak. + t 

with k. + 1. > k., - and 0 ^ t < a0. 
Proof. The lemma is trivially true for all n ^ a2. Every natural num-

ber between a~ and a« can be written a~ + t with t < a- ; n = a« is of 
the form (42). 

Suppose (42) holds for all n < N, and let a, denote the largest a i not 
exceeding N and consider N - a, . We must have N = a, < a, - , since 
N < a, ^ a, - implies N ^ a . + 1 which contradicts the maximal property of 
a, . It follows that N - a, < N can be represented in the form (42) with k + 
1 > k-, hence, N = afe. + a k l + • • • + akj[ + t is also of the form (42). 

Theorem 7. Let n be a number represented as in (42). Then 

(43) N(n) 

n ~ {%+! + Fk2+1 + ••• + F k . + i } if 0 =st ==. ax 

n - {1 + F k l + 1 + F k 2 + 1 + • • - + F k . + 1 } if ax < t ^ a 2 

Proof. Since ak 2 + • • • + ak. + t < a k l - 1 we can apply Lemma 7 
to obtain 

(44) N(n) = N(akl) + N(ak2 + • • • + ak. + t) ; 

applying Lemma 7 repeatedly in (44) we get 

(45) N(n) = N(ak l) + N(akg) + • • - + N(ak. + t) . 

Now if ak. = a2, 0 ^ t < a1? since if t ^ ^ we would have ak i = ag and 
we can write 

(46) N(ak. + t) = N(ak.) + N(t) ; 
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but if ak- = a-i ». we would have a- + t < a2 and we res elect t as a1 + t ; 
also, we can conclude from this that a. # - 1 ^ a3 so (46) still holds in this 
case. Thus (45) can be written in the form 

(47) N(n) = N(ak l) + N(ak£) + -•• + N(ak.) + N(t) 

Applying Lemma 9 to the N(ak.) in the right member of (47) we get 

(48) N(n) = a k l - F k l + 1 + ak 2 - F k 2 + 1 + • • - + ak. - F k . + 1 + N(t) 

= a k l + ak 2 + • • • + ak. + N(t) - { F k l + 1 + . . . + F k . + 1 } ; 

but if t < a^, N(t) = t and ak_. +• • •+ ak. + t = n by assumption so that the 
first part of (43) is true. If a1 ^ t < a2, N(t) = t - 1 and we see that the 
second part of (43) is also true. This completes the proof of Theorem 6. 

Hoggatt (Problem H-53, Fibonacci Quarterly) has proposed that one show 
that M(n), the number of natural numbers less than n which cannot be expres-
sed as a sum of distinct Lucas numbers L (L1 = 1, L0 = 3, L 0 = L +L 

n x dt Tr^di n + x n 
has the property 

(49) M(L ) = F n v n7 n-1 

also, he asked for a formula for M(n). 
The Lucas sequence can be used in place of {a } in all of our lemmas 

and theorems. In particular, Lemma 9 tells us M(L ) = N(L ) = L - F 
it is a trivial matter to show L 

n+l' 
F - = F - by induction so (49) is proved. 

Writing ak. = L^. in (42) and Theorem 7 gives a formula for M(n) for all 
natural numbers n. 

Table 1 
R(k) for 0 < k < 144 

n 
R(n) 

0 

1 

n 20 

R(n) 4 

1 

2 

2 

2 

3 4 

3 3 

5 6 7 

3 4 3 

8 9 10 11 12 

4 5 4 5 4 

13 14 15 16 17 18 19 

4 6 5 6 6 5 6 

21 22 23 24 25 26 27 28 29 30 31 32 33 

5 7 6 8 7 6 8 6 7 8 6 7 5 

34 35 36 37 38 39 

5 8 7 9 9 8 
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n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 
R(n) 10 7 8 10 8 10 8 7 10 8 9 9 7 8 5 

55 56 57 58 59 
6 9 8 11 10 

n 

R(n) 

60 

9 

61 

12 

62 

9 

63 

11 

64 

13 

65 

10 

66 

12 

67 

9 

68 

8 

69 

12 

70 

10 
71 
12 

72 

12 

73 

10 

74 

12 
75 

8 

76 

9 

77 

12 

78 

10 

79 

13 

n 80 81 82 83 84 85 86 87 88 

R(n) 11 9 12 9 10 11 8 9 6 

89 90 91 92 93 94 95 96 97 98 99 

6 10 9 12 12 11 14 10 12 15 12 

n 

R(n) 

n 

R(n) 

100 

15 

116 

16 

101 

12 

117 

12 

102 103 

11 16 

118 119 

14 16 

104 

13 

120 

12 

105 

15 

121 

14 

106 107 

15 12 

122 123 

10 9 

108 109 

14 9 

124 125 

14 12 

110 111 

10 14 

126 127 

15 15 

112 

12 

128 

13 

113 

16 

129 

16 

114 

14 

130 

11 

115 

12 

131 

12 

n 132 133 134 

R(n) 15 12 15 

135 136 137 138 139 140 141 

12 10 14 11 12 12 9 

142 143 

10 6 

Table 2 
T(k) for 0 < k < 55 

n . 

T(n) 

n 

T(n) 

0 1 2 

1 1 1 

20 21 

1 4 

3 4 5 6 7 8 

2 1 2 2 1 3 

22 23 24 25 26 

3 3 5 2 4 

9 

2 

27 

4 

10 11 12 13 14 

2 3 1 3 3 

28 29 30 31 32 33 

2 5 3 . 3 4 1 

15 16 17 18 19 
2 4 2 3 3 

34 35 36 37 38 39 

4 4 3 6 3 5 

n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 

T(n) 5 2 6 4 4 6 2 5 5 3 6 3 4 4 1 5 
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Table 3 
S(k) for 0 < k < 68 

n 

S(n) 

S(n) 

n 

0 

1 

20 

0 

40 

5 

1 2 

1 0 

3 

1 

4 

2 

21 22 23 

2 4 2 

41 42 43 

3 0 3 

5 

1 

24 

0 

44 

4 

6 

0 

7 8 9 10 

2 2 0 1 

11 12 

3 2 

25 26 27 28 

3 3 0 1 

29 30 31 

4 3 0 

45 46 

1 0 

47 48 49 50 51 

4 4 0 3 6 

13 

0 

32 

3 

52 

3 

14 15 16 17 

2 3 1 0 

33 34 35 36 37 

5 2 0 4 4 

53 54 55 56 57 

0 5 5 0 2 

18 

3 

38 

0 

58 

6 

19 

3 

39 

2 

59 

4 

n 

S(n) 

60 

0 

61 

4 

62 

6 

63 

2 

64 

0 

65 

5 

66 

5 

67 

0 

68 

3 

69 
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